
On Bounding the Delay of a Critical Path∗

Leonard Lee
lylee@ece.ucsb.edu

Li-C. Wang
licwang@ece.ucsb.edu

Department of Electrical and Computer Engineering
University of California - Santa Barbara

Santa Barbara, CA, 93106-9560

ABSTRACT
Process variations cause different behavior of timing-
dependent effects across different chips. In this work, we
analyze one example of timing-dependent effects, cross-
coupling capacitance, and the complex problem space cre-
ated by considering coupling and process variations to-
gether. The delay of a critical path under these condi-
tions is difficult to bound for design and test. We develop a
methodology that analyzes this complex space by decompos-
ing the problem space along three dimensions: the aggressor
space, test space, and sample space. For design, we uti-
lize an OBDD-based approach to prune the aggressor space
based on logical constraints, which can be combined with a
worst-case timing window simulator to prune based on both
logical and timing constraints. After pruning, the reduced
aggressor space can be used to derive a more accurate timing
bound. Solving the problems in the test and sample spaces
is postponed to the post-silicon stage, where we propose a
test selection methodology for bounding the delay of every
sample. This methodology is based on probability density
estimation and has a tradeoff between the number of tests to
apply and the tightness of the delay bound obtained. Exper-
imental results based on benchmark examples are presented
to show the effectiveness of the proposed methodology.

1. INTRODUCTION
In today’s deep-submicron designs, process variations

cause different timing configurations for different silicon
chips. To complicate timing further, timing-dependent ef-
fects affect each chip differently since their effects depend
on the timing of the signals involved. Process variations
may cause the timing of two signals to match perfectly on
one chip but not on another. Figure 1 depicts examples of
timing-dependent effects. For example, past research has
studied the multiple input switching (MIS) effect on delay
[3, 5], the automatic test pattern generation (ATPG) prob-
lem under the effect of cross-coupling capacitance [8, 9, 15],
and the impact of power noise [6, 11,12,14].

In this work, we focus on one of these effects, cross-
coupling capacitance, mingled with process variations and

∗This work was supported in part by NSF, Grant No.
0312701 and SRC, project 2004-TJ-1173.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

MIS hazards coupling

power noise

RC
input C

slew

clock
skew

clock
jitter

Q

clock-Q
delay

Figure 1: Path delay is affected by many different
timing-dependent effects

solve two problems: (1) how to bound the timing of a crit-
ical path for design, and (2) how to bound the timing of a
critical path with tests for speed binning.

Coupling’s effect on the timing of a victim path is based on
the timing alignment between its signals and the aggressors,
where a full timing overlap has the largest impact and no
overlap has the least. Many models multiply the coupling
capacitance CC between an aggressor and a victim wire with
a coupling factor, representing the severity of this alignment.
This modified capacitance is added to the output loading
of a victim gate to change its timing. In static analysis,
setting a global coupling parameter of xCC is a simple but
inaccurate model of coupling, as not all gates in a path are
affected by xCC, causing overestimation of its timing.

Worst-case timing

o

f
si

lic
o

n
 c

h
ip

s

timing bound
by setting a

global coupling
parameter

?

Figure 2: Can we push in the timing bound found
by setting a global coupling parameter determinis-
tically instead of empirically?

Figure 2 illustrates how an xCC model might overestimate
the actual worst-case timing of a victim path. A common
industrial practice to reduce this overestimation is to set the
value x smaller than 2, where the value is determined em-
pirically based on data from a previous design, process, or
tapeout. In this work, we attempt to push in the timing
bound for design and test without relying on this empiri-
cal data. We provide deterministic solutions to reduce the
complexity of the cross-coupling capacitance problem space
based on several different perspectives, and provide addi-
tional approximate solutions to estimate the delay bound of
a critical path in test.

81

Sample space
(process variations)

T
es

t s
pa

ce

Aggressor space

Figure 3: The 3 dimensions of the coupling problem

Figure 3 shows how the coupling problem space is created
by the interaction between three dimensions:

• Aggressor space: the logical and timing constraints in-
volved in activating combinations of aggressors.

• Test space: the various tests that can activate the re-
quired aggressors for a given combination.

• Sample space: process variations causing different de-
lays for the same test on different chips.

In an earlier work [16], an attempt to develop a statisti-
cal timed ATPG revealed that searching the problem space
with these dimensions mingled together is difficult. In this
work, we propose to solve the problem along each dimension
separately, reducing the complexity.

In the pre-silicon stage, where we cannot assume the avail-
ability of a statistical timing model that accurately models
all effects from process variations, focusing only on pruning
the aggressor space makes more sense. It is questionable to
use Timed ATPG to search for tests that worsen the delay of
a victim path because it requires an accurate timing model
to find the alignment of timing-dependent effects. Hence,
its result is sensitive to the timing model. A slight change
in the model may result in a completely different test set.

Due to the difficulty in analyzing the path delay on a per-
test basis, our methodology postpones the development of
the final test set to expose the coupling effect on a path
until the post-silicon stage. Our main idea is that in the
pre-silicon stage, we only need to (and can only) develop a
superset of tests. Then, a subset of these tests are selected
for mass production, using post-silicon samples.

Pruning the aggressor space is essential for both design
and test, and therefore it is the most fundamental step to
bound the delay of a critical path. The logical and timing
constraints imposed by the circuit can reduce the number
of aggressors that need to be analyzed, resulting in pushing
in the timing bound. Note that it is crucial to assume the
worst-case in timing for pruning the aggressor space. Hence,
the delay information on every signal is represented as a
worst-case timing window. We cannot assume any knowl-
edge of the actual delay distribution inside a timing window.

We propose an approach that combines Boolean Satisfia-
bility (SAT) solving [18] and Ordered Binary Decision Di-
agrams (OBDD) [4] for pruning the aggressor space. On a
given combination of aggressors, we rely on SAT to decide
if a test can be produced to activate all aggressors simul-
taneously. We use OBDDs to store combinations that are
possible or impossible to generate a test for. Information
stored in OBDDs is then used to guide the selection of new
combinations to try. The goal of this process is to identify
all possible combinations that a test can be produced for.

To further identify a set of tests required to bound the
delays (of a critical path) on silicon samples, we need to de-
velop a silicon sample-based methodology. Figure 4 shows
the complexity of the test space and the sample space in-
dividually by fixing the other dimensions. These are simu-
lation results based on benchmark circuit c880 and on the
most critical path reported by a statistical timing tool. To

facilitate our study, we implement a statistical timing sim-
ulator [17] to emulate the behavior of the N sample chips,
each with a different delay configuration statistically derived
from a timing model of process variations. The statistical
timing model is cell-based, which was characterized using
Monte Carlo SPICE based on a 90nm CMOS technology.
The delay values (their means and standard deviations) are
stored as tables rather than timing rules.

0

3500

7000

1893 1896 1899 1902
Delay (ps)

N
um

be
r

of
 te

st
s

(a) Test space

0

50

100

150

200

250

1505 1598 1691 1784 1877 1970
Delay (ps)

N
um

be
r

of
 s

am
pl

es

(b) Sample space

Figure 4: Analyze a dimension by fixing two others

Figure 4-a shows that for a fixed aggressor combination
on a fixed sample, the 10k randomly selected tests (that
all activate the given combination) cluster into four groups.
This suggests that test selection is needed to choose the de-
sired worst-case test. It also shows that many tests produce
the same effect on the path, if we consider only a partic-
ular combination of aggressors. Figure 4-b shows that for
a fixed aggressor combination and a fixed test for the com-
bination, 10k samples fit a Normal distribution well. The
sample space problem can be solved by parameter estima-
tion, where random sampling to find the mean and standard
deviation of the distribution can capture its complexity.

We propose a sample-based methodology to bound the
delay of every sample individually. In this methodology,
we focus on the test space. In the post-silicon stage, we
assume that a set of N (good) samples are available. Our
objective is to develop with a high confidence a test set that
is sufficient to be used to bound the delays of silicon chips
in mass production. We generate a superset of tests based
on the result from aggressor space pruning, and construct a
smaller test set via silicon sample-based test selection.

To compare the quality of the superset and the selected
set, we require a methodology to bound the delay of every
sample based on a given set of tests. If such a methodol-
ogy exists, then we can check to make sure that the bound
given by a selected test set does not underestimate the delay
bound from that given by the superset.

delay
Delay observed from a test

Estimated probability density p(.)
p(t > t0) < δ

Figure 5: Applying density estimation to bound the
delay of a sample

In this work, we turn the problem of bounding the delay
of a sample into a density estimation problem [23]. Figure 5
illustrates the concept. Essentially, our goal is to estimate
the distribution in the test space of a given sample based
on a set of tests. The delays from these tests are treated
as example delay points randomly drawn from a fixed and
unknown distribution (in the test space). Once we can es-
timate this distribution as p(.) based on these points, we
can then bound the delay t by calculating the probability
p(t > t0). For a given confidence level (1 − δ), we find the

82

smallest t0 such that p(t > t0) < δ. Then, the value t0
becomes the delay bound.

Note that in density estimation, we cannot rely on tra-
ditional parametric estimation by assuming a distribution
model in advance, for example a Gaussian distribution or a
mixture of Gaussian distributions. Figure 4-a shows that the
distribution in the test space on a given sample does not fit
into a parametric form of any continuous probability distri-
bution. Hence, we need to apply non-parametric estimation
to estimate p(.). A popular approach for non-parametric
density estimation is kernel density estimation [23].

Because our methodology to bound the delay of each sam-
ple relies on density estimation, we will see later in the paper
that this methodology allows a tradeoff between the number
of tests to apply and the tightness of the delay bound. Intu-
itively, if fewer tests are applied, we need to leave a bigger
margin in the delay bound to account for the uncertainty
in the unseen space. From this perspective, we see that
the proposed methodology is not trying to find the absolute
worst-case delay on a sample. Instead, it performs statisti-
cal inference to estimate a bound such that the probability
of the actual delay exceeding this bound is extremely small.

We emphasize that in our work, density estimation is used
only after aggressor space pruning. Otherwise, the combined
aggressor and test spaces can be too large and complex for
any density estimation method to work effectively.

The rest of the paper is organized as follows. Section 2 an-
alyzes the aggressor space in more detail. Section 3 develops
an OBDD-based solution for the logical constraints of the
aggressor space, and Section 4 adds the timing constraints
to the solution. After pruning the aggressor space, Section 5
discusses our test selection methodology using density esti-
mation, and Section 6 concludes the work.

2. THE AGGRESSOR SPACE
The aggressor space consists of all possible aggressor com-

binations. It is not possible to produce a test for many of
these combinations. The constraints imposed on this space
can be illustrated with a Boolean Lattice. Given n aggres-
sors a1, . . . , an, each node in the Lattice is associated with
an n-bit vector where each ai ∈ {0, 1}, 1 ≤ i ≤ n. Each bit
vector is an aggressor combination, where ai = 1 means to
activate aggressor i. Activating an aggressor means that a
test can produce a transition on the aggressor opposite to
the transition on the corresponding victim wire. An ai = 0
means that the aggressor is unconstrained and hence can be
activated or not activated.

… ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

n

… ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

n

… ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3

n

empty

A cut

No patterns for all combinations below this cut

1 aggressor

2 aggressors

3 aggressors

Figure 6: The Lattice view of the aggressor space

Figure 6 shows the Lattice space exploration problem. A
node in the Lattice is assigned with an output value 0 or 1.
For example, the root node has a value 1, meaning that a
test exists to sensitize the victim path while leaving all ag-
gressors unconstrained. The nodes in the jth level represent
all possible combinations of aggressor activations where j

aggressors are constrained to be activated with the victim
path. It is interesting to observe that if a set of selected
aggressors cannot be activated together, then any aggressor
combination containing the set of aggressors cannot be acti-
vated together either. Therefore, the problem of identifying
all aggressor combinations for which a test can be produced
becomes the problem of finding a cut on this Lattice. Be-
low the cut, there exists no test for any combination and
above the cut, a test exists for every combination. Section 3
discusses in detail how to find this cut.

The timing alignment of aggressor-victim pairs also intro-
duces a timing-related problem space. Even if a test exists
for a combination of aggressor activations, some of the tran-
sitions on the aggressors may not align timing-wise with the
victim transitions. We discuss the methods to consider tim-
ing alignment in Section 4.

2.1 Cross-coupling modeling
The coupling capacitance CC is obtained from capaci-

tance extraction on the layout. When there are opposite
transitions on the two signals related to this CC, the delay
gets pushed out because of the coupling effect. The exact
amount of this push-out is some non-linear function of the
timing alignment between the two signal transitions. The
actual mechanisms causing the delay push-out can be quite
complex [10,13,19,20]. In actual design, people may not be
able to afford using such a detailed analysis. However, using
a simple xCC approach can be very pessimistic.

thV
aggV

MCF
∆

−=1

VXEFF CCMCFC +×=

CX

CV

CEFF

aggressor

victim

Figure 7: More sophisticated MCF-based practice

It is widely recognized that the xCC analysis is too rough.
A more sophisticated method is to adopt the Miller Capac-
itance Factor (MCF) [7], as shown in Figure 7. MCF takes
the timing alignment into account. ∆Vagg is the percentage
of voltage change on the aggressor when the victim transi-
tions from 0 to Vth (or from Vdd to Vth). For example, we can
assume Vth = 0.5Vdd in the formula. Under this assumption,
MCF ∈ [−1, 3], which also models the speed-up effect.

2.2 Search for the worst-case tests
The problem of searching for the tests to expose the worst-

case delays of a victim path cannot be deterministically de-
fined. This is because the worst-case test can be different
from chip to chip. Finding the test set that can expose
the worst-case delays for all chips can be a very difficult
problem. Essentially, this is a statistical-timed ATPG prob-
lem [16]. In such an ATPG, search is carried out by mingling
the aggressor, test, and sample spaces. Consider a 100-input
circuit block with 50 aggressors and ±5% chip-to-chip delay
variability. Searching for the right tests in such a large and
complex space is extremely difficult. Adding to the difficulty
is the lack of an accurate statistical timing model.

2.3 Searching the tests vs. bounding the delay
If we cannot afford to search for the worst-case tests, the

alternative is to bound the delay of the path on every sam-
ple. This relaxes the requirement to find the exact test that

83

causes the worst case on every sample. However, search-
ing for the tests that allow us to estimate a reliable delay
bound on every sample is not trivial, so we need to begin by
pruning the aggressor space.

Given a large number of n aggressors, pruning the aggres-
sor space first makes more sense because it may be impossi-
ble for many aggressors to be activated together due to the
circuit’s logic constraints. Intuitively, the more aggressors
we consider together, the less likely it is that they can all
produce timing effects simultaneously. Therefore, an effec-
tive pruning methodology on the aggressor space can quickly
reduce the number of aggressors to be considered and hence,
reduce the complexity for solving the remaining problem.

In the pre-silicon stage, we can only afford pruning the
aggressor space because, to further identify which tests are
causing the worst-case delays, we need to carefully analyze
the timing alignment among signal transitions. This de-
mands an accurate timing model. With a fixed-delay tim-
ing model, the analysis of timing alignment is well defined.
However, with a statistical timing model, the analysis can-
not be deterministically defined.

If the aggressor space can be pruned effectively, the result
can help to bound the path delay in design. For example,
instead of considering n aggressors, the result of pruning
may leave only l � n aggressors to be considered. Then, an
existing static timing analysis methodology can be applied
with the l aggressors to obtain a tighter bound.

The discussion so far points to the importance of prun-
ing the aggressor space. Hence, in this paper, we devote
Sections 3 and 4 to discuss various methods for pruning the
space. We first introduce a method to prune the aggressor
space based on logical constraints only. Then we develop a
method to prune further by also using timing constraints.
However, because these two methods may individually take
a long time (under 12 hours) to run, we introduce a more
efficient methodology (an hour or two) in Section 4.2 that
integrates both methods, combining both logical and tim-
ing constraints. Then, Section 5 discusses a sample-based
method to obtain the test set for bounding the delay of the
critical path on silicon samples.

3. PRUNING: LOGICAL CONSTRAINTS
We first focus on the constraints imposed by the circuit

structure, ignoring any timing information. By analyzing
the coupling capacitance information, we can obtain an ini-
tial set of aggressors that affect the victim path with non-
zero coupling capacitance. For the two most critical paths
of ISCAS85 benchmarks c880 and c1908, the coupling ca-
pacitance extraction at [1] reveals 72 and 76 aggressors af-
fecting c880, and 88 and 81 aggressors affecting c1908. The
first step in pruning using logical constraints simply involves
removing aggressors that cannot transition with the victim
path, resulting in 33 and 35 aggressors for c880, and 31 and
28 aggressors for c1908.

3.1 Pruning the remaining logical space
At this point the remaining aggressors can transition with

the path but not necessarily with other aggressors. We pro-
pose a solution by combining SAT and OBDDs to collect
aggressor combinations that are possible and impossible.

The Boolean Lattice in Figure 6 can be viewed as a dia-
mond, with 1 combination at the top (

(
n
0

)
) and 1 combina-

tion at the bottom (
(

n
n

)
). For each combination, we use SAT

to find if there exists a test to activate that combination to-
gether with the sensitization of the victim path (SAT), or

if there does not exist any test to activate that combina-
tion (unSAT). This information is stored into two OBDDs,
one representing the upper bound (UB OBDD) of the cut
through the Boolean Lattice, and the other representing the
lower bound (LB OBDD) of the cut.

Boolean Lattice

Combination
cu is unSAT,

stored into OBDD

OBDD implies
that combinations

containing cu
also unSAT

(a) unSAT

Boolean Lattice

Combination
cs is SAT,

stored into OBDD

OBDD implies
that combinations

contained by
cs also SAT

(b) SAT

Figure 8: Storing combinations into an OBDD

Figure 8 shows how the two OBDDs can represent the
upper and lower bounds of the cut. In Figure 8-a, when
a combination cu is found to be unSAT, any combination
ci that contains cu is also unSAT. For example, if activat-
ing {a1, a2} is impossible, then activating {a1, a2, a3} is
also impossible. Similarly, Figure 8-b shows that when cs

is found to be SAT, any combination ci that is contained
by cs is also SAT. For example, if activating {a1, a2, a3} is
possible, activating only {a1, a2} is also possible.

We can combine the unSAT combinations into the LB
OBDD and the SAT combinations into the UB OBDD. Each
variable in an OBDD represents one aggressor, where the
ai = 1 (or just ai) branch signifies that the aggressor ai is
activated, and the ai = 0 (or ai) branch signifies that it is
unconstrained (can be activated or not).

The LB OBDD starts as the 1 terminal to represent that
everything is still possible, especially since we have not even
seen evidence that activating all aggressors simultaneously
is impossible. When we find an unSAT combination of {a1,
a2}, we create a new OBDD that has the branch a1 = 1 and
a2 = 1 lead to the 0 terminal. All other branches still lead to
the 1 terminal. By performing an OBDD AND operation on
the LB OBDD and the newly created OBDD, we can modify
the LB OBDD to represent that activating {a1, a2} together
is impossible. Notice how the LB OBDD now effectively
represents any combination containing {a1, a2} (like the {a1,
a2, a3} example just described) is impossible.

Likewise, the UB OBDD starts as the 0 terminal to repre-
sent that everything still has not been tried. When we find
a SAT combination of {a1, a2, a3}, the new OBDD to create
is not as simple as in the LB OBDD case. For example, if
there are a total of 5 aggressors, the new OBDD would have
the branch a4 = 0 and a5 = 0 lead to the 1 terminal (with
all other branches leading to the 0 terminal). Notice how
this OBDD also represents that the combination {a1, a2} is
also SAT because {a3, a4, a5} contains {a4, a5}. The new
OBDD represents that anything containing {a4, a5} is SAT.
Finally, by performing an OBDD OR operation on the UB
OBDD and the newly created OBDD, we can modify the
UB OBDD to represent SAT combinations.

Using the LB OBDD and the UB OBDD, we can bound
where the cut of the Boolean Lattice is. Therefore, we can
use these OBDDs to guide what combinations to attempt
next. We create a generator OBDD by taking (LB OBDD)
AND (UB OBDD)’ as shown in Figure 9. Finding paths to
the 1 terminal in the generator OBDD gives combinations
that lie below the upper bound and above the lower bound.
Each attempted combination prunes a sub-space that no

84

1

LB
OBDD

0 0

UB
OBDD

1

AND

1

generator
OBDD

0

=

AND =

take the NOT

Figure 9: Creating the generator OBDD

longer needs to be searched, reducing the remaining problem
space where possible combinations may still exist.

3.2 Finding the exact cut in the Lattice
Our iterative exhaustive methodology that utilizes the up-

per and lower bound OBDDs consists of the following steps:

1. Sort the aggressors based on their CC.
2. Use the aggressor with the largest CC as the only vari-

able in the OBDD variable list.
3. Initialize LB OBDD to 1 and UB OBDD to 0.
4. Compute the current generator OBDD.
5. Generate all paths to the 1 terminal of the generator

OBDD, considering the current OBDD variable list.
Every path consists of some aggressors as 1, some as
0, and the rest as 2 (either 0 or 1). For each path with
2’s, generate all permutations for that path. ex. 2201
will generate 0001, 0101, 1001, and 1101.

6. Pad the permutations with 0’s for aggressors not yet
in the OBDD variable list (recall 0’s are don’t cares).

7. Use a SAT solver to find tests for all permutations.
8. Add unSAT and SAT permutations to the OBDDs.
9. If the number of variables in the OBDD variable list

is equal to the number of aggressors, terminate.
10. Add the next largest CC aggressor into the list.
11. Return to step 4.

Aggressors
sorted by CC

Add next largest CC Initialize OBDDs

Compute
Generator

LB and UB
OBDDs

Variable
List

Find
Permutations

SAT
solver

SATunSAT

Modify
LB OBDD

Modify
UB OBDD

LB
OBDD

UB
OBDD

All permutations

If more
aggressors

still

Figure 10: Our iterative methodology using OBDDs

This iterative methodology exhaustively explores the
Boolean Lattice. The UB and LB OBDDs record which
combinations are already known to be possible or impossi-
ble. Therefore, by using both OBDDs to find new combina-
tions to try, we are focusing only on unexplored sections of
the Lattice. However, since this is an iterative methodology,
we also need to ensure that the UB and LB OBDDs are still
accurate after adding another aggressor into the variable list.

For the LB OBDD, no change is necessary because it
doesn’t matter if we set the extra aggressor to 0 or 1 to make
a new combination cnew, cnew still contains the original un-
SAT combination cu. However, the UB OBDD requires a

straightforward change to remain valid. Recall that to mod-
ify the UB OBDD for each combination, we need to know
the total number of aggressors. Since we are modifying the
total aggressor list by adding anew, we need to AND the UB
OBDD with anew. This fixes each path to the 1 terminal by
requiring the new aggressor to also be unconstrained.

Although this exhaustive iterative methodology can find
the exact cut, it takes a long time to run; it takes over a
week to find the cut for the c1908 path with 28 aggressors,
which has the least aggressors to begin with. This deterred
us from running this exhaustive methodology on larger ex-
amples. Therefore, we introduce a more efficient alternative
by relaxing the requirement for finding an exact cut.

3.3 Finding a bound of the cut for efficiency
To reduce the runtime, we loosen the constraints of find-

ing the true cut of the Boolean Lattice. If our objective is
simply to find a close upper and lower bound, we can relax
step 5 in the methodology. Recall that each path to 1 in
the generator OBDD contains 0’s, 1’s, and 2’s. In the ex-
haustive methodology, we enumerated all permutations of
2’s, and then used SAT on all these permutations. In our
more efficient alternative, we instead generate only 1 per-
mutation per path, where the 2’s are randomly set to 0 or 1.
This alternative reduces the run-time of from over a week to
overnight (less than 12 hours), which is a vast improvement.

The increased performance comes at the cost of exhaus-
tiveness. This methodology does not guarantee finding the
exact cut. Instead, it finds the lower and upper bounds of
where the cut might be. Comparing the alternative and
exhaustive methods on c1908, the LB OBDD of the alter-
native has recorded only 2,831,280 fewer impossible com-
binations than the LB OBDD of the exhaustive method.
Although this number may seem large, the total number of
impossible combinations found by the exhaustive method is
267,390,976. Therefore, the alternative missed only 1% of
the impossible combinations. This confirms our conjecture
that the speed-up comes at the cost of not finding the true
cut because not as many combinations are solved for com-
pared to the exhaustive method. However, it does get close.

Because we do not have the true cut for examples other
than c1908, we introduce a different way of evaluating the
effectiveness based on the generator OBDD. At the comple-
tion of the exhaustive methodology, the generator OBDD
will always have 0 unknown combinations, because all com-
binations are known to be either possible or impossible.
Therefore, we evaluate our methodology by the number of
unknown combinations still in its generator OBDD. Table 1
shows the percentage of unknown combinations to the total
2n combinations. Although you would expect that the dras-
tic speed-up introduces a large error in bounding the cut,
our methodology is still very effective with less than 1% of
the space left unexplored.

Table 1: Percentage of unknown combinations left
in the generator OBDD to the total 2n combinations

c880-1 c880-2 c1908-1 c1908-2
of Aggressors (n) 33 35 31 28
Percentage 0.026% 0.014% 0.247% 0.704%

Informal comment: Having a runtime less than 12 hours
is important in practice as the methodology can be started
before leaving the workplace for the day, and the results will
be available upon returning the next day. Since the exhaus-
tive methodology takes too long for practical use, the relaxed
methodology for finding the tight bound on the cut can be
useful for pruning the aggressor space. These examples with

85

less than 36 aggressors complete overnight. However, if we
reduce the initial number of aggressors to be less than 25,
we can prune the aggressor space in only a few hours.

0

0.2

0.4

0.6

0.8

0 7 14 21 28 35
Aggressor

C
C

 (
fF

)

Potential locations to remove
low CC aggressors

Figure 11: Aggressors sorted by CC

In practice, the runtime can be controlled by limiting the
number of aggressors to begin with. Figure 11 shows an
example case of the aggressors sorted by their CCs with the
victim path. There are natural separations to throw out
aggressors with small CCs. From experiments, we conclude
that as long as the number of aggressors is limited within 35,
the current method is able to approximate the true cut well
within a 12-hour runtime limitation. The result of this can
serve as the basis for further pruning by considering timing
constraints. Below describes such a pruning approach.

4. PRUNING: TIMING CONSTRAINTS
Past research in ATPG that target timing-dependent ef-

fects [6, 8, 9, 11, 12, 14, 15] commonly utilize a pre-silicon
fixed-delay timing model when trying to find the tests that
exercise these effects. Unfortunately, when accounting for
process variations, the accuracy to runtime tradeoff in pre-
silicon models causes timing to be inaccurate. This uncer-
tainty is especially problematic when finding worst-case de-
lay tests. A small error or variance in the timing model can
invalidate a test set found by a pre-silicon ATPG method-
ology. Therefore, ATPG may create a worst-case test set in
pre-silicon that is completely disjoint from the actual worst-
case test set on silicon.

We propose a pruning methodology that is not as sensitive
to variations and uncertainties in the timing model. Assum-
ing a fairly accurate worst-case timing model, we only prune
aggressors by a conservative worst-case analysis.

4.1 Pruning with timing-window simulation

CC

earliest
transition

latest
transition

victim worst-case
transitions

aggressor worst-case
transitions

Little Impact

agg

agg

vic

vic

ε ≥ 0

Has Impact

agg

vic

ε < 0 ε < 0

Figure 12: Using 3σ timing-window simulation to
prune aggressors with little or no impact

By performing an earliest and a latest 3σ timing simula-
tion for each test found in Section 3.3, every signal in the
circuit will have an earliest and latest time of transition.

Since our statistical timing model contains the mean µ and
standard deviation σ of each pin-to-pin delay, we use µ±3σ
on every pin-to-pin delay to obtain the earliest and latest.

Figure 12 shows the two cases when we are sure that an
aggressor has little or no impact on the victim under a spe-
cific test (ε ≥ 0), and two cases when an aggressor has an
impact (ε < 0). By simulating all the tests found in the
logical pruning phase in this manner (around 1M tests for
c880 and 500k tests for c1908), for each aggressor j on T
tests, we have εj1, εj2, ..., εjT . To prune an aggressor j, it
needs to have little or no effect on the victim path over all
tests. That is, εjk ≥ 0∀k. Moreover, if the uncertainty of
the timing model is larger, the constraint εjk ≥ κ, where
κ > 0 and is a constant, makes pruning more conservative.

Note that simulation with patterns is very important to
calculate timing alignments as our experiments without pat-
terns (static analysis) did not effectively prune enough ag-
gressors when assuming the worst-case MCF effects.

Table 2: Pruning with timing-window simulation
Pruning Method c880-1 c880-2 c1908-1 c1908-2
Affects Path 72 76 88 81
Transitions With Path 33 35 31 28
Left After Additional Pruning 7 10 12 17

Table 2 shows results of pruning additional aggressors for
the same two ISCAS85 benchmarks. Recall from Section 3.3
that the logical pruning may take overnight. Simulation of
a million tests also may take many hours. This motivates
us to find a more efficient alternative for combining logical
and timing constraints in pruning the aggressor space.

4.2 A very efficient alternative for pruning
Previously, we perform logical pruning first, and then

bring timing into the analysis afterwards. To improve the
runtime of our pruning methodology, in this section, we
repeatedly alternate between using logical constraints and
timing constraints. We begin with all the aggressors as vari-
ables in the OBDD variable list and initialize the UB OBDD
to 0 and the LB OBDD to 1. The first generator OBDD is
simply 1, so instead of finding all paths to 1 like before, we
find one random path to 1 from the generator OBDD and
change all 2’s into 0’s. After the combination is found to be
possible or impossible, the appropriate OBDD is changed
and a new generator OBDD is calculated. This repeats M
times, then the tests found during that time are simulated.
Note for a very large M , this process degenerates back to
Section 4.1, where all the tests are found first, and then sim-
ulated. In this section, we find that for a smaller M = 1000,
the power of the timing constraints can be exploited early.

UB OBDD = 0 LB OBDD = 1 OBDD Variable List = All Aggressors

Generator
OBDD

random
path to 1

Worst-Case
Timing

Simulation

Find
Test

Modify
UB and LB

OBDDs

LB and UB
OBDDs

If aggressor j has an effect (εjk < 0)
we want to keep it… but we don’t
need to generate more tests for it

∀j ∃k εjk < 0
(aj)’ AND

(LB OBDD)

New LB OBDD

M
times

After
M paths

Figure 13: Combining logical and timing constraints

86

Figure 13 shows the flow of this methodology. We run
logical pruning M times and then simulate the U tests found
so far. This allows timing constraints to be fed back into the
logical pruning via the LB OBDD. We add these steps:

• After finding U tests from the M combinations, simu-
late all U tests on the worst-case timing simulator.

• Stop trying to generate tests for each aggressor j that
we determined has an effect (∃k, 0 < k ≤ U |εjk < 0).

• To ignore these, AND the LB OBDD with aj .

We know that each aggressor j that could have a timing
effect in the worst-case timing simulator cannot be pruned
by our methodology. Therefore, as soon as some of these
aggressors are identified, this alternative methodology stops
trying to prune those aggressors in logical analysis (they
become unconstrained in the analysis). This allows the
methodology to focus on aggressors that might have no effect
instead of wasting runtime on activating aggressors that are
already known to not be prune-able. Basically, each itera-
tion of this methodology selects aggressors to be kept because
they have shown a timing effect on at least one test. Con-
sequently, termination must rely on empirical evidence, ex.
terminating when no new aggressor has been found to have
a timing effect in the last C iterations.

For M = 1000 and C = 50, each iteration takes only min-
utes to run. Therefore, this alternative completes in an hour
or two, a vast improvement over the other methodologies
described earlier. For the four examples in Table 2, it only
takes 1 iteration for this alternative to run and it reaches
the same number of aggressors as that in Table 2. Table 3
shows the effectiveness of this methodology on additional
ISCAS85 benchmark examples.

Table 3: Pruning on selected ISCAS85 benchmarks

Path
Aff. Trans. After

Iter. p
Aggr.

Path w/ Path Pruning Left (l)
c880-1 72 33 7 1 0.00 7
c880-2 76 35 10 1 0.00 10
c880-3 78 41 16 3 0.25 10
c880-4 75 38 10 1 0.00 10
c880-5 79 40 12 1 0.00 12
c880-6 81 45 20 4 0.22 10
c1355-1 81 38 20 1 0.20 9
c1355-2 79 38 18 1 0.20 9
c1908-1 88 31 12 1 0.00 12
c1908-2 81 28 17 1 0.20 10
c7552-1 157 80 22 2 0.16 10
c7552-2 166 90 30 8 0.20 9

4.3 Preparation for post-silicon testing
Table 3 shows the remaining aggressors after aggressor

space pruning. For any l ≤ 10, 2l < 1024, which is a reason-
able number of combinations to generate 10 tests for each
combination, resulting in a superset test size of around 10k.
(Note that the million tests found earlier correspond to a
million different combinations and is prohibitively large, and
so cannot be used as a superset for test selection.) For the
other examples, the number of aggressors may still be large.
Hence, we need to reduce l further. Note that given a set
of aggressors left after the pruning, we do not exactly know
in the pre-silicon phase which tests from which combina-
tions may cause excessively long delays on silicon samples.
Hence, a more reasonable solution is to reduce the number
of aggressors and then produce tests for every combination
of aggressors to be tried out on silicon samples.

To reduce the number of aggressors further, we use a com-
mon industrial practice of removing aggressors that only
have small coupling capacitances with the victim path.
However, as opposed to using all the CC values from [1]

and filtering out those smaller than a percentage p of the
largest CCtop, our set consists of only those that have im-
pact CCalign, where εalign < 0 as shown in Figure 12. Ta-
ble 3 shows that p ≈ 0.20 is enough to reduce large examples
to a reasonable number of aggressors.

5. TEST SELECTION
We have just analyzed and simplified the aggressor space

from Figure 3. In this section, we propose a solution for
test selection. Note that a global coupling parameter on the
remaining aggressors after pruning is already a big improve-
ment in the worst-case bound for design. Furthermore, the
superset of tests based on the reduced aggressor set from
Table 3 can be used to bound the timing for test. From
2l combinations of aggressor activations, we can generate
C = 10 tests per combination. However, this test size of
C2l might still be too large for mass production. Therefore,
in this section, we develop a test selection methodology to
create a smaller test set and use density estimation to com-
pare the effectiveness of the selected test set to the superset.

We apply the C2l tests onto N sample chips. In this work,
we use a Monte Carlo statistical timing simulator, but our
test selection can easily use actual silicon chips. We select
the top K delay tests seen on each chip and collect them as
the selected test set. Table 4 shows the sizes of the selected
test set for N = 50 and K = 10.

Recall Figure 5 in the introduction, where the delays of
the tests are used to find a timing bound for every sample
individually through density estimation. Our goal is to en-
sure that the selected test set results in a more conservative
bound than that given by the superset.

Timing
bound

Delay (ps)

P
ro

ba
bi

lit
y

1660 1670 1680 1690 1700 1710

(a) Superset
Delay (ps)

P
ro

ba
bi

lit
y

Timing
bound

is slightly
worse

1660 1670 1680 1690 1700 1710

(b) Selected Set

Figure 14: Density estimation on one sample

We utilize the density function in the stat package of the
statistical tool R [2] for density estimation of a set of test de-
lays on a sample. This function uses fast Fourier transforms
to convolve an approximation with a discretized version of
the kernel and linear approximations to evaluate the den-
sity at specific points [21, 22]. Figure 14 shows the density
estimation for one sample chip of c880-1. We can clearly ob-
serve that the timing bound of the superset is tighter than
that of the selected set. This is what we wanted.

It is interesting to note that deciding the timing bound
based on density estimation naturally allows a tradeoff to be
made between the number of tests to apply and the tight-
ness of the bound obtained. With a smaller test set, because
there are fewer data points to estimate the unknown distri-
bution, the estimation is less precise and hence, results in a
looser bound. If a tighter timing bound is required, then one
can always include more tests. The tradeoff is very intuitive.

Figure 15 shows the density estimation for another sample
chip of c880-1, and again we see the same tighter bound for
the superset and looser bound for the selected set.

To measure the effectiveness of the selected set compared
to the superset, we cannot just look at one sample. There-
fore, we take the average timing bound over all samples for

87

Delay (ps)

P
ro

ba
bi

lit
y

Timing
bound

1800 1810 1820 1830

(a) Superset
Delay (ps)

P
ro

ba
bi

lit
y

Timing
bound

is slightly
worse

1800 1810 1820 1830

(b) Selected Set

Figure 15: Density estimation on another sample

the superset and selected set. Table 4 shows that indeed,
using the superset produces a slightly tighter bound than
the selected set. However, note that the actual difference
in the bound is much less than 1% over all examples. This
shows that if we are allowed a 1-2% margin, the density esti-
mation method demands a very small test set to determine
a conservative timing bound on every sample.

Table 4: Difference in average timing bound
Superset Selected Set Difference Selected

Circuit Bound (ps) Bound (ps) in Bound Set Size*
c880-1 1762.915 1765.97 0.1733% 60
c880-2 1758.186 1761.543 0.1909% 96
c880-3 1769.12 1770.931 0.1024% 68
c880-4 1753.318 1754.906 0.0906% 99
c880-5 1746.698 1749.692 0.1714% 73
c880-6 1753.572 1755.538 0.1121% 76
c1355-1 1739.008 1739.204 0.0113% 80
c1355-2 1721.848 1722.647 0.0464% 72
c1908-1 1806.478 1807.923 0.0800% 51
c1908-2 1783.986 1784.032 0.0026% 190
c7552-1 2233.757 2235.919 0.0968% 161
c7552-2 2277.706 2282.426 0.2072% 121

* The superset size is ≈ 10 × 2A where A is the
number of aggressors left in Table 3

Informal comment: It is interesting to note that if we
increase the sample size N from 50 to 500, a selected test set
grows by very few tests. Hence, the selected-test-to-sample
ratio approaches zero quickly as N increases. This is also
true for using other small K values. Hence, we conjecture
that with a reasonable sample size, say 2K, the selected
test size would always be much smaller than the superset
size. The study of the test-to-sample ratio requires careful
analysis of the statistical complexity in sample behavior and
hence, is left to future work.

6. CONCLUSION AND FUTURE WORK
We propose an effective pruning strategy utilizing OB-

DDs, SAT, and a timing-window simulator to significantly
reduce the aggressor space for both design and test. Working
on this reduced space is more accurate than setting an xCC
global coupling parameter on the original aggressor space.
Our most exhaustive pruning methodology is not feasible in
practice. However, by relaxing the requirements slightly, we
present a pruning methodology that finds a very tight bound
in less than 12 hours (allowing to run overnight). Further-
more, if there exists a trusted worst-case timing model, we
propose an aggressor pruning methodology that completes
in an hour or two and finds aggressors that have a timing
effect. Overall, our analysis is conservative and hence, the
result does not depend on any assumption to model the ac-
tual statistical distribution of process variations.

From the reduced aggressor space, we can create a su-
perset of tests to bound the timing for test. However, this
superset can be quite large. If we allow a small margin to
be added in the timing bound, the test set can be reduced
drastically. The proposed kernel density estimation method

to estimate timing bounds on chip samples is quite interest-
ing. We plan to study more on the tradeoff between timing
bound accuracy and test set size in the future.

7. REFERENCES
[1] Layout and parasitic information for ISCAS circuits.

http://dropzone.tamu.edu/˜xiang/iscas.html.
[2] The R project for statistical computing.

http://www.r-project.org/.
[3] A. Agarwal et al. Statistical gate delay model

considering multiple input switching. In Design
Automation Conf., pages 658–663, June 2004.

[4] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, 1986.

[5] V. Chandramouli and K. A. Sakallah. Modeling the
effects of temporal proximity of input transitions on
gate propagation delay and transition time. In Design
Automation Conf., pages 617–622, June 1996.

[6] T. S. Chang et al. Test generation for maximizing
ground bounce for internal circuitry with recovergent
fan-outs. In VLSI Test Symp., pages 358–366, 2001.

[7] P. Chen et al. Miller factor for gate-level coupling
delay calculation. In ICCAD, pages 68–74, Nov. 2000.

[8] W. Chen et al. Test generation in VLSI circuits for
crosstalk noise. In ITC, pages 641–650, 1998.

[9] W. Chen et al. Test generation for crosstalk-induced
delay in integrated circuits. In ITC, page 191, 1999.

[10] F. Dartu and L. T. Pileggi. Calculating worst-case
gate delays due to dominant capacitance coupling. In
Design Automation Conf., pages 46–51, 1997.

[11] Y.-M. Jiang and K.-T. Cheng. Vector generation for
power supply noise estimation and verification of deep
submicron designs. IEEE Trans. VLSI Syst.,
9(2):329–340, Apr. 2001.

[12] Y.-M. Jiang et al. Estimation for maximum
instantaneous current through supply lines for CMOS
circuits. Tran. VLSI Syst., 8(1):61–73, Feb. 2000.

[13] A. B. Kahng et al. Noise and delay uncertainty studies
for coupled RC interconnects. In ASIC/SOC, 1999.

[14] A. Krstic et al. Delay testing considering power supply
noise effects. In ITC, pages 181–190, 1999.

[15] A. Krstic et al. Delay testing considering
crosstalk-induced effects. In ITC, page 558, Oct. 2001.

[16] L. Lee et al. On generating tests to cover diverse
worst-case timing corners. In Intl. Symp. on Defect
and Fault Tolerance in VLSI, pages 415–423, 2005.

[17] L. Lee et al. On silicon-based speed path identification.
In VLSI Test Symposium, pages 35–41, May 2005.

[18] F. Lu et al. A circuit SAT solver with signal
correlation guided learning. In DATE, page 892, 2003.

[19] J. Qian et al. Modeling the effective capacitance for
the RC interconnect of CMOS gates. IEEE Trans.
Computer-Aided Design, 13(12):1526–1555, Dec. 1994.

[20] T. Sakurai. Closed-form expressions for
interconnection delay, coupling, and crosstalk in
VLSI’s. Trans. Elect. Dev., 40(1):118–124, Jan. 1993.

[21] S. J. Sheather and M. C. Jones. A reliable data-based
bandwidth selection method for kernel density
estimation. J. Roy. Statist. Soc. B, 53:683–690, 1991.

[22] B. W. Silverman. Density Estimation. Chapman and
Hall, 1986.

[23] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 2nd edition, 1999.

88

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

