
Factor Cuts

Satrajit Chatterjee Alan Mishchenko Robert Brayton

Department of EECS
U. C. Berkeley

{satrajit, alanmi, brayton}@eecs.berkeley.edu

ABSTRACT

Enumeration of bounded size cuts is an important step in
several logic synthesis algorithms such as technology map-
ping and re-writing. The standard algorithm does not scale
beyond 6 or 7 inputs because it enumerates all cuts and there
are too many of them. We address the enumeration problem
by introducing the notion of cut factorization. In cut fac-
torization, one enumerates global and local cuts (collectively
called the factor cuts) of the network, and uses these to gen-
erate other cuts. Depending on how global and local cuts
are defined, one obtains different factorization schemes. In
the first scheme, complete factorization, it is possible to gen-
erate any cut from factor cuts. However, complete factor-
ization is expensive though less expensive than exhaustive
enumeration. In the second scheme, partial factorization,
there is no guarantee of generating all cuts from factor cuts.
However, it is much faster, and produces good results. In
this paper we also present two applications of factor cuts:
LUT mapping and macrocell mapping. In LUT mapping,
we find that considering only factor cuts guarantees depth
optimality for most nodes in the network. For the remaining
nodes, other cuts need to be generated from factor cuts and
examined. In macrocell mapping, we focus on a particular
9-input macrocell, and use factor cuts as a heuristic method
to improve depth by reducing structural bias. Factor cuts
are used to map the macrocell as a whole whenever possi-
ble instead of mapping its parts separately. In this context
factor cuts enable a new quality–run-time tradeoff between
mapping parts of the macrocell separately (poor quality),
and mapping using all 9-input cuts (long run-time).

1. INTRODUCTION
Cut enumeration is an important step in many synthesis

algorithms. In particular, technology mapping and resyn-
thesis through re-writing require the ability to generate all
cuts (of a certain size). For example, when mapping a cir-
cuit into k-input look up tables (k-LUTs) for FPGAs, one
would like to enumerate all cuts of size k or less and pick the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD‘06, November 5­9, 2006, San Jose, CA
Copyright 2006 ACM 1­59593­389­1/06/0011 ...$5.00.

best ones. In the specific case of depth optimal LUT map-
ping, there is an elegant algorithm based on network flow [5]
due to Cong and Ding that avoids the need for enumeration.
However, as their later work indicates [6], for other objec-
tives such as minimizing area under delay constraints, it may
be necessary to enumerate cuts.

In a network of size n, the number of cuts of size k is
O(nk). For small cuts (i.e. k = 6 or 7), one can use an
enumerative procedure to compute all (or most) cuts [6, 11].
But for larger cuts, the enumerative procedure fails simply
because there are too many cuts. Of course, only a small
fraction (say 1%) of those cuts is useful in an FPGA mapping
but a priori we don’t know which 1%.

In this work we address the enumeration problem by try-
ing to factor the cut space. Just as the algebraic expression
(ab + ac) can be factored as a(b + c), the set of all cuts of a
node can be factored using two sets of cuts called global and
local. Collectively they are called factor cuts. By expand-
ing factor cuts w.r.t. local cuts, a larger set of cuts can be
obtained. During the cut computation only factor cuts are
enumerated. Later on in the application (such as depth op-
timal LUT mapping), other cuts are generated from factor
cuts as necessary.

Depending on how global and local cuts are defined, there
can be different factorization schemes. In this paper, we
present two schemes: complete and partial. In complete
factorization, every cut can be obtained by expanding a fac-
tor cut w.r.t. a local cut. However, complete factorization is
expensive since there may be a large number of global cuts.

Partial factorization is an alternative approach where there
are much fewer global cuts, but there is no guarantee that all
cuts can be generated by expanding factor cuts. However,
in practice, good cuts are obtained with partial factorization
in a fraction of the run-time required for complete enumer-
ation.

We demonstrate the utility of factor cuts by presenting
two applications of factor cuts to mapping. In the first ap-
plication, we modify the algorithm for depth optimal LUT
mapping to use factor cuts. For most nodes in a network,
just examining factor cuts is sufficient to get optimum depth.
The full set of cuts of a node has to be examined for rela-
tively few nodes. Although LUTs with many inputs have
only limited application (such as in structured ASICs where
embedded memory blocks may be used to implement logic,
or in future programmable architectures based on nano-
devices) the depth optimal mapping problem has an elegant
algorithm when factor cuts are used. It is interesting the-
oretically since it is suggestive of how algorithms may be

143



Figure 1: An AIG fragment to illustrate cut factor-
ization. Nodes p, q, b, c, and d are primary inputs.

modified to use factor cuts.
In the second application, we use factor cuts to improve

the quality of results in macrocell mapping (for a particular
architecture). In this application factor cuts are used heuris-
tically to improve the quality of the mapping obtained, over
that of simple mapping which does not fully exploit macro-
cells. In this framework, factor cuts may be seen as an
efficient method of reducing structural bias [4], by allowing
deeper matches that match the macrocell as a whole, instead
of breaking it into its constituent parts.

Other applications of factor cuts would be to improve the
quality of standard cell mapping [4] and of logic synthesis
using re-writing [10]. The cut size correlates with the ca-
pability of a mapper (or re-writing algorithm) to overcome
structural bias. The larger the cut, the larger is the scope of
Boolean matching (or Boolean transform) and the smaller
the structural bias.

Section 2 reviews the conventional cut enumeration pro-
cedure and introduces notation used the paper. Section 3
presents the theory and experimental results for complete
factorization. Section 4 describes partial factorization. Sec-
tions 5 and 6 present LUT- and macrocell- mapping algo-
rithms based on factor cuts.

2. PRELIMINARIES AND REVIEW

AIG

An And-Inverter Graph (AIG), G, is a directed acylic graph
(DAG) where a node has either 0 or 2 incoming edges. A
node with no incoming edges is a primary input (PI). A node
with 2 incoming edges is a (2-input) And gate. An edge is
either complemented or uncomplemented. A complemented
edge indicates the inversion of the signal. Figure 1 shows an
example of an AIG.

k­Feasible Cuts

A cut of a node n is a set of nodes c in its transitive fan-in
such that every path from a PI to n includes a node in c.
A cut is said to be irredundant if no subset of the cut is a
cut. A k-feasible cut is an irredundant cut of size k or less.
A trivial cut is a cut of size 1.

Let A and B be two sets of cuts. For convenience we

define the operation A ⊲⊳ B as follows:

A ⊲⊳ B ≡ {u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k}

(A ⊲⊳ B is empty if either A or B is empty.)
Let Φ(n) denote the set of k-feasible cuts of n. If n is an

And node, let n1 and n2 denote its inputs. We define Φ(n)
as follows:

Φ(n) ≡



{{n}} : n is a PI
{{n}} ∪ (Φ(n1) ⊲⊳ Φ(n2)) : otherwise

That this formula enumerates all k-feasible cuts can be
easily checked by induction. If there are reconvergent paths
in the network this procedure may additionally generate re-
dundant cuts which can be removed efficiently using signa-
tures [9]. In what follows we assume that this removal is
done as part of the ⊲⊳ operation.

Dag and Tree Nodes

A dag node is a node in the AIG which has two or more
outgoing edges. A node of G that is not a dag node is called
a tree node. The set of dag nodes is denoted by F , and that
of tree nodes by T . In Figure 1, the factor nodes are shown
shaded.

The sub-graph GT of G induced by the tree nodes is a
forest of trees. Each tree T in GT has an outgoing edge (i.e.
feeds in) to exactly one dag node nf in G.

Consider the sub-graph Tnf
of G induced by a dag node

nf in G and the nodes belonging to the trees in GT that feed
into it. Tnf

is a (possibly trivial) tree. Tnf
is called the

factor tree of a node n in Tnf
. Clearly every node in G has

a factor tree. The dag node nf is called the root of Tnf

Figure 1 shows the decomposition of the AIG into factor
trees. The factor tree for node b is trivial. The factor tree
of node x consists of x, y, z, c, and d.

The inputs ni of the leaves of a factor tree are dag nodes.
The factor tree along with the inputs ni is a leaf-DAG, and is
called the factor leaf-DAG. Every node n in G has a unique
factor leaf-DAG (via its unique factor tree). The root of a
factor leaf-DAG is the root of the corresponding tree.

In Figure 1, the factor leaf-dag of x contains the nodes in
the factor tree of x along with nodes a and b.

Local Cuts, Global Cuts and Expansion

In the following sections we will identify some k-feasible cuts
in the network as local cuts, and some others as global cuts.
We refer to them collectively as factor cuts. The precise
definitions of local and global will depend on the factoriza-
tion scheme (complete or partial), but the general idea is to
“expand” factor cuts by local cuts to obtain other k-feasible
cuts. In the case of complete factorization, this expansion
will produce all k-feasible cuts.

Let c be a factor cut of node n ∈ G. Let ci be a local cut
of a node i ∈ c. Consider l =

S

i∈c

ci. The set l is a cut of n

though not necessarily k-feasible. If l is k-feasible, then l is
called a 1-step expansion of c. Define 1-step(c) as the set of
cuts obtained from c by 1-step expansion, i.e.

1-step(c) = {l | l is a 1-step expansion of c}

We ensure that c ∈ 1-step(c) by requiring that the set of
local cuts of a node always include the trivial cut.

In Figure 1, consider the cut {a, b, z} of x. By expanding
node a with its local cut {p, q}, we get the cut {p, q, b, z} of
x. Thus {p, q, b, z} ∈ 1-step({a, b, z}).

144



Name
Nodes Number of cuts Run-time(sec)

Total % Dag All Reduced Tree All CF
C1355 541 50.09 47245 25811 657 0.16 0.06
C1908 435 38.85 16546 10153 558 0.04 0.01
C2670 920 17.50 27734 14828 1583 0.07 0.02
C3540 1081 22.94 46392 29356 2064 0.10 0.05
C5315 1827 22.22 67118 35852 2677 0.13 0.07
C6288 2369 60.11 279197 209807 2818 0.82 0.53
C7552 2248 29.40 129161 78543 3251 0.28 0.16
b14 6296 23.60 397951 226401 11300 0.69 0.32
b15 8869 22.01 416804 265870 18102 0.65 0.35
clma 24387 11.20 739582 658314 27419 0.52 0.51
pj1 17675 19.11 781566 465554 32725 1.20 0.61
pj2 4055 14.38 110103 84839 5889 0.13 0.10
pj3 11178 22.45 523448 373960 22659 0.77 0.50
s15850 4127 25.66 108433 75509 6066 0.18 0.11
s35932 13711 35.89 341330 223743 16106 0.52 0.30
s38417 10820 25.00 294832 164264 16895 0.47 0.23
Ratio 1.00 0.27 1.00 0.64 0.04 1.00 0.55

Table 1: Comparison of conventional enumeration (All) and complete factorization (CF) for k = 6. The
run-times for this and other experiments are on a 3 GHz Intel Pentium 4 with 1GB of RAM.

3. COMPLETE FACTORIZATION
In complete factorization, we enumerate tree cuts and re-

duced cuts (defined below) which are subsets of the set of all
k-feasible cuts. Tree cuts are the local cuts and reduced cuts
are the global cuts. We use the term complete factor cuts

to refer to tree cuts and reduced cuts collectively. Complete
factorization has the property that any k-feasible cut can be
obtained by 1-step expansion.

3.1 Theory

Tree Cuts (Local Cuts)

Let ΦT (n) denote the set of all tree cuts of node n. Define

the auxiliary function Φ†
T (n) as follows:

Φ†
T (n) ≡



φ : n ∈ F
ΦT (n) : otherwise

ΦT (n) is defined recursively as,

ΦT (n) ≡



{{n}} : n is a PI

{{n}} ∪ (Φ†
T (n1) ⊲⊳ Φ†

T (n2)) : otherwise

ΦT (n) represents the subset of k-feasible cuts of n that only
involve nodes from the factor tree of n.

For example, in Figure 1, ΦT (x) = {{x}, {y, z}, {y, c, d}}.

Reduced Cuts (Global Cuts)

We define ΦR(n), the set of reduced cuts of a node n, as
follows:

ΦR(n) ≡



{{n}} : n is a PI
{{n}} ∪ ((ΦR(n1) ⊲⊳ ΦR(n2)) \ΦT (n)) : otherwise

The formula for ΦR(n) is very similar to that for Φ(n),
except that non-trivial tree cuts are removed. Since this
removal is done recursively ΦR(n) is significantly smaller
than Φ(n).

For example, in Figure 1, ΦR(x) = {{x}, {a, b, z}}. Note
that {a, b, c, d} is not a reduced cut of x, since {c, d} is re-
moved when computing ΦR(z).

Cut Decomposition Theorem

With local and global cuts being tree and reduced cuts re-
spectively, a cut decomposition theorem holds. The proof of
the theorem is omitted due to lack of space.

Theorem 1 (Cut Decomposition). Every k-feasible cut

of a node n in G is a 1-step expansion of a k-feasible com-

plete factor cut of n.

3.2 Experimental Results
Table 1 shows the number of complete factor cuts for k

= 6 for a set of benchmarks. The column labeled “dag”
shows the percentage of nodes that are dag nodes. On av-
erage about 27% of the nodes are dag nodes. The number
of reduced cuts is about 64% of the total number of cuts.
Enumerating complete factor cuts is about 2 times faster
than enumerating all cuts.

Table 2 shows the number of complete factor cuts for k = 9
for the same set of benchmarks. (Ignore the columns labeled
“PF” for now.) For k = 9, not all cuts could be computed
since there were too many. The columns labeled “Over”
indicate the fraction of nodes at which the maximum limit
of 2000 cuts was exceeded. When enumerating all cuts, the
limit was exceeded in about 16% of the nodes on average.
However, the reduced cut enumeration exceeded the limit
in only 6.5% of the nodes. (The tree cut enumeration never
exceeded the limit.) The number of complete factor cut cuts
is about 68% and the enumeration runs about 34% faster.

4. PARTIAL FACTORIZATION
Although complete factorization causes a reduction in the

number of cuts that need to be enumerated, further reduc-
tion is possible by sacrificing the ability to generate all k-
feasible cuts by 1-step expansion. This leads to the notion
of partial factorization. Partial factorization is much faster
than complete factorization, and produces a “good” set of
cuts in practice, especially for large k (say k = 9).

145



Figure 2: An AIG fragment to illustrate the limita-
tions of partial factorization. The cut {a, b, c, d} is a
4-feasible cut of x, but cannot be generated from a
1-step expansion of a partial factor cut of x.

4.1 Definition
In partial factorization leaf-dag cuts play the role of local

cuts and dag cuts play the role of global cuts.

Leaf­dag Cuts (Local Cuts)

Let ΦL(n) denote the set of all k-feasible leaf-dag cuts of

node n. Define the auxiliary function Φ†
L(n) as follows:

Φ†
L(n) ≡



{{n}} : n ∈ F
ΦL(n) : otherwise

Leaf-dag cuts are defined recursively as follows.

ΦL(n) ≡



{{n}} : n is a PI

{{n}} ∪ (Φ†
L(n1) ⊲⊳ Φ†

L(n2)) : otherwise

Conceptually, leaf-dag cuts are similar to tree cuts. Unlike
tree cuts, leaf-dag cuts also include the dag nodes that feed
into the factor tree of a node. This allows more cuts to be
generated by 1-step expansion at the cost of a slight increase
in run-time for local cut enumeration.

In the example of Figure 1, the cuts {a, b, z} and {a, b, c, d}
are examples of leaf-dag cuts of node x. (They are not tree
cuts of x.)

Dag Cuts (Global Cuts)

Let ΦD(n) denote the set of k-feasible dag cuts of n. We
define ΦD(n) as follows:

ΦD(n) ≡

8

<

:

{{n}} : n is a PI
ΦD(n1) ⊲⊳ ΦD(n2) : n ∈ T
{{n}} ∪ (ΦD(n1) ⊲⊳ ΦD(n2)) : otherwise

In Figure 1, for k = 4, {x} and {a, b, c, d} are the only dag
cuts of x.

This definition of dag cuts is motivated by a need to re-
duce the number of global cuts seen in complete factoriza-
tion. Defining dag cuts in this manner allows us to capture
much of the reconvergence in the network without having to
enumerate the large number of reduced cuts (as in complete
factorization).

However, by computing global cuts this way, some cuts
cannot be generated by 1-step expansion, as shown in Fig-
ure 2. The 4-feasible cut {a, b, c, d} of x cannot be generated
from a 1-step expansion of a partial factor cut of x.

4.2 Experimental Results
In Table 2 the columns under “PF” show the number of

partial factor cuts for k = 9. It is seen from the table that
the number of partial factor cuts is a small fraction of the
total number of cuts (15%) and the time for enumerating
these cuts is less than 10% of the time required to enumerate
all cuts. During enumeration only a small fraction of nodes
(less than 0.5%) exceeded the limit of 2000 when computing
dag cuts and hence those data are not shown in Table 2.

We note here that the multiplier (C6288) is a particularly
interesting benchmark. In comparison with other bench-
marks, it has many – about 60% – dag nodes. This negates
the advantage of computing partial factor cuts as the fac-
tor trees are small. Hence the factor cut enumeration takes
unusually long.

5. DEPTH OPTIMAL K­LUT MAPPING
In this section we present an application of factor cuts to

technology mapping for LUT-based FPGAs. We review the
conventional algorithm that enumerates all k-feasible cuts
in Section 5.1. In Section 5.2, the conventional algorithm
is modified to work with factor cuts. Section 5.3 presents
experimental results using factor cuts for LUT mapping on
a set of benchmarks.

5.1 Conventional Algorithm
The conventional algorithm for depth optimal k-LUT map-

ping enumerates all k-feasible cuts and chooses the best set
of cuts using dynamic programming on the AIG. The al-
gorithm proceeds in two passes over the nodes of the AIG.
The first pass, called the forward pass, is done in topological
order from PIs to POs. For each node, all k-feasible cuts are
enumerated (using the k-feasible cuts of its children), and
the cut with earliest arrival time is selected.

The arrival time of a cut c, denoted by arrival(c) is defined
as follows:

arrival(c) ≡ 1 + max
n∈c

arrival(n)

where arrival(n) is the best arrival time for node n (from
among all its k-feasible cuts). This recursion is well defined
since when the cuts for a node n are being processed, the
nodes in the transitive fan-in of n have already been pro-
cessed. Thus the best arrival time of any node in a k-feasible
cut of n has already been computed.

The second pass of the algorithm is done in reverse topo-
logical order from the POs to the PIs. For each PO the
best k-feasible cut is chosen and a LUT constructed in the
mapped netlist to implement it. Then recursively for each
node in the cut, this procedure is repeated.

5.2 Depth Optimal Mapping with Factor Cuts
The main limitation of the conventional algorithm is that

it explicitly enumerates a large number of all k-feasible cuts
during the forward pass. The idea behind using factor cuts is
to avoid enumerating all k-feasible cuts. Ideally, one would
like to enumerate only factor cuts (which are fewer than
k-feasible cuts) for mapping.

The problem with enumerating only factor cuts is that
there is no guarantee that the best k-feasible cut is a factor
cut. This means that one may have to expand factor cuts
exhaustively in order to get the best k-feasible cut. But this
could be as bad as enumerating all k-feasible cuts.

146



Number of cuts and % of nodes overflowing Run-time (sec)
Name All CF PF

All CF PF
Total Over Reduced Over Tree Dag Leaf-dag

C1355 433995 19.96 398226 16.82 657 103255 1457 10.77 9.86 1.25
C1908 247474 9.20 136755 2.30 562 53094 2582 4.06 1.94 0.51
C2670 363647 10.54 227604 2.61 3086 8412 11239 7.77 4.04 0.11
C3540 723405 18.69 531281 6.29 2818 29858 23391 16.37 12.3 0.27
C5315 822569 6.95 402009 0.71 2827 53299 12290 17.72 6.06 0.32
C6288 3232621 43.56 3220602 43.14 2818 2273878 6072 126.38 139.99 70.34
C7552 1632538 20.60 1100358 4.89 5214 186769 14341 38.64 24.93 1.52
b14 8937035 54.57 5734487 7.91 15607 507448 96713 182.01 144.51 2.78
b15 7498534 16.24 4484041 3.33 27812 995259 150682 148.60 74.91 11.86
clma 8870652 0.85 7688879 0.67 27419 364384 955803 60.29 50.3 4.13
pj1 12695024 18.91 7806133 3.55 63466 775824 443649 196.31 130.31 11.57
pj2 1633480 6.98 1315608 2.98 5944 48941 45664 24.29 20.13 0.16
pj3 8644521 18.00 5900954 5.47 69542 861144 291336 142.95 106.91 12.07
s15850 1323074 6.47 966661 3.46 8542 40838 52282 23.91 18.54 0.29
s35932 1623042 0.00 928175 0.00 16106 60029 54860 10.42 3.95 0.13
s38417 3678001 5.15 1587491 0.63 25547 69623 113578 61.24 19.1 0.69
Ratio 1.00 (16.04) 0.68 (6.55) 0.00 0.12 0.03 1.00 0.66 0.08

Table 2: Comparison of conventional enumeration (All), complete factorization (CF), and partial factorization
(PF) for k = 9. The number of all 9-feasible cuts is an underestimate. See Section 3.2 for details.

To avoid exhaustively expanding all factor cuts, we use
the following result [5, Lemma 2]:

Theorem 2 (Cong and Ding). If n is an And node

with inputs n1 and n2, then

arrival(n) = p or arrival(n) = p + 1

where p = max(arrival(n1), arrival(n2)).

Theorem 2 provides a lower bound on the best arrival
time. If a factor cut attains the lower bound, then there
is no need for expansion. If no factor cut attains the lower
bound, then the factor cuts are 1-step expanded one by one.
During this process if the lower bound is attained, there is
no need to expand the remaining factor cuts.

Optimality. If complete factorization is used then this
algorithm produces the optimal depth since 1-step expan-
sion will produce all k-feasible cuts (by the Cut Decompo-
sition Theorem). In the case of partial factorization, there
is no guarantee of optimality. However experiments show
that for large k there is no loss of optimality for the set of
benchmarks considered (see Section 5.3).

Expansion. In complete factorization, 1-step expansion
need not be exhaustive. It suffices to expand the late arriv-
ing inputs of the cut, one node at a time. This is because
the expansions are independent – two nodes in the cut do
not have to be expanded simultaneously with their tree cuts,
since the tree cuts of two nodes never overlap.

In partial factorization, the leaf-dag cuts of two nodes
may overlap, and so the expansions are not independent.
However, in our experiments, the nodes were expanded one
late-arriving node at a time since that did not degrade the
quality significantly.

It is instructive to see why the conventional algorithm
cannot be easily modified to exploit the lower bound. Al-
though one need not scan all of Φ(n) to find the best cut
(one can stop as soon as the lower bound is attained), one
still needs to construct Φ(n) completely. This is because a

cut c ∈ Φ(n) that does not lead to the best arrival time for
n may lead to the best cut for some node n′ in the transitive
fanout of n.

5.3 Experimental Results
We implemented a prototype FPGA mapper based on fac-

tor cuts in the ABC system [2]. Table 3 shows the depth
and run-times of the various modes of this mapper for k =
9.

The first set of columns (under the heading “Lim = 2000”)
show that complete factorization (CF) produces better re-
sults than enumerating all cuts and is faster. These columns
directly correspond to the “All” and “CF” cut data shown
in Table 2. Note that the sub-optimality of enumerating all
cuts is due to the fact that not all cuts could be computed
for the nodes – there was an overflow of 16%. Also by com-
paring the cut computation run-times in Table 2 with the
overall mapping run-times in Table 3 we can see that the
mapping run-time is dominated by cut computation. Ex-
pansion takes a small fraction of the total run-time and on
average about 25% of the nodes needed to be expanded.

The second set of columns (under the heading “Lim =
1000”) show the effect of reducing the limit on the maximum
number of cuts stored at a node. Although the cut compu-
tation is more than twice as fast, the depth is 15% worse
when enumerating all cuts. Complete factorization contin-
ues to produce better depths and has shorter run-times.

The final set of columns (under the heading “PF”) shows
the depth and run-time obtained with partial factorization.
Although 1-step expansion from partial factor cuts may not
generate all k-feasible cuts, the cuts that it does generate are
competitive with those enumerated by the conventional pro-
cedure under the limit. Furthermore, partial factorization
is about 6X faster than conventional enumeration.

We also experimented with partial factorization for differ-
ent values of k. For k = 6 we found that partial factorization
produces about 5% worse results than enumerating all cuts

147



Lim = 2000 Lim = 1000
PF

Name Depth Run-time Depth Run-time
All CF All CF All CF All CF Depth Run-time

C1355 4 3 10.82 9.93 5 3 3.02 3.46 3 5.21
C1908 4 4 4.1 1.96 5 5 1.49 0.94 4 0.59
C2670 4 4 7.82 4.1 4 4 3.21 2.33 4 1.93
C3540 6 6 16.46 12.43 7 6 4.98 5.35 6 0.95
C5315 5 5 17.82 6.15 5 5 8.06 3.92 5 0.94
C6288 12 12 126.71 140.41 20 15 35.59 33.99 11 72.07
C7552 5 4 38.82 25.18 5 5 14.9 11.17 4 2.00
b14 10 10 183 147.17 12 10 43.86 63.21 10 6.99
b15 12 10 149.45 76.38 13 11 46.67 39.5 13 20.85
clma 9 9 61.13 51.38 9 9 40.28 36.76 10 8.36
pj1 8 8 197.64 132.27 8 8 61.83 62.99 9 22.30
pj2 4 4 24.48 20.39 5 4 9.16 8.81 4 0.27
pj3 6 6 143.89 108.18 8 7 48.76 49.99 7 24.37
s15850 8 7 24.06 18.86 9 8 10.54 8.33 7 2.12
s35932 2 2 10.59 4.15 2 2 7.46 4.14 2 0.21
s38417 5 4 61.64 19.73 6 5 24.97 12.79 4 2.90
Ratio 1.00 0.94 1.00 0.67 1.15 1.09 0.40 0.32 0.97 0.15

Table 3: Comparison of conventional mapping (All) and complete factorization (CF) with different limits,
and partial factorization (PF) with a limit of 2000 cuts per node. k = 9. The run-times are in seconds.

and runs about 3X faster. For k = 12, we found that trying
to enumerate all cuts leads to poor results since more than
40% of the nodes exceed the cut limit. Partial factorization
works better, producing 50% smaller depth on average than
exhaustive enumeration.

6. MACROCELL MAPPING
In this section, we apply factor cuts to improve the quality

of macrocell mapping. Rather than providing large LUTs,
FPGA manufacturers prefer to provide configurable logic
blocks, or macrocells. Unlike LUTs, macrocells cannot di-
rectly realize the full set of functions of their inputs, but only
a (large) subset. This restriction allows a macrocell (and the
surrounding routing network) to be implemented with less
area than a LUT. It is hoped that most functions appear-
ing in practical circuits can be realized by a well designed
macrocell.

Due to the wide variety of macrocells possible, efficient

general algorithms are not known for macrocell mapping.1

Therefore, we focus here on a specific macrocell architecture
used in a commercial FPGA and illustrate how factor cuts
may be used to significantly improve the quality of mapping.
Given a different macrocell architecture, the matching step
(i.e. deciding if a cut can be realized by the macrocell)
would be different, but the basic idea of using factor cuts to
improve the mapping is still applicable.

6.1 Macrocell Architecture
We work with the macrocell shown in Figure 3. The archi-

tecture is based on Actel’s ProASIC3 family of FPGAs [1].
The FPGA consists of a sea of tiles, where each tile can

1In fact, Ling et al. [8] provide a general algorithm for
macrocell matching, but it is not scalable to large macro-
cells. Since they enumerate all cuts, it is possible that their
approach might benefit from the use of factor cuts; but that
remains to be studied.

Figure 3: The 9-input macrocell (consisting of four
3-LUTs) used for mapping in Section 6. It is based
on Actel’s ProASIC3 family of FPGAs.

implement any function of 3 inputs i.e. is equivalent to a
3-LUT. Each tile is fully connected to its 8 nearest neigh-
bours using fast local interconnect. This naturally leads to
the 9-input–1-output macrocell comprised of three 3-LUTs
feeding into another 3-LUT. Note that this macrocell cannot
implement an arbitrary 9-input function, but only a 9-input
function that has this particular disjoint-support decompo-
sition. Some of the inputs could be the same signal (or
constants), and so functions with less than 9 inputs can also
be implemented. Clearly, these functions need not have dis-
joint support decompositions.

Observe that 9-input functions that are not realizable with
the macrocell (call them hard) can still be implemented in
the FPGA since the FPGA provides 3-LUTs which are uni-
versal. However, these hard functions will require more than
2 levels of 3-LUTs for their implementation.

Generalization. This observation generalizes to other
macrocell architectures used in practice. Although the macro-
cell cannot implement certain functions directly, by using
multiple macrocells (each possibly “under-utilized”), one can

148



Algorithm 1 Forward pass of macrocell depth-oriented
mapping

INPUT: AIG G
OUTPUT: bestcut(n) for every n ∈ G
for each node n ∈ G in topological order do

compute Φ3(n), Φ9
L(n), Φ9

D(n)
χ(n) ← {c | c ∈ Φ3(n) ∪ Φ9

L(n) ∪ Φ9
D(n), c is valid }

if n is And node then
bestcut(n) ← arg min

c∈χ(n)

arrival(c)

arrival(n) ← arrival(bestcut(n))
else

arrival(n) ← arrival time of PI n

end if
end for

implement arbitrary functions. For example, the adaptive
logic module in the Altera Stratix II architecture [7] can im-
plement certain functions of 7-inputs, but can also be used
as a general 6-LUT.

6.2 Mapping Algorithm
The mapping consists of two steps. The first step is a pre-

computation to characterize the set of functions that can be
realized by the macrocell. This is only done once. The sec-
ond step is the mapping proper, where the best configuration
of macrocells is chosen. This is done for each design being
mapped.

Pre-computation. In this step, we enumerate the truth
tables of all the functions that can be realized by the macro-
cell. Since the number of functions is very large we exploit
the phase and permutation symmetries of the functions to
limit the enumeration. As a result of enumeration, there
are about 20,000 NPN classes that can be realized by the
macrocell. This pre-computation takes several minutes, and
is done with truth-tables represented as bit-strings. The re-
sulting truth tables of the NPN representatives are saved in
a file.

Mapping. During mapping, the truth-tables of the NPN-
representatives computed above are read in from the file and
hashed. Then the mapping is done in two passes as usual.
The first pass proceeds in topological order from the PIs to
the POs. For each node n in the AIG, we compute the set of
3-feasible cuts Φ3n, and the 9-feasible leaf-dag cuts Φ9

L(n)
and dag cuts Φ9

D(n).
A cut c is valid if it can be realized by the macrocell.

Every 3-feasible cut is valid. The validity of a 9-feasible
cut is checked by computing its NPN representative (using
a method similar to that of Chai and Kuehlmann [3]) and
looking it up in the hash table.

Among the valid cuts, the cut with the earliest arrival
time is selected. The arrival time of a cut c, denoted by
arrival(c) is defined as follows:

arrival(c) ≡ d(c) + max
n∈c

arrival(n)

where arrival(n) is the best arrival time for node n as before,
and d(c) for a valid cut is defined as:

d(c) ≡



1 : c is 3-feasible
2 : otherwise

Name
Depth Run-time (sec)

3-Cut PF All 3-Cut PF All
C1355 9 6 9 0.00 1.26 3.32
C1908 12 11 10 0.00 0.61 1.90
C2670 10 10 9 0.00 0.06 3.53
C3540 17 16 15 0.00 0.29 5.94
C5315 14 12 11 0.01 0.44 8.65
C6288 31 27 27 0.00 34.71 33.44
C7552 11 10 10 0.01 1.88 15.26
b14 30 29 25 0.01 4.12 57.36
b15 31 30 26 0.02 8.24 60.86
clma 36 31 26 0.05 2.45 64.87
pj1 20 19 17 0.03 7.01 85.31
pj2 11 9 8 0.01 0.32 12.01
pj3 18 16 15 0.03 9.04 62.79
s15850 18 17 17 0.01 0.26 11.64
s35932 5 4 4 0.03 0.30 9.49
s38417 12 12 11 0.02 0.58 29.74
average 1.00 0.90 0.85 1.00 29.13

Table 4: Experimental results for mapping to the
macrocell architecture with a limit of 1000.

After the first pass, the second pass is done, as usual, in
reverse topological order from POs to PIs to choose the best
cover.

6.3 Discussion
There is an important difference in the way factor cuts

are used in k-LUT mapping and in macrocell mapping. For
LUT mapping, depth optimality can be guaranteed by using
complete factor cuts and expanding when necessary. How-
ever for macrocells, factor cuts are only used in a heuristic
manner to improve the solution; and no guarantee of depth
optimality can be made.

The main problem is that there is no analog of Cong and
Ding’s theorem (Theorem 2) for macrocells. This is because
the validity (in the sense defined above) of a cut of an And
node does not imply the validity of cuts of its children. Thus
the optimal depth of a node is not bounded by the depths
of its children.

In terms of the algorithm, this means that there is no
way to know if the depth obtained by just looking at factor
cuts is sufficient. One can extend the macrocell mapping
algorithm above to try a few expansions of factor cuts to see
if the depth can be improved but we have not implemented
this yet.

6.4 Experimental Results
We implemented Algorithm 1 in our FPGA mapper, and

Table 4 shows the experimental results on the set of bench-
marks. We compare the optimal depth and run-time of
the mapper in three different modes. In the first mode
(columns labeled “3-Cut”), the mapping is done using only
3-feasible cuts. (Macrocells are not directly used, but ob-
tained by grouping 3-LUTs.) The second mode (columns
labeled “PF”), corresponds to Algorithm 1 above where par-
tial factor cuts are used. The final mode (columns labeled
“All”), all 9-feasible cuts are enumerated (up to a limit of
1000 cuts per node), and the valid 9-feasible cuts are used
for mapping. (In this process we ensure that all 3-feasible

149



cuts are computed.)
The best results are obtained when all 9-feasible cuts are

used, giving on average 15% better depth than when just 3-
feasible cuts are used. However, the run-time is long, taking
minutes for the larger benchmarks. Factor cuts provide an
intermediate quality-run-time trade-off between these two
extremes. With factor cuts, much of the gain of using all
9-feasible cuts is seen (10% better depth), with a run-time
of a few seconds. (Again, C6288 is an exception, since it has
many partial factor cuts.)

6.5 Area
In practice, it is important to control the area during

mapping. Since Algorithm 1 makes no attempt to control
area, the area could be significantly worse than when only
3-feasible cuts are used.

We propose to control area by using the idea of choice
networks [9]. We first obtain a mapping with good depth
using Algorithm 3. The mapped netlist is then “unmapped”
by decomposing it into an AIG. This AIG is combined with
the original AIG to create a choice network on which a con-
ventional depth-optimal 3-LUT mapping is done followed by
area recovery as in [9]. This would guarantee that the su-
perior depth of Algorithm 3 is obtained at a reasonable cost
in area. We have not implemented this yet and leave it to
future work.

7. CONCLUSIONS
In this paper we presented two schemes for factoring the

cut space of a network. In the first scheme, complete fac-
torization, the factor cuts are sufficient to generate all cuts,
though generating the factor cuts themselves is somewhat
expensive. This property can be used to design optimal
algorithms by generating other cuts on demand. In the sec-
ond scheme, partial factorization, there is no such guaran-
tee. However, much fewer cuts need to be enumerated which
makes it very fast.

We also looked at two applications of factor cuts. The
first was depth optimal technology mapping for large LUTs.
Although this has limited practical application at present,
it is interesting theoretically, since it is suggestive of how
algorithms may be modified to work with factor cuts. The
key observation enabling this application is Cong and Ding’s
lower bound theorem. Using that theorem, in most cases it
is sufficient to just examine factor cuts in order to guarantee
depth optimality.

Furthermore, our experiments show that using factor cuts
is better than using conventional enumeration but limiting
the number of cuts per node. Mapping using partial factor
cuts is faster and produces better depth, especially for k = 9
and above.

The second application was mapping into large macro-
cells. Although we do not have a clean theoretical result (as
in the k-LUT mapping case), in practice, factor cuts enable
a new quality–run-time tradeoff between the poor quality of
mapping macrocells by mapping its parts separately and the
slow run-time of mapping the entire macrocell by enumer-
ating all cuts. Although we focussed on a specific macrocell
architecture, the technique is fairly general and should work
for different kinds of macrocells.

One aspect of factor cuts that we did not discuss in this
paper relates to their potential for area-oriented mapping.
Since global cuts contain a larger proportion of multi-fanout

nodes, using a mapping solution based on global cuts (es-
pecially dag cuts) is likely to be a good starting point for
area-oriented mapping. Our preliminary experiments along
these lines have been encouraging.

Looking forward, we plan to further explore the use of fac-
tor cuts in technology mapping for macrocells (focusing on
area, and other macrocell architectures); in reducing struc-
tural bias for standard cell mapping; and in logic synthesis
using AIG re-writing. On the theoretical side, it would be
interesting to explore the connection between factor cuts and
disjoint support decompositions in order to improve macro-
cell matching.

8. ACKNOWLEDGMENTS
We thank Niklas Eén for helpful discussions. This work

was supported by SRC, C2S2, the MARCO Focus Center for
Circuit and System Solution; and by the California Micro
Program with our industrial sponsors Altera, Intel, Magma
and Synplicity.

9. REFERENCES
[1] Actel Corporation, “ProASIC3 Flash Family FPGAs

Datasheet,” Available from Actel website.

[2] Berkeley Logic Synthesis Group, The ABC Logic
Synthesis System, UC Berkeley.
http://www.eecs.berkeley.edu/~alanmi/abc/

[3] D. Chai and A. Kuehlmann, “Building a Better
Boolean Matcher and Symmetry Detector,” In DATE
‘06, pp. 1079-1084.

[4] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang,
and T. Kam, “Reducing Structural Bias in Technology
Mapping,” In ICCAD ‘05, pp. 519-526.

[5] J. Cong and Y. Ding, “FlowMap: An optimal
technology mapping algorithm for delay optimization
in lookup-table based FPGA designs,” IEEE Trans.
CAD, Vol.13, No. 1 (January 1994), pp. 1-12.

[6] J. Cong, C. Wu and Y. Ding, “Cut Ranking and
Pruning: Enabling a general and efficient FPGA
mapping solution,” In FPGA ‘99, pp. 29-35.

[7] M. Hutton et al., “Improving FPGA Performance and
Area using an Adaptive Logic Module,” In Field
Programming Logic and Application 2004, pp.
135-144.

[8] A. Ling, D. Singh and S. Brown, “FPGA Logic
Synthesis using Quantified Boolean Satisfiability,” In
SAT ‘05, Springer LNCS Vol. 3569, pp. 444-450.

[9] A. Mishchenko, S. Chatterjee and R. Brayton,
“Improvements to Technology Mapping for
LUT-based FPGAs,” Proc. FPGA ‘06, pp. 41-49.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton,
“DAG-aware AIG Re-writing: A fresh look at
combinational logic synthesis,” In DAC ’06, pp.
532-536.

[11] P. Pan and Liu, “A New Retiming-based Technology
Mapping Algorithm for LUT-based FPGAs,” In ACM
Int’l Symp. on FPGAs, pp. 35-42, 1998.

150


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

