
Efficient Boolean Characteristic Function
 for Fast Timed ATPG

Yu-Min Kuo, Yue-Lung Chang, Shih-Chieh Chang
Department of CS, National Tsing Hua University, Hsinchu, Taiwan

ymkuo@cs.nthu.edu.tw, ulchang@nthucad.cs.nthu.edu.tw, scchang@cs.nthu.edu.tw

ABSTRACT
Circuit timing analysis is important in various aspects of circuit

optimization. The problem of finding input vectors achieving
functional and temporal requirements is known as timed Automatic
Test Pattern Generation (timed ATPG). A timed ATPG algorithm
will return an input vector that satisfies functional and temporal
requirements simultaneously when evaluated. Several previous
works use timed ATPG as a core engine for solving problems
related to timing analysis, such as crosstalk and maximum
instantaneous current analysis. Despite the usefulness of timed
ATPG, traditional timed ATPG is slow and unscalable for large
circuits. In this paper, we present a very efficient way for timed
ATPG. On average, our results are 8 times faster than the most
recent work, and in some cases, up to 32 times faster.

1. INTRODUCTION
Advanced VLSI design depends on accurate analysis of circuit

timing in circuit optimization. Most previous works in timing
analysis attempt to pessimistically find the delay of a circuit by
taking false paths into account [3][4][11][14][16][17]. However,
applications such as [4][5][7][9][10] require input vectors that,
when evaluated, can meet some functional and temporal
requirements simultaneously. In addition, the temporal requirement
is not necessarily limited to the longest delay of the circuit. The
problem of finding input vectors satisfying functional and temporal
requirements simultaneously is known as timed Automatic Test
Pattern Generation or timed ATPG [4].

Several previous works use timed ATPG as a core engine to
solve problems related to timing analysis. For example, crosstalk
analysis requires knowing whether a transition at some time instant
of a line might induce noise on another line. [9] proposed a timed
ATPG approach for finding input vectors to activate and observe
the crosstalk effects, while [7] reported a timed ATPG approach for
finding input vectors that can activate maximum instantaneous
current. Moreover, methods proposed in [4][5] find the delay of a
circuit based on timed ATPG.

Traditionally, timed ATPG [4] is implemented as an extension
of the PODEM algorithm. Backtracking is performed when logic

or timing conflicts occur. Additionally, implications are conducted
forward and backward based on timed calculus, which handles the
logic and timing propagation simultaneously. However, several
previous works reported that timed ATPG was unscalable using the
PODEM method of implementation. In [1][8], they show that
timed ATPG cannot handle large circuits even though the results
are the best among non-timed ATPG approaches such as simulated
annealing and genetic algorithms.

An alternative way of resolving timed ATPG problem is to first
construct a Boolean function called the Timed Characteristic
Function (TCF), whose on-set contains input vectors having a
delay greater than a time instant when evaluated. Then, the
problem of timed ATPG can be solved by running an SAT solver
[12][13][15][18] or an ATPG engine on the corresponding TCF. [2]
proposed to use ADD, a data structure similar to BDD, to represent
the relation between each input vector and its corresponding output
arrival time. The results show that the method is not usable for
large circuits due to the high computation cost. [3][11][16] derive
recursive equations based on sensitization criteria for the TCF. The
functional and temporal requirements of a node are modeled by a
TCF, which can be recursively constructed.

In this paper, we propose effective ways to model the TCF,
which dramatically speed up timed ATPG. We also demonstrate
that our algorithm can derive more compact TCFs than previously
reported results. In addition, we extract the useful correlation
information about TCFs so SAT solvers or ATPG engines can
easily find solutions. Our experimental results show that these
combined techniques are roughly 8 times faster than the most
recent published results and in some cases, up to 32 times faster.

The remainder of this paper is organized as follows. Section 2
introduces the timed characteristic function and Section 3 provides
the efficient implementation of the TCF. Then, Section 4 shows the
overall algorithm and Section 5 shows the experimental results.
Finally, Section 6 concludes this paper.

2. TIMED CHARACTERISTIC FUNCTION
In this section, we review the definitions of the TCF and a way

to compute the Boolean function. Similar to most previous works,
we use the floating mode of operation and apply all input vectors at
time t=0. In addition, for simplicity of discussion, each node has a
constant delay of 1 in all examples. The general delay model can
be easily extended.

Let y be a circuit node, val be a functional requirement, and t
be a temporal requirement. The Boolean function TCF(y=val, t+)
characterizes the set of input vectors that, when evaluated, can
cause node y=val to be stable later than time t. In other words,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

96

given an input vector x, the Boolean function TCF(y=val, t+) is
equal to 1 if and only if node y=val is stable later than time t when
input vector x is applied. The functional requirement val can be 1
or 0. The symbol “+” is to emphasize the concept of “later” than
the temporal requirement t. For example, in Figure 1, suppose we
are interested in finding input vectors that cause node r=0 to be
stable later than time t=5. All input vectors satisfying the
functional requirement, r=0, and the temporal requirement,
stability later than time t=5, can be expressed as the on-set of the
Boolean function TCF(r=0, 5+).

[16] uses sensitization criteria to obtain the TCF. For an OR
gate whose output is y,

where I(y) denotes all inputs of node y, and d denotes the delay of
node y. Similarly, for an AND gate,

Consider the example in Figure 1. Using the above equations,
TCF(r=0, 5+) can be derived from its inputs’ TCFs, which again
are derived from their inputs’ TCFs. During the recursive
construction process, intermediate TCFs with different temporal
requirements are constructed. When certain boundary conditions
are met, an intermediate TCF can be determined without further
recursive construction. Consider node f in Figure 1. We try to find
TCF(f=0, 1+). First, there are three paths from the primary inputs
to node f, i.e., paths {a, c, d, f}, and {b, c, d, f} with the path delay
of 3 and path {e, f} with the path delay of 1. Since all paths from
primary inputs to the node f have a path delay greater than 1, the
temporal requirement, stability later than time t=1, is met for all
input vectors. Since the temporal requirement of TCF(f=0, 1+) is
met, we only need to consider the functional requirement f=0.
Therefore, we have TCF(f=0, 1+) = f '.

3. EFFICIENT TCF IMPLEMENTATION
Using the procedure in the previous section, we can derive a

TCF. However, the size of the TCF can be much larger than the
original circuit. In Section 3.1, we show novel compact recursive
formulations and then propose reduction techniques in Sections 3.2
and 3.3.

3.1. Recursive TCF Formulations
First, we discuss some properties of a TCF. Note that

TCF(y=val, t+) defined previously uses the “+” symbol to express
the concept of “later” than the temporal requirement t. We can also
use the “–” symbol to express the concept of “earlier” than the
temporal requirement t. For example, TCF(r=0, 5–) characterizes
all input vectors which cause node r=0 to be stable earlier than
time t=5. A TCF with “–” symbol is called an earlier-timed TCF
and a TCF with “+” symbol is called a later-timed TCF.

We will show later that the recursive formulations of

earlier-timed TCFs can lead to a compact representation for TCFs.
First, we would like to show that a later-timed TCF can always be
translated to an earlier-timed TCF. Consider a circuit node y and a
temporal requirement t. We have the following equations:

TCF(y=1, t+) = TCF(y=1, t–)'‧y. (EQ1)
TCF(y=0, t+) = TCF(y=0, t–)'‧y'. (EQ2)

We now illustrate the recursive earlier-timed formulations using a
two-input gate whose output is c, inputs are a and b, and delay is d.
For a two-input OR gate,

TCF(c=1, t–) = TCF(a=1, (t-d)–) + TCF(b=1, (t-d)–). (EQ3)
TCF(c=0, t–) = TCF(a=0, (t-d)–)‧TCF(b=0, (t-d)–). (EQ4)

For a two-input AND gate,
TCF(c=1, t–) = TCF(a=1, (t-d)–)‧TCF(b=1, (t-d)–). (EQ5)
TCF(c=0, t–) = TCF(a=0, (t-d)–) + TCF(b=0, (t-d)–). (EQ6)

The above equations show that an earlier-timed TCF of a node can
be expressed by the earlier-timed TCFs of the node’s inputs. In our
algorithm, if a TCF is later-timed, it is translated into an
earlier-timed TCF by (EQ1) or (EQ2). Then, we recursively derive
the earlier-timed TCF by (EQ3), (EQ4), (EQ5) and (EQ6). In this
way, all TCFs are earlier-timed, which is important for the sharing
mechanism discussed in the next section.

3.2. Sharing Mechanism for TCFs
A TCF derived directly by the recursive formulation may have

much larger size compared to the original circuit, mainly because
all fanout branches of a node may require different TCFs. Consider
node f in Figure 1, which has three fanout branches. During the
recursive construction process of TCF(r=0, 5+), three intermediate
TCFs, TCF(f=0, 1–), TCF(f=0, 2–), and TCF(f=0, 3–), are needed
for node f.

In general, each fanout branch of a node may have its own
functional and temporal requirements. Without careful planning,
we may need to build TCFs for all fanout branches of a node.
However, some TCFs are functionally equivalent, even with
different temporal requirements. Before a TCF is finally
constructed, the equivalence of two different intermediate TCFs
can be difficult to recognize. For example, TCF(f=0, 2–) and
TCF(f=0, 3–) have different temporal requirements but have equal
functionality after construction.

We propose to collect useful arrival time information, which
allows equivalent TCFs to be recognized during the recursive
construction process. First, there can be many different paths from
the primary inputs to a node n. Each path delay from a primary
input to node n represents a possible delay or a possible arrival

}]0[))(,0({),0(
)()(
∏∑

≠∈∈

=⋅+−==+=
wzyIzyIw

zdtwTCFtyTCF
I

∏∑
∈∈

=++−=⋅+−==+=
)()(

]}0[))(,1({))(,1(),1(
yIwyIz

wdtwTCFdtzTCFtyTCF

}]1[))(,1({),1(
)()(
∏∑

≠∈∈

=⋅+−==+=
wzyIzyIw

zdtwTCFtyTCF
I

∏∑
∈∈

=++−=⋅+−==+=
)()(

]}1[))(,0({))(,0(),0(
yIwyIz

wdtwTCFdtzTCFtyTCF

r f

h

q

p

k

a
b e

c d

g

m
o

j
i

n

Figure 1: Example of a combinational circuit

97

time when an input vector is applied. For the same example, in
Figure 1, there are three paths {a, c, d, f}, {b, c, d, f}, and {e, f}
from the primary inputs to node f where {a, c, d, f} and {b, c, d, f}
have the path delay of 3 and {e, f} has the path delay of 1.
Therefore, there are two possible arrival times for node f after
applying an input vector, i.e., 1 and 3.

Let {Aj} be a sorted set of possible arrival times for node y, i.e.
Ak < Ak+1. In addition, let {Ti} be a set of the temporal
requirements with which we must construct the earlier-timed TCFs
on node y. We say the arrival time Ak is the next-largest arrival time
of Ti if Ak-1< Ti ≤ Ak. Consider the example in Figure 1. Node f has
two possible arrival times: 1 and 3. In addition, node f has three
temporal requirements: 1, 2 and 3. The next-largest arrival time of
temporal requirement 2 is 3, and the next-largest arrival time of
temporal requirement 3 is 3. Then, we have the following lemma:
Lemma 1: For two TCFs TCF(y=val, t1–) and TCF(y=val, t2–), if
these two temporal requirements t1 and t2 have the same
next-largest arrival time,

TCF(y=val, t1–) = TCF(y=val, t2–).

In our algorithm, the arrival time information can be derived by
the same algorithm in [6]. After that, during the recursive
construction process of a TCF, we use Lemma 1 to merge
intermediate TCFs whose temporal requirements have the same
next-largest arrival time.

3.3. Correlation Information Extraction
In this section, we illustrate how to extract the correlation

information about TCFs to accelerate SAT solvers or ATPG
engines. The correlation information, which can be easily
recognized during recursive construction process of a TCF,
describes the relationship between two intermediate TCFs of a
node. We have the following two lemmas:
Lemma 2: For a node y, and two temporal requirements t1 and t2
where t1<t2,

TCF(y=val, t1–) ⊆ TCF(y=val, t2–), or
TCF(y=val, t1–)' + TCF(y=val, t2–) = 1.

Lemma 3: For a node y and two temporal requirements t1 and t2,
TCF(y=val, t1–) ∩ TCF(y=val', t2–) = ∅, or

TCF(y=val, t1–)' + TCF(y=val', t2–)' = 1.

When the condition in Lemma 2 is satisfied, we add an extra
Boolean function TCF(y=val, t1–)' + TCF(y=val, t2–) = 1 to the
overall TCF. When the condition in Lemma 3 is satisfied, we add
an extra Boolean function TCF(y=val, t1–)' + TCF(y=val', t2–)' =
1 to the overall TCF. These extra Boolean functions do not change
the on-set of the overall TCF, but add the correlation information
when we solve the overall TCF.

5. EXPERIMENTAL RESULTS
We re-implement the algorithm shown in [16] and conduct

experiments on a set of MCNC benchmark circuits. Since the main
purposes in [16] are to find a circuit’s delay, to fairly compare with
their results, we generate 10 temporal requirements, from the
largest to the smallest possible arrival time with an equal interval.

Then, for each temporal requirement t, we attempt to find an input
vector that causes at least one primary output to be stable later than
time t. This can be modeled by the following equation.

Finally, TCFC is solved using the Jerusat SAT solver [13].
In Table 1, we show the experimental results of C3540 under

the unit delay model. Column 1 shows the temporal requirement.
Columns 2, 3, and 4 show the number of the variables in the TCF,
the run time of the TCF construction, and the run time of Jerusat
by [16] while columns 5, 6, and 7 show the results by our approach.
Columns 8, 9 and 10 show the ratio of the number of variables, the
ratio of the run time of the TCF construction and the ratio of the
run time of Jerusat by [16] to those by our approach respectively.
For the highlighted temporal requirement 32, our approach is 40
times faster in the run time of Jerusat, and on average, our
approach is 13 times faster.

Then, we perform experiments on a set of MCNC benchmark
circuits under different delay models. For each circuit, we use the
same method of generating temporal requirements as that in Table
1. Table 2 shows the results under the unit delay model and the
results under the unit fanout delay model, and Table 3 shows the
results using the TSMC 0.13 μm cell library. Column 1 shows the
name of the circuit. Columns 2, 3, and 4 show the average number
of variables (Vars), the average run time of the TCF construction,
and the average run time of Jerusat for 10 temporal requirements
by [16] while columns 5, 6, and 7 show the results by our approach.
Columns 8, 9, and 10 show the ratio of the number of variables, the
ratio of the run time of the TCF construction and the ratio of the
run time of Jerusat by [16] to those by ours respectively. For the
run time of Jerusat, on average, our approach is about 5 times
faster than the approach in [16] under the unit delay model and
about 8 times faster than the approach in [16] under the unit fanout
delay model.

We also apply our approach to the TSMC 0.13 μm cell library
in Table 3. Since the approach in [16] cannot be directly applied to
a circuit with different rise and fall delays, we do not show the
results. All experiments are performed using Sun Blade 2500 with
4GB physical memory.

.)],1(),0([
)(

∑
∈

+=++==
CPOy

C tyTCFtyTCFTCF

[16] Our approach Ratio Temporal
requirement Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat

52 2015 0.03 0.04 1440 0.01 0.03 1.40 3.00 1.33
47 9840 0.38 0.38 2989 0.08 0.1 3.29 4.75 3.80
42 21485 0.91 0.73 5179 0.19 0.15 4.15 4.79 4.87
37 33279 1.53 7.46 7564 0.31 0.21 4.40 4.94 35.52
32 39883 1.88 13.15 9008 0.37 0.33 4.43 5.08 39.85
27 45366 2.15 6.39 10173 0.42 0.32 4.46 5.12 19.97
22 48926 2.29 5.3 10503 0.43 0.31 4.66 5.33 17.10
17 38074 1.77 1.42 7924 0.32 0.22 4.80 5.53 6.45
12 16968 0.7 0.46 3924 0.12 0.1 4.32 5.83 4.60
7 3803 0.11 0.09 1897 0.03 0.04 2.00 3.67 2.25

Average 25964 1.18 3.54 6060 0.23 0.18 3.79 4.80 13.57

Table 1: Experimental results of C3540

98

6. CONCLUSIONS
In this paper, we present a very effective way for timed ATPG.

Our contributions include a compact form to represent TCFs, a
sharing mechanism to reduce the size of TCFs, and correlation
information extraction techniques to decrease the run time of
solving timed ATPG. On average, our algorithm is 8 times faster
than [16] and in some cases, our algorithm is 32 times faster.

7. REFERENCES
[1] P. Ashar, and S. Malik, “Functional Timing Analysis Using

ATPG,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 8, pp. 1025-1030, Aug.
1995.

[2] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi,
“Timing Analysis of Combinational Circuits using ADD’s,” in
Proc. of IEEE European Design Test Conference, pp. 625-629,
1994.

[3] H.-C. Chen, and D. Du, “Path Sensitization in Critical Path
Problem,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 2, pp. 196-207,
Feb. 1993.

[4] S. Devadas, K. Keutzer, and S. Malik, “Computation of
Floating Mode Delay in Combinational Circuits: Theory and
Algorithms,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 12, pp.
1913-1923, Dec. 1993.

[5] J. L. Güntzel, A. C. M. Pinto, and R. Reis “A Timed Calculus
for ATG-Based Timing Analysis of Circuits with Complex
Gates,” in Proc. IEEE Latin American Test Workshop, pp.
234-239, 2001.

[6] H. Kriplani, F. Najm, and I. N. Hajj, “Pattern Independent
Maximum Current Estimation in Power and Ground Buses of
CMOS VLSI Circuits: Algorithms, Signal Correlations, and
Their Resolution,” IEEE Trans. on Computer-Aided Design,
vol. 14, no. 8, pp. 998-1012, Aug. 1995.

[7] Y.-M. Jiang, A. Krstic, and K.-T. Cheng, “Estimation for
Maximum Instantaneous Current Through Supply Lines for
CMOS Circuits,” IEEE Trans. on Very Large Scale
Integration Systems, vol. 8, no. 1, pp. 61-73, Feb. 2000.

[8] Y.-M. Jiang, K.-T. Cheng, and A. Krstic, “Estimation of
Maximum Power and Instantaneous Current Using a Genetic
Algorithm,” in Proc. of IEEE Custom Integrated Circuits
Conference, pp. 135-138, 1997.

[9] R. Kundu, and R. D. Blanton, “Timed Test Generation for
Crosstalk Switch Failure in Domino CMOS Circuits,” in Proc.
of the IEEE VLSI Test Symposium, pp. 379-385, 2002.

[10] R. Kundu, and R. D. Blanton, “ATPG for Noise-Induced
Switch Failures in Domino Logic,” in Proc. of the ICCAD, pp.
765-768, 2003.

[11] P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-Vicentelli, “Timing Analysis and
Delay-Fault Test Generation using Path-Recursive Functions,”
in Proc. of the ICCAD, pp. 180-183, 1991.

[12] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an efficient SAT solver,” in Proc.
of the DAC, pp. 530-535, 2001.

[13] A. Nadel, “Backtrack Search Algorithms for Propositional
Satisfiability: Review and Innovations,” Master’s Thesis, the
Hebrew University of Jerusalem, 2002.

[14] J. P. M. Silva, and K. A. Sakallah, “Efficient and Robust Test
Generation-Based Timing Analysis,” in Proc. of the
International Symposium on Circuits and Systems, pp.
303-306, 1994.

[15] J. P. M. Silva, and K. A. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability,” IEEE Trans. on
Computers, vol. 48, no. 5, pp. 506-521, May 1999.

[16] L. G. Silva, J. P. M. Silva, L. M. Silveira, and K. A.
Sakallah, ”Satisfiability Models and Algorithms for Circuit
Delay Computation,” ACM Trans. on Design Automation of
Electronic Systems, vol. 7, no. 1, pp. 137-158, Jan. 2002.

[17] H. Yalcin, and J. P. Hayes, “Hierarchical Timing Analysis
Using Conditional Delays,” in Proc. of the ICCAD, pp.
371-377, 1995.

[18] H. Zhang, “SATO: An Efficient Propositional Prover,” in Proc.
of International Conference on Automated Deduction, pp.
272-275, 1997.

Table 3: Experimental results using the TSMC 0.13 μm
cell library

Our approach Circuit Vars TCF(s) Jerusat(s)
C1355 2866 0.13 0.09
C1908 7692 0.40 0.77
C2670 1904 0.05 0.05
C3540 15792 1.22 0.76
C432 2102 0.12 0.08
C499 2326 0.11 0.08
C5315 5557 0.22 0.19
C6288 1785688 794.29 1335.13
C7552 8154 0.32 0.27
C880 1307 0.04 0.03
des 7010 0.32 0.22
i10 14787 1.04 0.68
i8 2025 0.06 0.06

my_adder 2122 0.07 0.06
Average 132809 57.03 95.60

unit delay model unit fanout delay model
[16] Our approach Ratio [16] Our approach Ratio Circuit

Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat
C1355 5501 0.20 0.27 1779 0.05 0.05 2.77 3.81 5.58 8743 0.34 0.26 1774 0.05 0.05 4.11 5.65 4.19
C1908 9155 0.38 0.54 2879 0.10 0.22 2.78 3.53 2.70 23258 1.06 1.61 4218 0.16 0.47 4.34 5.19 3.29
C2670 5766 0.20 0.16 2028 0.04 0.05 2.61 4.59 2.90 8210 0.31 0.26 2046 0.04 0.05 3.39 6.26 4.16
C3540 25964 1.18 3.54 6060 0.23 0.18 3.79 4.80 13.57 87858 4.88 24.21 10724 0.53 0.38 6.14 7.03 32.16
C432 6268 0.25 0.26 1478 0.05 0.07 3.98 4.92 4.82 11590 0.50 0.47 1543 0.06 0.06 6.05 6.90 7.20
C499 8682 0.34 0.36 2386 0.08 0.07 3.32 3.97 4.61 14855 0.64 0.56 2289 0.08 0.07 5.01 5.76 5.93
C5315 13836 0.54 0.67 4647 0.12 0.16 2.64 4.16 3.50 30074 1.36 1.83 5530 0.18 0.20 4.47 6.30 6.96
C6288 307749 20.14 28.97 69124 3.99 11.45 3.99 4.72 3.46 1772018 343.49 452.07 326735 34.55 93.14 4.97 7.87 9.03
C7552 24194 1.01 0.87 7400 0.22 0.28 2.93 4.39 2.85 81900 6.77 3.81 7778 0.26 0.28 7.56 15.71 9.43
C880 3895 0.13 0.10 1287 0.03 0.03 2.80 3.76 3.01 5854 0.22 0.16 1414 0.04 0.04 3.53 4.63 3.65
des 24157 1.16 0.82 8099 0.24 0.23 2.77 6.82 3.22 25005 1.30 0.73 8274 0.35 0.24 2.59 3.95 2.66
i10 31232 1.56 1.19 9381 0.35 0.35 2.93 5.73 3.05 79761 4.57 3.99 14269 0.71 0.81 4.58 6.96 5.05
i8 8520 0.33 0.23 3025 0.08 0.09 2.74 3.86 2.54 8694 0.34 0.23 2945 0.08 0.09 2.81 4.16 2.61

my_adder 5821 0.22 1.17 1376 0.05 0.09 3.96 4.24 15.06 10381 0.43 1.95 1585 0.06 0.09 5.68 6.20 18.05
Average 34338 1.98 2.80 8639 0.40 0.95 3.14 4.52 5.06 154871 26.16 35.15 27938 2.65 6.85 4.66 6.61 8.17

Table 2: Experimental results under the unit delay model and unit fanout delay model

99

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

