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ABSTRACT 
Circuit timing analysis is important in various aspects of circuit 

optimization. The problem of finding input vectors achieving 
functional and temporal requirements is known as timed Automatic 
Test Pattern Generation (timed ATPG). A timed ATPG algorithm 
will return an input vector that satisfies functional and temporal 
requirements simultaneously when evaluated. Several previous 
works use timed ATPG as a core engine for solving problems 
related to timing analysis, such as crosstalk and maximum 
instantaneous current analysis. Despite the usefulness of timed 
ATPG, traditional timed ATPG is slow and unscalable for large 
circuits. In this paper, we present a very efficient way for timed 
ATPG. On average, our results are 8 times faster than the most 
recent work, and in some cases, up to 32 times faster. 

1. INTRODUCTION 
Advanced VLSI design depends on accurate analysis of circuit 

timing in circuit optimization. Most previous works in timing 
analysis attempt to pessimistically find the delay of a circuit by 
taking false paths into account [3][4][11][14][16][17]. However, 
applications such as [4][5][7][9][10] require input vectors that, 
when evaluated, can meet some functional and temporal 
requirements simultaneously. In addition, the temporal requirement 
is not necessarily limited to the longest delay of the circuit. The 
problem of finding input vectors satisfying functional and temporal 
requirements simultaneously is known as timed Automatic Test 
Pattern Generation or timed ATPG [4].  

Several previous works use timed ATPG as a core engine to 
solve problems related to timing analysis. For example, crosstalk 
analysis requires knowing whether a transition at some time instant 
of a line might induce noise on another line. [9] proposed a timed 
ATPG approach for finding input vectors to activate and observe 
the crosstalk effects, while [7] reported a timed ATPG approach for 
finding input vectors that can activate maximum instantaneous 
current. Moreover, methods proposed in [4][5] find the delay of a 
circuit based on timed ATPG. 

Traditionally, timed ATPG [4] is implemented as an extension 
of the PODEM algorithm. Backtracking is performed when logic 

or timing conflicts occur. Additionally, implications are conducted 
forward and backward based on timed calculus, which handles the 
logic and timing propagation simultaneously. However, several 
previous works reported that timed ATPG was unscalable using the 
PODEM method of implementation. In [1][8], they show that 
timed ATPG cannot handle large circuits even though the results 
are the best among non-timed ATPG approaches such as simulated 
annealing and genetic algorithms. 

An alternative way of resolving timed ATPG problem is to first 
construct a Boolean function called the Timed Characteristic 
Function (TCF), whose on-set contains input vectors having a 
delay greater than a time instant when evaluated. Then, the 
problem of timed ATPG can be solved by running an SAT solver 
[12][13][15][18] or an ATPG engine on the corresponding TCF. [2] 
proposed to use ADD, a data structure similar to BDD, to represent 
the relation between each input vector and its corresponding output 
arrival time. The results show that the method is not usable for 
large circuits due to the high computation cost. [3][11][16] derive 
recursive equations based on sensitization criteria for the TCF. The 
functional and temporal requirements of a node are modeled by a 
TCF, which can be recursively constructed. 

In this paper, we propose effective ways to model the TCF, 
which dramatically speed up timed ATPG. We also demonstrate 
that our algorithm can derive more compact TCFs than previously 
reported results. In addition, we extract the useful correlation 
information about TCFs so SAT solvers or ATPG engines can 
easily find solutions. Our experimental results show that these 
combined techniques are roughly 8 times faster than the most 
recent published results and in some cases, up to 32 times faster. 

The remainder of this paper is organized as follows. Section 2 
introduces the timed characteristic function and Section 3 provides 
the efficient implementation of the TCF. Then, Section 4 shows the 
overall algorithm and Section 5 shows the experimental results. 
Finally, Section 6 concludes this paper. 

2. TIMED CHARACTERISTIC FUNCTION 
In this section, we review the definitions of the TCF and a way 

to compute the Boolean function. Similar to most previous works, 
we use the floating mode of operation and apply all input vectors at 
time t=0. In addition, for simplicity of discussion, each node has a 
constant delay of 1 in all examples. The general delay model can 
be easily extended. 

Let y be a circuit node, val be a functional requirement, and t 
be a temporal requirement. The Boolean function TCF(y=val, t+) 
characterizes the set of input vectors that, when evaluated, can 
cause node y=val to be stable later than time t. In other words, 
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given an input vector x, the Boolean function TCF(y=val, t+) is 
equal to 1 if and only if node y=val is stable later than time t when 
input vector x is applied. The functional requirement val can be 1 
or 0. The symbol “+” is to emphasize the concept of “later” than 
the temporal requirement t. For example, in Figure 1, suppose we 
are interested in finding input vectors that cause node r=0 to be 
stable later than time t=5. All input vectors satisfying the 
functional requirement, r=0, and the temporal requirement, 
stability later than time t=5, can be expressed as the on-set of the 
Boolean function TCF(r=0, 5+). 

[16] uses sensitization criteria to obtain the TCF. For an OR 
gate whose output is y,  

where I(y) denotes all inputs of node y, and d denotes the delay of 
node y. Similarly, for an AND gate,  

Consider the example in Figure 1. Using the above equations, 
TCF(r=0, 5+) can be derived from its inputs’ TCFs, which again 
are derived from their inputs’ TCFs. During the recursive 
construction process, intermediate TCFs with different temporal 
requirements are constructed. When certain boundary conditions 
are met, an intermediate TCF can be determined without further 
recursive construction. Consider node f in Figure 1. We try to find 
TCF(f=0, 1+). First, there are three paths from the primary inputs 
to node f, i.e., paths {a, c, d, f}, and {b, c, d, f} with the path delay 
of 3 and path {e, f} with the path delay of 1. Since all paths from 
primary inputs to the node f have a path delay greater than 1, the 
temporal requirement, stability later than time t=1, is met for all 
input vectors. Since the temporal requirement of TCF(f=0, 1+) is 
met, we only need to consider the functional requirement f=0. 
Therefore, we have TCF(f=0, 1+) = f '.  

3. EFFICIENT TCF IMPLEMENTATION 
Using the procedure in the previous section, we can derive a 

TCF. However, the size of the TCF can be much larger than the 
original circuit. In Section 3.1, we show novel compact recursive 
formulations and then propose reduction techniques in Sections 3.2 
and 3.3.  

3.1. Recursive TCF Formulations 
First, we discuss some properties of a TCF. Note that 

TCF(y=val, t+) defined previously uses the “+” symbol to express 
the concept of “later” than the temporal requirement t. We can also 
use the “–” symbol to express the concept of “earlier” than the 
temporal requirement t. For example, TCF(r=0, 5–) characterizes 
all input vectors which cause node r=0 to be stable earlier than 
time t=5. A TCF with “–” symbol is called an earlier-timed TCF 
and a TCF with “+” symbol is called a later-timed TCF.  

We will show later that the recursive formulations of 

earlier-timed TCFs can lead to a compact representation for TCFs. 
First, we would like to show that a later-timed TCF can always be 
translated to an earlier-timed TCF. Consider a circuit node y and a 
temporal requirement t. We have the following equations: 

TCF(y=1, t+) = TCF(y=1, t–)'‧y.   (EQ1) 
TCF(y=0, t+) = TCF(y=0, t–)'‧y'.   (EQ2) 

We now illustrate the recursive earlier-timed formulations using a 
two-input gate whose output is c, inputs are a and b, and delay is d. 
For a two-input OR gate,  

TCF(c=1, t–) = TCF(a=1, (t-d)–) + TCF(b=1, (t-d)–).  (EQ3) 
TCF(c=0, t–) = TCF(a=0, (t-d)–)‧TCF(b=0, (t-d)–).  (EQ4) 

For a two-input AND gate,  
TCF(c=1, t–) = TCF(a=1, (t-d)–)‧TCF(b=1, (t-d)–).  (EQ5) 
TCF(c=0, t–) = TCF(a=0, (t-d)–) + TCF(b=0, (t-d)–).  (EQ6) 

The above equations show that an earlier-timed TCF of a node can 
be expressed by the earlier-timed TCFs of the node’s inputs. In our 
algorithm, if a TCF is later-timed, it is translated into an 
earlier-timed TCF by (EQ1) or (EQ2). Then, we recursively derive 
the earlier-timed TCF by (EQ3), (EQ4), (EQ5) and (EQ6). In this 
way, all TCFs are earlier-timed, which is important for the sharing 
mechanism discussed in the next section.  

3.2. Sharing Mechanism for TCFs 
A TCF derived directly by the recursive formulation may have 

much larger size compared to the original circuit, mainly because 
all fanout branches of a node may require different TCFs. Consider 
node f in Figure 1, which has three fanout branches. During the 
recursive construction process of TCF(r=0, 5+), three intermediate 
TCFs, TCF(f=0, 1–), TCF(f=0, 2–), and TCF(f=0, 3–), are needed 
for node f.  

In general, each fanout branch of a node may have its own 
functional and temporal requirements. Without careful planning, 
we may need to build TCFs for all fanout branches of a node. 
However, some TCFs are functionally equivalent, even with 
different temporal requirements. Before a TCF is finally 
constructed, the equivalence of two different intermediate TCFs 
can be difficult to recognize. For example, TCF(f=0, 2–) and 
TCF(f=0, 3–) have different temporal requirements but have equal 
functionality after construction.  

We propose to collect useful arrival time information, which 
allows equivalent TCFs to be recognized during the recursive 
construction process. First, there can be many different paths from 
the primary inputs to a node n. Each path delay from a primary 
input to node n represents a possible delay or a possible arrival 
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Figure 1: Example of a combinational circuit 
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time when an input vector is applied. For the same example, in 
Figure 1, there are three paths {a, c, d, f}, {b, c, d, f}, and {e, f} 
from the primary inputs to node f where {a, c, d, f} and {b, c, d, f} 
have the path delay of 3 and {e, f} has the path delay of 1. 
Therefore, there are two possible arrival times for node f after 
applying an input vector, i.e., 1 and 3.  

Let {Aj} be a sorted set of possible arrival times for node y, i.e. 
Ak < Ak+1. In addition, let {Ti} be a set of the temporal 
requirements with which we must construct the earlier-timed TCFs 
on node y. We say the arrival time Ak is the next-largest arrival time 
of Ti if Ak-1< Ti ≤ Ak. Consider the example in Figure 1. Node f has 
two possible arrival times: 1 and 3. In addition, node f has three 
temporal requirements: 1, 2 and 3. The next-largest arrival time of 
temporal requirement 2 is 3, and the next-largest arrival time of 
temporal requirement 3 is 3. Then, we have the following lemma: 
Lemma 1: For two TCFs TCF(y=val, t1–) and TCF(y=val, t2–), if 
these two temporal requirements t1 and t2 have the same 
next-largest arrival time,  

TCF(y=val, t1–) = TCF(y=val, t2–). 

In our algorithm, the arrival time information can be derived by 
the same algorithm in [6]. After that, during the recursive 
construction process of a TCF, we use Lemma 1 to merge 
intermediate TCFs whose temporal requirements have the same 
next-largest arrival time.  

3.3. Correlation Information Extraction  
In this section, we illustrate how to extract the correlation 

information about TCFs to accelerate SAT solvers or ATPG 
engines. The correlation information, which can be easily 
recognized during recursive construction process of a TCF, 
describes the relationship between two intermediate TCFs of a 
node. We have the following two lemmas:  
Lemma 2: For a node y, and two temporal requirements t1 and t2 
where t1<t2, 

TCF(y=val, t1–) ⊆ TCF(y=val, t2–), or 
TCF(y=val, t1–)' + TCF(y=val, t2–) = 1. 

Lemma 3: For a node y and two temporal requirements t1 and t2, 
TCF(y=val, t1–) ∩ TCF(y=val', t2–) = ∅, or 

TCF(y=val, t1–)' + TCF(y=val', t2–)' = 1. 

When the condition in Lemma 2 is satisfied, we add an extra 
Boolean function TCF(y=val, t1–)' + TCF(y=val, t2–) = 1 to the 
overall TCF. When the condition in Lemma 3 is satisfied, we add 
an extra Boolean function TCF(y=val, t1–)' + TCF(y=val', t2–)' = 
1 to the overall TCF. These extra Boolean functions do not change 
the on-set of the overall TCF, but add the correlation information 
when we solve the overall TCF. 

5. EXPERIMENTAL RESULTS 
We re-implement the algorithm shown in [16] and conduct 

experiments on a set of MCNC benchmark circuits. Since the main 
purposes in [16] are to find a circuit’s delay, to fairly compare with 
their results, we generate 10 temporal requirements, from the 
largest to the smallest possible arrival time with an equal interval. 

Then, for each temporal requirement t, we attempt to find an input 
vector that causes at least one primary output to be stable later than 
time t. This can be modeled by the following equation. 

Finally, TCFC is solved using the Jerusat SAT solver [13].  
In Table 1, we show the experimental results of C3540 under 

the unit delay model. Column 1 shows the temporal requirement. 
Columns 2, 3, and 4 show the number of the variables in the TCF, 
the run time of the TCF construction, and the run time of Jerusat 
by [16] while columns 5, 6, and 7 show the results by our approach. 
Columns 8, 9 and 10 show the ratio of the number of variables, the 
ratio of the run time of the TCF construction and the ratio of the 
run time of Jerusat by [16] to those by our approach respectively. 
For the highlighted temporal requirement 32, our approach is 40 
times faster in the run time of Jerusat, and on average, our 
approach is 13 times faster. 

Then, we perform experiments on a set of MCNC benchmark 
circuits under different delay models. For each circuit, we use the 
same method of generating temporal requirements as that in Table 
1. Table 2 shows the results under the unit delay model and the 
results under the unit fanout delay model, and Table 3 shows the 
results using the TSMC 0.13 μm cell library. Column 1 shows the 
name of the circuit. Columns 2, 3, and 4 show the average number 
of variables (Vars), the average run time of the TCF construction, 
and the average run time of Jerusat for 10 temporal requirements 
by [16] while columns 5, 6, and 7 show the results by our approach. 
Columns 8, 9, and 10 show the ratio of the number of variables, the 
ratio of the run time of the TCF construction and the ratio of the 
run time of Jerusat by [16] to those by ours respectively. For the 
run time of Jerusat, on average, our approach is about 5 times 
faster than the approach in [16] under the unit delay model and 
about 8 times faster than the approach in [16] under the unit fanout 
delay model.  

We also apply our approach to the TSMC 0.13 μm cell library 
in Table 3. Since the approach in [16] cannot be directly applied to 
a circuit with different rise and fall delays, we do not show the 
results. All experiments are performed using Sun Blade 2500 with 
4GB physical memory.  
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[16] Our approach Ratio Temporal
requirement Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat

52 2015 0.03 0.04 1440 0.01 0.03 1.40 3.00 1.33 
47 9840 0.38 0.38 2989 0.08 0.1 3.29 4.75 3.80 
42 21485 0.91 0.73 5179 0.19 0.15 4.15 4.79 4.87 
37 33279 1.53 7.46 7564 0.31 0.21 4.40 4.94 35.52 
32 39883 1.88 13.15 9008 0.37 0.33 4.43 5.08 39.85 
27 45366 2.15 6.39 10173 0.42 0.32 4.46 5.12 19.97 
22 48926 2.29 5.3 10503 0.43 0.31 4.66 5.33 17.10 
17 38074 1.77 1.42 7924 0.32 0.22 4.80 5.53 6.45 
12 16968 0.7 0.46 3924 0.12 0.1 4.32 5.83 4.60 
7 3803 0.11 0.09 1897 0.03 0.04 2.00 3.67 2.25 

Average 25964 1.18 3.54 6060 0.23 0.18 3.79 4.80 13.57 

Table 1: Experimental results of C3540 
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6. CONCLUSIONS 
In this paper, we present a very effective way for timed ATPG. 

Our contributions include a compact form to represent TCFs, a 
sharing mechanism to reduce the size of TCFs, and correlation 
information extraction techniques to decrease the run time of 
solving timed ATPG. On average, our algorithm is 8 times faster 
than [16] and in some cases, our algorithm is 32 times faster. 
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C880 1307 0.04 0.03 
des 7010 0.32 0.22 
i10 14787 1.04 0.68 
i8 2025 0.06 0.06 

my_adder 2122 0.07 0.06 
Average 132809 57.03 95.60

unit delay model unit fanout delay model 
[16] Our approach Ratio [16] Our approach Ratio Circuit 

Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat Vars TCF(s) Jerusat(s) Vars TCF(s) Jerusat(s) Vars TCF Jerusat
C1355 5501 0.20 0.27 1779 0.05 0.05 2.77 3.81 5.58 8743 0.34 0.26 1774 0.05 0.05 4.11 5.65 4.19 
C1908 9155 0.38 0.54 2879 0.10 0.22 2.78 3.53 2.70 23258 1.06 1.61 4218 0.16 0.47 4.34 5.19 3.29 
C2670 5766 0.20 0.16 2028 0.04 0.05 2.61 4.59 2.90 8210 0.31 0.26 2046 0.04 0.05 3.39 6.26 4.16 
C3540 25964 1.18 3.54 6060 0.23 0.18 3.79 4.80 13.57 87858 4.88 24.21 10724 0.53 0.38 6.14 7.03 32.16 
C432 6268 0.25 0.26 1478 0.05 0.07 3.98 4.92 4.82 11590 0.50 0.47 1543 0.06 0.06 6.05 6.90 7.20 
C499 8682 0.34 0.36 2386 0.08 0.07 3.32 3.97 4.61 14855 0.64 0.56 2289 0.08 0.07 5.01 5.76 5.93 
C5315 13836 0.54 0.67 4647 0.12 0.16 2.64 4.16 3.50 30074 1.36 1.83 5530 0.18 0.20 4.47 6.30 6.96 
C6288 307749 20.14 28.97 69124 3.99 11.45 3.99 4.72 3.46 1772018 343.49 452.07 326735 34.55 93.14 4.97 7.87 9.03 
C7552 24194 1.01 0.87 7400 0.22 0.28 2.93 4.39 2.85 81900 6.77 3.81 7778 0.26 0.28 7.56 15.71 9.43 
C880 3895 0.13 0.10 1287 0.03 0.03 2.80 3.76 3.01 5854 0.22 0.16 1414 0.04 0.04 3.53 4.63 3.65 
des 24157 1.16 0.82 8099 0.24 0.23 2.77 6.82 3.22 25005 1.30 0.73 8274 0.35 0.24 2.59 3.95 2.66 
i10 31232 1.56 1.19 9381 0.35 0.35 2.93 5.73 3.05 79761 4.57 3.99 14269 0.71 0.81 4.58 6.96 5.05 
i8 8520 0.33 0.23 3025 0.08 0.09 2.74 3.86 2.54 8694 0.34 0.23 2945 0.08 0.09 2.81 4.16 2.61 

my_adder 5821 0.22 1.17 1376 0.05 0.09 3.96 4.24 15.06 10381 0.43 1.95 1585 0.06 0.09 5.68 6.20 18.05 
Average 34338 1.98 2.80 8639 0.40 0.95 3.14 4.52 5.06 154871 26.16 35.15 27938 2.65 6.85 4.66 6.61 8.17 

Table 2: Experimental results under the unit delay model and unit fanout delay model 
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