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ABSTRACT
Interconnects constitute a dominant source of circuit de-
lay for modern chip designs. The variations of critical di-
mensions in modern VLSI technologies lead to variability
in interconnect performance that must be fully accounted
for in timing verification. However, handling a multitude of
inter-die/intra-die variations and assessing their impacts on
circuit performance can dramatically complicate the tim-
ing analysis. In this paper, a practical interconnect delay
and slew analysis technique is presented to facilitate effi-
cient evaluation of wire performance variability. By harness-
ing a collection of computationally efficient procedures and
closed-form formulas, process and input signal variations are
directly mapped into the variability of the output delay and
slew. Since our approach produces delay and slew expres-
sions parameterized in the underlying process variations, it
can be harnessed to enable statistical timing analysis while
considering important statistical correlations. Our experi-
mental results have indicated that the presented analysis is
accurate regardless of location of sink nodes and it is also
robust over a wide range of process variations.

1. INTRODUCTION
Interconnect parasitics are the dominant source of on-chip

circuit delays for modern VLSI technologies. To account
for wire delays efficiently in the design process, intercon-
nect modeling, particularly the model order reduction of
linear passive networks, has been an active topic of research
in CAD community for more than one decade (e.g. [1]).
The increasing interconnect performance variability [2] is
also being addressed via various avenues, for instance, by
variational interconnect model order reduction [3, 4], or sta-
tistical/variational interconnect analysis [5, 6].

Modern chip designs contain an overwhelmingly large num-
ber of interconnects that must be analyzed efficiently. As
such, efficiency of variational interconnect analysis is criti-
cal in a statistical timing flow. The general variational re-
duced interconnect models do not directly offer the standard
timing measures, namely, delay and slew, as well as their
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variability, which are needed in the existing timing analy-
sis flows [7]. A significant cost will be incurred in order to
evaluate the reduced-order models over a large number of
samples to provide such delay and slew statistics. On the
other hand, physical synthesis oriented delay/slew metrics
[8, 9] are extremely efficient, they are not completely suit-
able to accurate timing verification. These metrics tend to
provide inaccurate delay estimation, especially for near-end
nodes in the nominal condition, making it more difficult to
apply for capturing timing variability.

In this paper, we present a practical interconnect analy-
sis methodology to provide efficient delay and slew calcula-
tion for statistical timing analysis. In our approach, process
and input signal variations are translated to output delay
and slew variations without extracting a “full-blown” varia-
tional reduced order model and performing subsequent sam-
pling. While gaining improved efficiency by avoiding ex-
tracting “full-blown” models, we also develop specific tech-
niques to avoid losing any significant accuracy in delay and
slew, which is difficult to achieve via a pure delay/slew met-
ric based approach. As a standard practice, we assume that
an accurate interconnect analysis technique such as high-
order AWE [1, 10] is used for the nominal timing verifica-
tion, as part of a statistical timing analysis flow. Based on
the result of the nominal timing analysis, each circuit node
under analysis will be identified either as a “far-end” or a
“near-end” node. For both, a “small-scale” parametric re-
duced order model will be computed. The avenue for doing
so will be through fast closed-form formulas for the former
and efficient perturbation analysis for the latter. It is shown
that the proposed techniques offer accurate variational in-
terconnect delay and slew computation over a wide range of
process variations, regardless of the nature of circuit nodes
(e.g. far ends vs. near ends). It directly produces paramet-
ric expressions of delay and slew in the underlying process
variables, and hence constitutes a useful analysis infrastruc-
ture for statistical timing analysis.

2. OVERVIEW OF THE APPROACH
Given a RC network with a single voltage input, N cir-

cuit nodes and Ns sink nodes, our objective is to compute
the delay Td,i and slew rate Ts,i at sink node i, i = 1...Ns

while considering the variations of RC elements due to a set
of Nρ process variables, ρ = [ρ1, ρ2, · · · , ρNρ ]T and the volt-
age input variation, modeled as variation in the input slew.
Without loss of generality, delay and slew are defined as
50% propogation delay and 20-80% slew time, respectively.
To be accurate over a wide range of process variations, each
delay is expressed in terms of a second order polynomial in
process variables ρ′

is as

Td = Td,0 + αT
d ρ + ρT Γdρ, (1)

where Td is the nominal delay, αd is a Nρ × 1 vector repre-
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senting the first order delay sensitivities, Γd is a Nρ × Nρ

matrix representing the second order terms. For the same
purpose, the second-order parametric form is used as a stan-
dard form to represent most quantities during the analysis.

The input slew can be dependent on the same or different
set process parameters since it is impacted by the preced-
ing driving stage. For simplicity of notation, we include all
the process parameters in ρ. In this fashion, the statistical
correlation between different circuit stages can be naturally
captured. It should be noted that upon getting these para-
metric forms, the statistical distributions of delay and slew
can be easily obtained by propagating distributions of the
underlying process parameters through these quadratic ex-
pressions. As the dependency of timing quantities on process
variation is kept, these parametric forms can be directly in-
corporated into a statistical timing analysis flow [7, 11].

The proposed analysis flow is outlined in Fig. 1. The vari-
ational interconnect analysis follows the accurate high-order
AWE analysis applied for the nominal case. By examining
the poles and residues of the nominal case AWE model, a
sink node can be identified as a “near end” or a“far end”
node. Here, a node is said to be near end if the AWE model
has two obviously dominant pairs of poles and residues such
that a two-pole model will be sufficient for analyzing delay
and slew. Based on the parametric moment computation,
parametric output slews are obtained by extending the exist-
ing moment-based nominal slew metric while considering the
input slew variations [8, 9]. To more reliably compute the
delay, a parametric two-pole (for “far” end nodes ) or high
order reduced model (for “near” end nodes) is computed.
Finally, parametric forms of the delay is generated by eval-
uating the parametric reduced model. The efficiency of the
proposed approach is archived by adopting a) an efficient
variational transfer function moments computation proce-
dure; b) a simple and yet accurate (parametric) moment-
based slew metric; c) efficient closed-form formulas (far-end
nodes) and numerically efficient perturbation analysis (near-
end nodes) for variational delay analysis. In Fig. 1, shaded
steps are performed using closed-form formulas while others
are achieved using efficient numerical computation. Each of
these steps is described in details as follows.
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delay/slew analysis

Nominal delay can 
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two-pole model?
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Figure 1: Variational delay and slew computation.

3. PARAMETRIC MOMENT ANALYSIS
An RC network with a single voltage input can be de-

scribed using the following system equations

C
dx

dt
+ Gx = bu, y = LT x, (2)

where G, C ∈ RN×N are the conductance and capacitance
matrices, u is the voltage source, x ∈ RN×1 is the unknown
vector consisting of the node voltages and the voltage source
current, b ∈ RN×1 is a vector linking the input to the RC
circuit, and L ∈ RN×M is the output matrix used to select
the sink node voltages y ∈ RM×1 from x. Throughout this
paper, the notation (G, C, b, L) is used to denote a single-
input RC network commonly encountered in timing analysis.

Variations of G and C matrices are modeled by quadratic
dependency on the process parameters ρ. Without loss of
generality, we only consider a linear dependency for simplic-
ity of notation as follows

G = G0 +

Nρ�
i=1

Giρi, C = C0 +

Nρ�
i=1

Ciρi, (3)

where Gi and Ci are sensitivity matrices and can be obtained
during the parasitics extraction. The zero-th order moment
of a RC network without any grounded resistance is given by
m0 ∈ RN×1 is given as m0 = G−1b = [1 1 · · · 1 0]T regard-
less of process variations. In the following, the quadratic
parametric forms of the next three moments are derived.

The quadratic parametric form of the ith order moment
mi ∈ RN×1 vector is represented in the following form

mi = mi
0 +

Nρ�
j=1

αi
jρj +

Nρ�
j=1

Nρ�
k=1

γi
j,kρjρk, (4)

where mi
0 is the nominal value, αi

j ∈ RN×1 and γi
j,k ∈ RN×1

are the first and second order coefficients. Since circuit mo-
ments are computed recursively in an ascending order, it
will suffice to show how the next moment vector mi+1 is
computed given mi. Assuming that the parametric form of
mi as in (4) is available, mi+1 can be obtained as

mi+1 = −G−1Cmi = −(G0 +

Nρ�
i=1

Giρi)
−1(C0 +

Nρ�
i=1

Ciρi)m
i,

(5)
where the matrix inversion can be expanded using Taylor
series since the perturbation term is assumed to be small

(G0 +

Nρ�
i=1

Giρi)
−1 =

�
I −

Nρ�
i=1

Giρi + (

Nρ�
i=1

Giρi)
2

−(

Nρ�
i=1

Giρi)
3 + · · ·

�
G−1

0 . (6)

Substituting (4) and (6) into (5) and retaining only up to
the quadratic terms gives

mi+1 = mi+1
0 +

Nρ�
j=1

αi+1
j ρj +

Nρ�
j=1

Nρ�
k=1

γi+1
j,k ρjρk, (7)

where

mi+1
0 = −G−1

0 C0m
i
0

αi+1
j = G−1

0 GjG
−1
0 C0m

i
0 − G−1

0 C0α
i
j − G−1

0 Cjm
i
0

γi+1
j,k = γi+1,1

j,k + γi+1,2
j,k . (8)

In (8), the second order coefficient γi+1
j,k is split into two parts

which are given by

γi+1,1
j,k = −G−1

0 GjG
−1
0 GkG−1

0 C0m
i
0 + G−1

0 GjG
−1
0 C0α

i
k

−G−1
0 GjG

−1
0 Ckmi

0 − G−1
0 Ckαi

j , (9)
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γi+1,2
j,k = −G−1

0 C0γ
i
j,k, (10)

where the second order coefficient γi
j,k ( for ρjρk) of mi is

defined recursively as in (8). For the zero-th order moment
m0, it is true that αi

j = γ0
j,k = 0.

A few key observations are due here. Starting from m0 =
G−1b = [1 1 · · · 1 0]T , the parametric forms of the first few
moments can be computed using (5, 8, 9, 10). As in (4),
the Nρ sensitivity vectors αi

j ’s can be computed using the
standard sensitivity analysis, achievable by reusing the LU
factor of G0 or applying path tracing (RICE [10]) with mild
computational cost. The large number (O(N2

ρ )) of second
order coefficients are more expensive to compute in (4). To
speedup, we exploit the observation: in a typical RC signal
net, the number of sink nodes, Ns, is typically much less
than the number of circuit unknowns N . Hence, efficiency
of analysis can be improved if the second order analysis is
only conducted for the sink nodes. In our implementation,
the nominal moments and first-order sensitivity vectors are
computed for all N circuit nodes while the second order
coefficients are only computed for Ns sink nodes. As an
example, let us consider the term in (10). Instead of com-

puting the complete γi+1,2
j,k , we seek the entries of the sink

nodes of interest. We multiply γi+1,2
j,k with LT (L ∈ RN×Ns)

from left to select just what corresponds to Ns sink nodes

LT γi+1,2
j,k = −LT G−1

0 C0γ
i
j,k = ΦT γi

j,k, (11)

where Φ = −ΘT C0 and Θ = (GT
0 )−1L is obtained via solv-

ing the adjoint linear system defined by GT
0 by reusing the

same LU factor of G0. Considering only Ns sink nodes
changes the cost from O(N2

ρ ) linear system solutions/matrix-

vector multiplications to O(NsN
2
ρ ) vector inner products.

When Ns is small, the latter can be performed faster using
vector operations. It should be noted in evaluating (11),
vector γi

j,k ∈ RN×1 is not formed directly either since there

exist also O(N2
ρ ) of them. Instead, ΦT γi

j,k is evaluated.

4. SLEW RATE COMPUTATION
The variation of the slew at any given sink node say, j,

is analyzed based on the parametric moments computed in
the previous section. Here, slew is computed on a per sink
node basis, thus it only involves scalar computations while
considering parametric variations. Unlike delay computa-
tion, there do exist simple moment-based slew metrics that
are accurate for both the near and far end nodes [12, 13].

In [9], the PERI metric is used to estimate the sink node
slew for a given input slew

slewramp =
�

slew2
step + slew2

input, (12)

where slewinput is the slew of the ramp input, slewstep is
the output slew for a step input, and slewramp is the output
slew for the ramp input. It is shown that the above met-
ric can correlate fairly accurately the ramp input slew with
the output slew if an accurate metric for slewstep is used.
In this paper, it is assumed that the nominal output slew
slew0

ramp has been accurately obtained. Then, the variation

of slewstep around slew0
step is estimated as

slewstep =
m1

j · slewstep,0

m1
j,0

, (13)

where m1
j and m1

j,0 are first order moment and its nominal
value at the sink node j. In the above, the (variational)
Elmore delay of the node is normalized with respect to the

nominal slew to provide a variational step-input slew met-
ric. Let us assume that the variational forms of slewin and
slewstep are cast into

slewin = αi + βT
i ρ + ρT Γiρ, slewstep = αs + βT

s ρ + ρT Γsρ,
(14)

where αi and αs are scalars, βT
i and βT

s are Nρ × 1 vectors,
Γi and Γs are Nρ ×Nρ matrices. Substituting (14) into (12)
and expanding about the nominal ramp-input output slew
gives the following variational form of slewramp

slewramp =
�

α2
s + α2

s(1 + βT
r ρ + ρT Γrρ), (15)

where

βr =
αiβi + αsβs

α2
i + α2

s

Γr =
βiβ

T
i + βsβ

T
s + 2(αiΓi + αiΓi)

2(α2
i + α2

s)
− 1

8
βT βT

r . (16)

We have found in our experiments that the above variational
slew metric is very accurate. It is also possible to use the
two-moment slew metric proposed in [13]. The computation
of the parametric form of the output slew can be similarly
conducted.

5. VARIATIONAL DELAY ANALYSIS
Unlike the slew analysis, simple moment-based intercon-

nect delay metrics tend to be inaccurate for near end nodes,
making it not completely suitable for variation analysis. We
propose to analyze the output voltage response variation at
the nominal delay point (e.g. 50%Vdd crossing point) and
then convert the variation in response to variation in delay.

As shown in Fig. 1, each sink node is identified either
as a “near” end node or a “far” end node by examining
the results of the nominal analysis. For a “far” end node,
a parametric two-pole AWE model is constructed to eval-
uate its voltage response variation while for a “near” end
node, perturbation analysis of poles and residues is con-
ducted to construct a more accurate parametric high-order
AWE model. The strategy here is that majority of nodes
( those are of far-end in nature) can be processed rather
efficiently using simple two-pole models and a smaller num-
ber of near-end nodes are analyzed using high-order models.
When using only the nominal analysis result to decide the
nature of a sink node, we have assumed that process vari-
ations do not make a near-end node behave like a far-end
node and vice versa. This is a quite reasonable assumption
since for bounded process variations the nature of a circuit
node is determined by its location. For an arbitrary sink
node, let us assume that a set of Nr pole and residue pairs,
pnom,i and knom,i are computed in an accurate high-order
AWE analysis used for the nominal case timing analysis.
From this analysis, the nominal 50%Vdd crossing time is as-
sumed to be tnom. Then, the portion of output response
at time tnom attributed to the two most dominant low fre-
quency poles, say, pnom,1 and pnom,2, is computed as Vl. For
a given user-specified tolerance ε (ε < 1), the sink node is
identified as a far-end node if

|0.5Vdd − Vl| < 0.5εVdd. (17)

Otherwise, it is identified as a near-end node.

5.1 Parametric two-pole model
We describe how a parametric two-pole model can be effi-

ciently constructed for far-end nodes. A second order AWE
model parameterizable in the same quadratic parametric
form is computed. This goal can be achieved by propa-
gating the parametric moment expressions derived in the
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previous sections though the moment matching procedure.
Since the order of moment matching is low, it is possible to
derive closed-form formulas. As an example, let us consider
the characteristic function of a 2nd order AWE model

b2p
2 + b1p + 1 = 0, (18)

where b1 is determined by the moment matching process us-
ing circuit moments as b1 = −m0m3+m1m2

m0m2−m2
1

. Notice that the

parametric form of these moments can be computed using
the procedure described in the previous sections. Denote
the parametric expressions for the first four moments as

mi = αm,i + βT
m,iρ + ρT Γm,iρ, i = 0, 1, 2, 3. (19)

Substituting (19) into (18) and keeping up to the 2nd order
parametric terms gives

b1 ≈ f1

f2
, (20)

where

f1 = (αm,1αm,2 − αm,0αm,3) + (21)

(αm,1β
T
m,2 + αm,2β

T
m,1 − αm,0β

T
m,3)ρ +

ρT (αm,1Γm,2 + βm,1β
T
m,2 + αm,2Γm,1 − αm,0Γm,3)ρ,

f2 = (αm,0αm,2 − α2
m,1) + (αm,0β

T
m,2 − 2αm,1β

T
m,1)ρ +

ρT (αm,0Γm,2 − 2αm,1Γm,1 − βm,1β
T
m,1)ρ. (22)

Here, b1 is in the form of a ratio of two quadratic forms.
In our implementation, analytical expressions have been de-
rived to convert such a ratio into a standard quadratic form.
Going though similar derivations, b2 as well as two pole/residue
pairs of the two-pole model, k1, p1, k2, p2, can be obtained in
the same parametric quadratic form. Essentially, by passing
parametric moments to a set of pre-stored closed-form for-
mulas, a parametric two-pole model can be computed very
efficiently for any given circuit node.

5.2 Parametric high-order AWE model
For sinks that are identified as near-end nodes, a two-pole

model is not accurate enough to analyze the variation in the
voltage response. Instead, we seek an accurate parametric
high-order AWE model. The order of parametric model can
be set to what is used in the nominal case timing analysis.
Unlike a simple two-pole model, it is not possible to derive
closed-form expressions to relate the circuit moments to a
high order model. Hence, we first numerically compute the
parametric variations of the characteristic function of the
AWE model and then perform perturbation analysis on sys-
tem poles and residues to produce the desired parametric
model. Without loss of generality, consider the correspon-
dence between the circuit moments and the coefficients of
the characteristic function in a 4-th order AWE model

�
��

m0 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

�
	


�
��

b4

b3

b2

b1

�
	
 = −

�
��

m4

m5

m6

m7

�
	
 . (23)

To simplify the notation, we denote the Hankel matrix in
the above equation as F , its nominal matrix as F0, its first
sensitivity w.r.t the i-th process variable ρi as Fi and its
second order dependency on ρiρj as Fi,j . Notice that Fi and
Fi,j can be obtained by replacing each moment in F by its
first order sensitivity w.r.t ρi and second order dependency
w.r.t ρiρj , respectively. We further denote [b4 b3 b2 b1]

T as
b, [m4 m5 m6 m7]

T as m, and their nominal values as b0 and

m0, respectively. We define bi, mi, bi,j and mi,j as in the case
of F . A standard sensitivity analysis gives

bi = F−1
0 (−mi − Fib0). (24)

Matching the second order terms from the both sides of (23)
leads to

bi,j = F−1
0 (−mi,j − Fibj − Fi,jb0). (25)

Using the parametric moments already computed, the para-
metric forms of b can be obtained by solving multiple linear
matrix problems defined by the nominal Hankel matrix.

With the parametric dependency of the characteristic func-
tion (defined by b) computed, we proceed to analyze the
variation of the system poles. For general high-order models,
no closed-form expressions are available for poles. To make
the problem of analyzing parametric variations of transfer
function poles tractable, perturbation analysis is applied in
the neighborhood of each nominal model pole, as illustrated
in Fig. 2. To capture the variation of a pole of the high-

S-planeModel poles Characteristic functions
f(b,s) = 0

nominal

perturbednominal
perturbed

Taylor series expansion 
of f(b,s) around each 
nominal pole

Figure 2: Perturbation analysis of model poles.

order AWE model around its nominal value, say pnom,i, the
characteristic function

f(b, s) = 1 + b1s + b2s
2 + b3s

3 + b4s
4 = 0 (26)

is expanded into a quadratic function at s = pnom,i as

f(b, ∆pi) = q0 + q1∆pi + q2∆p2
i = 0, (27)

where, ∆pi is the variation of the i-th pole and

q0 = 1 + b1pnom,i + b2p
2
nom,i + b3p

3
nom,i + b4p

4
nom,i

q1 = b1 + 2b2pnom,i + 3b3p
2
nom,i + 4b4p

3
nom,i

q2 = b2 + 3b3pnom,i + 6b4p
2
nom,i. (28)

Notice that since b has parametric variations, q0 in (28) is
not necessarily zero. Using the parametric expressions of
b, q′is in the above equation can be cast in the following
quadratic forms in the process variables

qi = qi,0 + qT
i,1ρ + ρT Qi,2ρ (29)

Plugging ∆pi = pT
i,1ρ + ρT Pi,2ρ into (27) gives

pi,1 = −q0,1/q1,0, Pi,2 = −(q0,2 + q1,1p
T
i,1 + q2,0pi,1p

T
i,1)/q1,0.

(30)
After the perturbation analysis is completed for all poles,

the resulting parametric expressions are employed to com-
pute the parametric forms of residues (k′

is) that leads to a
complete parametric circuit model. Given a Nm-th order
parametric model, the variation of the time-domain voltage
response y(t) at any time t under a saturated ramp input
can be evaluated using

y(t) =

Nm�
i=1

aki

p2
i

�
(−1 − pit + epit)U(t) −

(−1 − pi(t − t1) + epi(t−t1))U(t − t1)
�
, (31)
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where a is the slope of the ramp input, t1 = Vdd/a, and U(·)
is the step function. Utilizing the parametric poles/residues,
expanding y(t) around its nominal value leads to a second
order parametric expression of the voltage response.

6. DELAY VARIATION
In the nominal case delay analysis, typically, a reduced

order model is computed to obtain the analytical solution
of the voltage response at a sink node under the saturated
ramp input. To find the output delay, nonlinear Newton
iterations are applied to find the time tnom at which the
output voltage crosses 50%Vdd. However, applying nonlinear
iterations over a large number of circuit instances to find
the delay variation is prohibitively expensive. To facilitate
a feasible variational delay analysis, in our approach, we
convert the variation in the output response at tnom, namely,
∆V , to the variation in delay. As shown in Fig. 3, the
rationale behind is that although finding a particular voltage
crossing point is intrinsically difficult, evaluating variation
of the response at a given time is rather straightforward.
The latter is achieved by using the parametric two-pole or
high-order AWE model developed in the previous sections.
To this end, two fixed time points ta and tb are selected

Vdd/2

vdd

tnom

V∆

t∆
t

Vdd/2

vdd

tnom t

use nonlinear iterations to 
find the delay exactly

convert variation in response to 
variation in delay

Figure 3: Avoiding nonlinear iterations by convert-
ing voltage response variation to delay variation.

in the neighborhood of tnom: ta < tnom < tb. The voltage
response at these two points can be similarly obtained from
the parametric model computed previously. The slope of
the voltage response around tnom can be approximated as

slope(tnom) =
y(tb) − y(ta)

tb − ta
. (32)

Using (32), the delay variation is estimated as

td = tnom − ∆V (tb − ta)

y(tb) − y(ta)
, (33)

which can be finally converted to a standard quadratic para-
metric form. It should be noted that in (33) the variation
of slope(tnom) is also reflected in the delay variation.

7. EXPERIMENTAL RESULTS
We first demonstrate the accuracy issue of variational in-

terconnect analysis using two circuit examples. In Fig. 4(a),
a ramp input is applied to a RC circuit and a far end node is
selected to examine the voltage response. We compare the
direct transient simulation and the 2nd order AWE model
for the original circuit and the perturbed circuit where RC
values are varied to mimic the impact of process variation.
As can be seen, for this far end node the 2nd order AWE
model is very accurate for both the original circuit and the
perturbed one. Therefore, it is well expected that delay/slew
variation can be accurately captured if a parametric 2nd or-
der AWE model is extracted. We conduct a similar compar-
ison for a near end node selected from another RC circuit

in Fig. 4(b). This near end node is located close to the
driving voltage input therefore resistive shielding effect is
noticeable in this case. It is clearly seen that the 2nd order
AWE model cannot capture well the variation of the output
response. However, a 4th order model can. This implies
that for near end nodes, delay/slew variations cannot be
well captured by a low order model. For a case like this,
the perturbation analysis will be invoked in the proposed
variational analysis flow to produce a high-order parametric
model to ensure the accuracy.
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Figure 4: Nominal and variational analysis for a far-
end and near-end node.

Next, we demonstrate the accuracy of the proposed analy-
sis on a near-end node chosen from a RC circuit with 124
nodes and 234 RC elements, as shown in Fig. 5. This
circuit is driven by a saturated ramp signal with a nomi-
nal input slew rate of 200ps. 10 independent RC variation
sources are considered so is the variation in the input slew.
In practice, near end nodes are usually difficult to estimate
using moment-based delay metrics. However, in the pro-
posed technique, this node is identified to be a near-end
node in the nominal case timing analysis. When perform-
ing the variational analysis, the perturbation analysis is in-
voked to generate a 4-th order parametric AWE model and
the quadratic parametric forms are computed for delay and
slew. 500 circuit samples are randomly generated and we di-
rectly compute the output delay and slew of each sample by
applying transient analysis. For comparison, the paramet-
ric delay and slew expressions obtained from our proposed
technique are evaluated for these 500 circuit samples. In
Fig. 5, the relative errors of delay and slew of the proposed
variational technique are shown. In this case, the maximum
errors are 4.2% and 2.7% for delay and slew, respectively.
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Figure 5: Error distributions for an near-end node.

Next, we examine the statistical distributions of the in-
terconnect delay and slew in a RC circuit. For this case, 10
independent process parameters are considered and a fixed
ramp input with a 50ps slew is applied to each circuit in-
stance. The PDFs of the delay and the slew at one circuit
node are examined in Fig. 6. As clearly seen from the fig-
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ure, the PDFs of our variational analysis match very well
with those computed by the corresponding 8-th order AWE
model for each case.
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Figure 6: PDFs of delay and slew of a node.

For more extensive verification of the proposed techniques,
we consider a set of RC nets with different sizes ranging
from a few ten nodes to a few hundred nodes and several
hundred circuit elements, in Table 1. and Table 2. For each
circuit, a circuit node is arbitrarily chosen as one sink node
for comparison. Again, 10 independent process parameters
are considered which are perturbed with various degrees to
generate 500 samples for each circuit. In Table 1, the input
to all the nets is a fixed ramp input with 50ps slew rate
while the input in Table 2 has a nominal slew of 200ps and
varies with the same 10 process parameters. In the second
columns of the both tables, the maximum percentages of
delay and slew variations (with respect to the nominal val-
ues) seen across the 500 samples are listed to indicate the
degree of variability. In both tables, we list the maximum
and average relative errors for delay and slew for each of
these circuits and compare the 2nd-order parametric analy-
sis (5th/6th columns) with the first-order sensitivity analy-
sis (3rd/4th columns). As a reference, a high order AWE
model and nonlinear iterations are applied to compute the
delay and slew for each sample, which are regarded as the
exact solution. In the table, “-” indicates the cases where
the corresponding analysis generates a significant error in
estimating delay or slew. It can be clearly seen from these
tables that for a wide range of delay/slew variations, the
presented 2nd-order parametric analysis can maintain very
good accuracy. It should be noted that for some cases, the
first-order analysis completely fails to capture the large vari-
ability.

Table 1: Variational interconnect analysis results:
fixed input slew (50ps)

1st: Max/Ave% 2nd: Max/Ave%
Net Max D/S Var.% Delay E. Slew E. Delay E. Slew E.
1 34.6/36.8 81.0/7.0 17.1/2.2 2.8/0.9 11.1/1.1
2 59.5/64.7 49.3/8.5 23.5/2.4 2.2/0.7 13.1/1.1
3 31.2/33.8 32.8/6.2 15.4/2.3 5.2/0.9 8.5/0.9
4 45.9/49.7 33.1/8.3 14.5/2.9 3.4/0.9 6.9/1.0
5 61.9/62.1 93.7/16.0 -/- 5.0/1.1 4.2/0.5
6 61.1/62.2 98.6/16.2 -/- 6.3/1.1 4.4/0.5
7 29.6/31.3 37.8/5.5 10.0/1.8 2.7/0.8 3.0/0.7
8 17.6/17.1 32.3/4.2 5.5/1.0 2.5/0.7 2.4/0.6
9 26.7/28.1 9.4/3.1 11.3/13.2 3.4/0.5 4.6/0.8
10 27.9/29.2 11.1/3.4 11.9/3.3 3.2/0.4 3.8/0.7
11 31.7/35.8 19.0/3.9 19.8/3.9 7.1/0.5 9.6/0.9
12 40.6/41.9 16.5/3.9 19.7/3.7 6.3/0.8 10.6/0.9
13 50.9/47.7 20.3/2.9 18.8/2.7 8.0/0.5 8.5/0.6
14 27.3/29.7 17.2/3.5 18.8/3.3 5.7/0.6 7.2/0.8
15 21.7/23.2 13.3/3.6 47.9/3.4 3.0/0.6 5.3/0.9
16 32.9/33.0 14.6/3.6 14.0/3.3 3.9/0.5 4.1/0.7

8. CONCLUSIONS
In this paper, a practical variation-aware methodology is

presented to analyze interconnect performance variations.
Specific techniques have been developed such that a 2nd-
order parametric analysis can be done efficiently for on-chip
RC interconnects for a large number of process variations
manifesting in terms of RC value perturbations and input
slew variations. The proposed variational analysis can accu-
rately capture wide variations of interconnect delay and slew
even under the cases where the simpler first-order sensitiv-
ity analysis completely fails. Since the proposed technique
produces parametric expressions for delay and slew, it is
expected that the the technique and its extensions can be
incorporated easily into a statistical timing environment as
an interconnect delay calculator.
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Table 2: Variational interconnect analysis results:
w/ input slew variations (nominal slew 200ps)

1st: Max/Ave% 2nd: Max/Ave%
Net Max D/S Var.% Delay E. Slew E. Delay E. Slew E.
1 30.9/28.5 43.9/5.5 9.9/2.4 3.47/0.5 5.7/1.3
2 46.9/32.1 48.8/6.9 9.2/1.4 3.8/0.4 6.4/1.3
3 21.9/19.2 24.7/4.3 8.7/2.9 2.7/0.8 4.6/1.5
4 12.5/13.5 15.6/4.3 4.8/1.2 2.3/0.7 2.1/0.6
5 76.7/93.6 59.9/10.1 -/- 6.9/1.3 5.0/4.6
6 79.1/13.8 6.9/10.0 -/- 7.4/1.1 7.2/6.0
7 18.9/19.0 28.8/5.3 8.0/2.9 3.1/0.6 4.3/1.5
8 16.3/16.4 25.1/4.0 8.1/2.2 2.3/0.5 3.1/1.3
9 55.9/49.5 18.1/3.4 12.1/2.4 7.8/1.8 6.9/3.1
10 27.4/22.7 9.7/0.8 5.8/1.7 3.6/1.3 5.8/2.8
11 32.6/42.7 14.0/1.7 15.7/2.0 5.9/2.1 11.0/2.1
12 11.6/12.1 4.1/0.6 3.6/0.9 2.6/0.5 2.7/1.2
13 17.3/16.8 5.1/0.7 4.4/0.8 2.5/0.6 3.2/1.3
14 33.0/35.1 9.0/1.2 6.8/1.0 4.4/1.2 3.5/1.5
15 37.9/29.4 9.4/1.4 9.2/1.1 4.9/1.3 4.3/1.4
16 36.4/34.0 8.1/1.1 5.7/1.0 4.2/1.1 2.7/1.3
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