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ABSTRACT
Electrostatic analysis of complicated molecular surfaces arises in
a number of nanotechnology applications including: biomolecule
design, carbon nanotube simulation, and molecular electron trans-
port. Molecular surfaces are typically smooth, without the corners
common in electrical interconnect problems, and are candidates for
methods with higher order convergence than that of the commonly
used flat panel methods. In this paper we describe and demonstrate
a spectrally accurate approach for analyzing molecular surfaces de-
scribed by a collection of surface points. The method is a synthesis
of several techniques, and starts by using least squares to fit a high
order spherical harmonic surface representation to the given points.
Then this analytic representation is used to construct a differen-
tiable map from the molecular suface to a cube, an orthogonal basis
is generated on the rectangular cube surfaces, and a change of vari-
ables is used to desingularize the required integrals of products of
basis functions and Green’s function. Finally, an efficient method
for solving the discretized system using a matrix-implicit scheme
is described. The combined method is demonstrated on an analyt-
ically solvable sphere problem, capacitance calculation of compli-
cated molecular surface, and a coupled Poisson/Poisson-Boltzmann
problem associated with a biomolecule. The results demonstrate
that for a tolerance of 10−3 this new approach requires one to two
orders of magnitude fewer unknowns than a flat panel method.

1. INTRODUCTION
When boundary element methods [15, 16] are used to solve

Laplace or Helmholtz problems associated with complicated three-
dimensional geometries, the associated integral equation is typi-
cally discretized using a piecewise constant basis, and a system
of equations is generated using either a Galerkin or a collocation
scheme. The resulting matrix equation is solved iteratively with
matrix sparsification techniques [4, 13, 14, 20, 30, 32, 35]. This ap-
proach has become the method of choice for exterior problems and
is used in diverse applications such as interconnect extraction [46],
MEMS and fluidic simulation [33, 41], as well as in calculating
bimolecular solvation energy [5, 6, 21, 45]. However, piecewise-
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constant bases are low order, and therefore large numbers of un-
knowns are needed to achieve high accuracy. While acceleration
techniques make it possible to solve such problems, memory is of-
ten a bottleneck. Therefore, there is much interest in developing
higher order methods [8,19,26] that can achieve faster convergence
and reduce problem size. In [9, 26], the use of a higher order basis
based on B-splines resulted in faster algebraic convergence, while
in [8, 19], the aim was to attain spectral convergence. In this pa-
per, we propose a new kind of higher order basis and demonstrate
spectral convergence (error decays exponentially with number of
unknowns). Our method differs from [8, 19] in that we use an ex-
plicit high order basis in our approach.

In simulation of molecular surface electrostatics, such as in
biomolecule analysis, it is common to adopt a mixed discrete-
continuum approach based on combining a continuum description
of the macromolecule and solvent with a discrete description of the
atomic charges [17, 25, 38, 39, 42]. In this model the interior of
a molecule is approximated as a collection of point charges in a
uniform dielectric material, and any surrounding solvent is mod-
eled as a much higher permittivity electrolyte whose behavior is
described by the Debye-Hückel theory. The electrostatic potential
in the solvent satisfies a nonlinear Poisson-Boltzmann equation, al-
though the simpler linearized Poisson-Boltzmann equation is more
commonly solved. Integral formulations for the linearized Poisson-
Boltzmann equations have been developed [5, 6, 18, 21, 43–45] for
the biomolecule solvation problem, which can be used for energy
calculation given a triangulation of molecular surface.

The molecular surface [10, 34], which defines an interface be-
tween a given molecule and the surrounding solvent, determines
how close the solvent molecules can approach a given molecule.
One common approach for constructing such a surface is to as-
sume that a molecule is made up of atoms represented as solid
spheres, and a probe sphere representing water molecules can trace
out such a surface as it rolls over the union of those solid spheres.
The molecular surface is thus typically made up of three analytical
shapes: a spherical triangle defined by the reentrant surface of the
probe when it is in simultaneous contact with three atoms, part of
a torus defined by the reentrant surface of the probe when it is in
simultaneous contact with two atoms, and part of spherical atoms
where the probe comes into contact. Software programs [37] are
available for triangulating molecular surfaces. However, in order
to achieve spectral accuracy, a more accurate representation of the
geometry is needed. Depending on the desired accuracy, flat panels
may not be a satisfactory or efficient representation of the molecule
geometry which is smooth but non-planar. In addition, as will be
made clear in Section 3, in order to apply the spectral method, a
mapping function is needed to describe the geometry. In the fol-
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lowing Section, we will propose an algorithm to generate a global
representation of molecular geometry that will work well with our
method. We will describe the spectral method in Section 3 and dis-
cuss implementation details in Section 4. Computational results are
given in Section5 and finally, we conclude in Section 6.

2. SPHERICAL HARMONIC REPRESEN-
TATION

Molecular surface representation by spherical harmonics has
been proposed by various authors [7,11,23,24,27,28]. In such ap-
proach, a set of coefficients is generated from a point distribution
or triangulation of a molecular surface, typically obtained from an-
other program such as MSMS [37]. The coefficients, together with
spherical harmonic basis, represent an analytical approximation to
the surface geometry and can be differentiated. The simplest strat-
egy for generating the spherical harmonic representation is to first
pick a ”molecular center” to be the origin of a spherical coordinate
system, and then represent each surface point using a spherical har-
monic expansion as

r(θ,φ) ≈
N

∑
n=0

n

∑
m=−n

cm
n Y m

n (θ,φ) (1)

where N is the expansion order, r, θ and φ are the spherical coordi-
nates of points on the surface.

Y m
n (θ,φ) =

{
αm

n Pm
n (cosθ)cosmφ if m ≥ 0

α|m|
n P|m|

n (cosθ)sin |m|φ if m < 0
(2)

where Pm
n (θ,φ) are associated Legendre functions, and

αm
n = (−1)m

√
(2−δ0m)(2n+1)

4π
(n−m)!
(n+m)!

(3)

are normalization constants chosen such that the basis are or-
thonormal. It does have the limitation that the surface has to be
starlike [11], which means that there exists an origin within the
molecule such that an outgoing ray intersects the molecular surface
exactly once. Other techniques that avoid this restriction are avail-
able [7, 11, 23] for surfaces that are topologically equivalent to a
sphere.

The coefficients cm
n can be calculated by forming the inner prod-

uct integral of r(θ,φ) with a spherical harmonic basis. Instead, we
adopt a more easily implemented least squares approach [7]. Given
a set of k points (r,θ,φ) on a molecular surface, we look for a set of
coefficients {a j} = {cm

n } such that ||r−Aa‖2 is minimized, where
each element of A are spherical harmonics evaluated at (θ,φ) coor-
dinates:

Ai, j = Ai,n2+m+n+1 = Y m
n (θi,φi) (4)

for 1 ≤ i ≤ k and 1 ≤ j ≤ (N + 1)2. To solve the least-squares
problem, we used the singular value decomposition, A = UΣV T

[40]. The set of coefficients in (1) can then be obtained from

a = V Σ−1UT r (5)

where a j = an2+m+n+1 = cm
n .

3. SPECTRAL METHOD
The following integral equation will be used as our model prob-

lem:

φ(�r) =
Z

Ω
G(�r,�r′)σ(�r′)dS′ (6)

where Ω is the surface boundary of a three-dimensional region of
interest on which we would like to solve for the unknown quantity
σ given an arbitrary φ. The Green’s function G(�r,�r′) can take the
following forms:

G(�r,�r′) =
1
r
,

e−κr

r
κ ∈ R (7)

where r = |�r−�r′| is the Euclidean distance between a source and
target point. In traditional panel method, a triangular mesh is com-
monly used to discretize the geometry, and a basis set, {Bi : i =
1,2, . . . ,n}, is usually defined on the same mesh, with Bi’s being
non-zero only on a few triangles.

The basis is used to discretize the unknown as in

σ(�r) =
n

∑
i=1

σiBi(�r) (8)

where σi’s are the corresponding weights which are solution of
the discretized problem. An alternative basis for discretization is
a set of numerically orthogonal polynomials defined by carefully
chosen quadrature points. In contrast to a panel-based represen-
tation whereby orthogonality is only partially maintained by spa-
tial separation of bases’ supports, a quadrature based approach en-
sures good orthogonality for arbitrarily high order bases, though
their supports have significant overlap. The improvement in ac-
curacy is significant: quadrature-based methods exhibit a spectral
convergence rates. In this section, we will describe the basis, the
techniques for integration over curved surfaces, and other features
associated with this approach.

3.1 Numerically Orthogonal Basis
Consider a global surface Ω of coordinates (x,y,z) that can be

partitioned into a few regions and each of which can be associated
with a one-to-one mapping function:

P :�r f lat (u,v) →�rcurve(x,y,z) (9)

defined on a local patch of coordinates (u,v). In a complicated
geometry where exact mapping is not possible, a high order ap-
proximation, consistent with the basis order, has to be used since
convergence is limited by the lower accuracy of the two. A second
requirement is the availability of good quadrature points associated
with each patch. For example, in a rectangular patch a tensor prod-
uct of one-dimensional Gauss-Lobatto quadrature points is used,
and basis set can be similarly defined as polynomials that take on
unit value at one of the grid points but zero at all other grid points.
In one dimension, these are the Lagrangian interpolating polyno-
mials [3]:

�i(u) =

m

∏
k=1,k �=i

(u−uk)

m

∏
k=1,k �=i

(ui −uk)
(10)

such that

�i(uk) = δik i,k = 1, . . . ,m (11)

where uk is coordinate of kth quadrature point. The bases on a
patch can therefore be written as a product of two one-dimensional
polynomials as in

B(i∗ j)(u,v) = �i(u)� j(v). (12)

Therefore, if m quadrature points are used along each dimension,
there will be m2 basis functions. A good set of quadrature points
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Figure 1: Two-dimensional lagrangian basis defined by 5× 5
Gauss-Lobatto grid on a patch.

ensures orthogonality as the inner product over a patch approx-
imated by the same quadrature points is always zero by design.
Fig. 1 shows such a set of basis defined on a patch. Each of the 25
basis takes on unit value at one of the Gauss-Lobatto grid points,
and are zero at all other grid points. For the bases associated with
a boundary node, the support will span across nearby patches so
that computed solutions will be continuous along patch boundaries.
The use of such a numerically orthogonal basis was proposed in the
spectral element method [31] and is well known in the finite ele-
ment community. However, to authors’ knowledge, it has not yet
been applied to the boundary element method, perhaps hindered by
the difficulty of panel integration, the subject of the next section.

3.2 Integration over Curved Surfaces
Once the mapping function (9) and basis functions (12) have

been defined on a patch, integration of products of Green’s and ba-
sis functions over the actual surface can be performed using para-
metric coordinates (u,v). For an evaluation point at�r(x,y,z):

Z

(x,y,z)

G(�r,�r′)Bi(�r′)dS′ =
Z

(u,v)

G(�r,P(�r f
′))Bi(�r f

′)|J(�r f
′)|dS′ (13)

where �r f
′ is such that P(�r f

′) =�r′ (see (9)), |J| is the Jacobian of the
mapping function P. Note that the basis function, originally defined
on the local patch, is also being used to represent the solution in the
global surface through the mapping function:

Bi(�r′(x,y,z)) = Bi(P(�r f
′(u,v))). (14)

An analytical expression for (13) is not generally available as the
Jacobian can be very complicated, and straightforward quadra-
ture in (u,v) coordinates is not sufficiently accurate for evaluation
points on or close to the surface associated with a source patch. It
is shown in [8] that, however, the integral can be de-singularized in
appropriately chosen polar coordinates in place of u and v. The key
is to locate the polar coordinates origin such that the radial coordi-
nate ρ goes to zero at the singular point. The resulting integrand
is smooth and can be evaluated using Gauss quadrature points in
(ρ,ϑ). In particular, if the evaluation point�r j is such that P−1(�r j)
is on the patch, then

(uo,vo) = P−1(�r j(x,y,z)) (15)

and
u−uo = ρcosϑ
v−vo = ρsinϑ . (16)

is the appropriate change of variables to apply to (13).

3.3 Jacobian of Spherical Harmonic Surface
In order to incorporate the spherical harmonic representation into

the spectral method, one must be able to integrate over the molec-
ular surface given by (1). In addition, in order to de-singularize the
integral involving the Green’s function, our approach is to carry out
the integration patch-wise on six faces of a cube by setting up ap-
propriate polar coordinates on each face. Consider the area integral
in order to figure out the appropriate Jacobian. Given a molecular
surface parameterized by θ and φ, the normal vector is given by:

N̂ =
−→
R θ ×−→

R φ

|−→R θ ×−→
R φ|

(17)

and the area integral is given by:
Z

dS =
Z 2π

0

Z π

0
|−→R θ ×−→

R φ|dθdφ (18)

where
−→
R = r(θ,φ)sinθcosφx̂+ r(θ,φ)sinθsinφŷ+ r(θ,φ)cosθẑ (19)

is position vector of any point on the molecular surface,
−→
R θ and−→

R φ are the partial derivative of
−→
R with respect to θ and φ respec-

tively. Alternatively, the cross product in (18) can be expressed in
spherical coordinates [1, 12]:

−→
R θ ×−→

R φ = r2 sinθr̂− rrθ sinθθ̂− rrφφ̂ (20)

so that Z
dS =

Z 2π

0

Z π

0
r
√

r2 sin2 θ+ r2
θ sin2 θ+ r2

φ dθdφ (21)

where r = r(θ,φ) in (1), rθ and rφ are derivatives of radius coordi-
nate with respect to θ and φ respectively.

In order to carry out the surface integral on a reference patch
on each face of a cube, one needs the Jacobian for the change of
variables:

dθdφ = |Jmap|dudv (22)

which corresponds to a mapping from a flat surface parameterized
by (u,v) to angular coordinates (θ,φ). Consider the sphere example
where r = ro is constant so that

Z

sphere

dS =
Z 2π

0

Z π

0
r2
o sinθdθdφ =

ZZ

cube

hr2
o

(u2 +v2 +h2)3/2
dudv

(23)
where h is perpendicular distance from center of sphere to a cube
face, one can deduce that

|Jmap| = h

sinθ(u2 +v2 +h2)3/2
(24)

when mapping is along radial direction from center of cube which
coincides with center of sphere. We are now in a position to carry
out surface integral on reference patches of a cube by combining
equations (21), (22) and (24) where radius function in (1) is rep-
resented by spherical harmonics. The evaluation of r and rφ is ac-
cording to the definition of real spherical harmonics in (2) and rθ
can be calculated using the following relation:

dPm
n (cosθ)

dθ
=

(n−|m|+1)P|m|
n+1 − (n+1)cos θP|m|

n

sinθ
. (25)
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Therefore, when spherical harmonics are used to represent a
smooth surface, the Jacobian in (13) is given by

|J| = |−→R θ ×−→
R φ||Jmap|. (26)

4. IMPLEMENTATION DETAILS

4.1 Iterative Solver
The cost of constructing the collocation matrix in (??) depends

on the number of quadrature points used in the polar coordinates.
And the use of higher order basis requires a similarly higher or-
der quadrature scheme in order to accurately approximate the inte-
gral. In our implementation, if m×m grid points are used in a local
patch, each basis will be a two-dimensional polynomial of degree
m− 1 in each of (u,v) coordinates, a Gauss quadrature scheme of
similar order in polar coordinates (ρ,ϑ) is used. Thus there are
O(m2) quadrature points per patch associated with each matrix en-
try, and this tends to dominate the computation time. Since many
bases share their supports on a patch, an efficient implementation
should recycle quadrature points defined on (ρ,ϑ) among them.
This is most easily implemented by an iterative solver approach:

φ(�r j) =
n

∑
i=1

ACollocation
ji σi

=
n

∑
i=1

σi

(ZZ
G(�r j,ρ,ϑ)Bi(ρ,ϑ)|J(ρ,ϑ)|ρdρdϑ

)
(27)

=
ZZ

G(�r j,ρ,ϑ)

(
n

∑
i=1

σiBi(ρ,ϑ)

)
|J(ρ,ϑ)|ρdρdϑ

(28)

where σi = σ(�ri) is test solution at collocation points. The sum-
mation over all patches within a basis’ support is implicity as-
sumed here. As opposed to an direct solver whereby integration
over patches is done for individual basis functions in (27), at each
iteration step, a weighted sum of all bases in (28) is integrated in-
stead. This is equivalent to first interpolating on each patch via a set
of Gauss-Lobatto points, then integrating the interpolated function
over the corresponding global surface. In addition to the computing
efficiency, an iterative solver uses less memory than than a direct
solver so larger problems may be solved.

4.2 Algorithm Steps
Below we give a summary of all the steps involved in the matrix-

vector multiplication used in an iterative solver. We will assume
that a spherical harmonic representation of geometry has been ob-
tained, and the basis set is defined using Gauss-Lobatto grids on
each face of a cube. Given σi at collocation points, potentials at
evaluation points can be computed as follows:

for each evaluation point
for each patch

1. Choose origin of polar coordinates on a patch according to
(15), if evaluation point is on patch. Otherwise, choose the
nearest point on patch as the origin.

2. Partition patch into triangles by connecting the origin to all
vertices. Set up quadrature points in polar coordinates for
each triangle.

3. Evaluate basis at quadrature points by (10) and (12). The
interpolated function at quadrature points are given by (8).

4. Evaluate Jacobian at quadrature points by (26), (24), (20) and
(1).

5. Evaluate Green’s function at quadrature points via projection
of quadrature points according to (19) and (1).

6. Integrate on a reference triangle using the above functional
evaluations at quadrature points and appropriate quadrature
weights.

7. Calculate the integral on a patch in (28) by summing up con-
tribution from each triangle.

end
end

5. COMPUTATIONAL RESULTS

5.1 Potential Flow On Sphere
A unit sphere in an infinite fluid potential flow problem, which

has an analytical solution [29, 32] is used to validate the proposed
approach. The integral equation in this case is

φ(�r) =
Z σ(�r′)

|�r−�r′| dS′. (29)

where φ(�r) is given. The spherical geometry can be easily de-
scribed by a mapping function that radially project any point on
a cube to sphere. The Jacobian of the mapping is given in (24). An
m×m Gauss-Lobatto grid is used on each face of a cube, a basis
set is defined on the grid and 2m× 2m quadrature points in polar
coordinates are used to evaluate the integral in (27) or (28).

Accuracy is assessed in terms of integrated error, which is the
sum of errors at collocation points, normalized by area. Fig. 2
shows the spectral convergence results and a comparison to the
standard panel method. Results obtained from a direct solver us-
ing Gaussian elimination and an iterative solver using GMRES [36]
are also shown. It can be seen that both direct and iterative solution
show similar convergence behavior: a straight line in a log-linear
plot and a curve in a log-log plot indicates spectral convergence,
and the error decays exponentially with number of unknowns.

As shown in Fig. 2(b), the improvement over the traditional ap-
proach is clear: not only is the accuracy better for the same number
of degrees of freedom, or fewer unknowns are needed for the same
accuracy, but the method’s advantage grows with increasing prob-
lem size or more stringent error tolerance. For the sphere problem,
the spectral method is able to achieve six digits of accuracy with
about 500 unknowns. By extrapolating the straight line, one can
estimate that at least a million panels are needed for the standard
method to achieve the same accuracy.

5.2 Capacitance of a Spherical Harmonic Sur-
face

In order to verify the above method for a general molecular sur-
face, we use the example of a small organic molecule with 26
atoms, the transition state analog (TSA) of the protein enzyme cho-
rismate mutase. The geometry of this small molecule was taken
directly from an X-ray crystal structure [22], and can be obtained
from the Protein Data Bank (PDB) [2] as accession number 1ECM.
The radii used were 1.0 Å for hydrogens, 1.4 Å for oxygens, 2.0 Å
for aliphatic carbons, and 1.7 Å for carbonyl or vinyl carbons. The
surface of the TSA molecule was triangulated with the program
MSMS [37], using a probe radius of 1.4 Å for water. A spherical
harmonic representation is obtained by least squares fit to vertices
of the triangulation. Fig. 3 shows an order 10 approximation with
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Figure 2: Accuracy comparison between the standard and
spectral method.

121 coefficients for the surface using 3359 points, and a triangu-
lation of 6714 panels. The color in the spherical harmonic sur-
face correspond to the radial distance from the center of expansion,
while the color in the triangulated surface correspond to the tori-
reentrant, spherical-reentrant and contact surface in the definition
of molecular surface. The area of a spherical harmonic surface can
be calculated using (21), and is compared to analytical area given
by MSMS for increasing order of approximation. In Fig. 4, the
area convergence versus number of coefficients is shown for three
sets of point distributions. The data demonstrated that 5 to 10 times
as many points as coefficients can generate a reasonable approxi-
mation. For the order 10 expansion, the area approximation incurs
less than 0.3% relative error.

Once a spherical harmonic surface is obtained, we can apply the
spectral method to solve the integral equation in (29), where for the
capacitance problem, the potential is set to unity. We can therefore
compare our method to the standard panel method implemented
in FastCap [30]. The spherical harmonic surface in Fig. 3(a) is
used for geometrical representation in the spectral method, and
triangulation from MSMS is used to generate input files for the
FastCap program. The capacitance calculation for the two solvers
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Figure 3: Spherical harmonic approximation of a triangulated
molecular surface.
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Figure 4: Area convergence of spherical harmonic approxima-
tion.

with increasing discretization is shown in Fig. 5. For the spectral
method, the number of unknowns correspond to number of global
lagrangian basis used while for the standard panel method, the
number of unknowns correspond to number of panels in the trian-
gulation. For the spectral method, the result converges to three sig-
nificant figures with 386 unknowns while in the standard method,
the same convergence can only be achieved with 27742 unknowns.
The spectral method requires almost two orders of magnitude fewer
unknowns for a tolerance of 10−3, which is consistent with the
sphere example.

5.3 Solvation Energy of a Biomolecule
For the same TSA molecule, we would like to calculate the sol-

vation energy when the molecule is in an ionic solution. We use
the formulation in [21] to obtain a solution of a linearized Poisson-
Boltzmann equation. The coupled integral equations of interest
are:

1
2

ϕ1(�ro) +
Z

Ω

[
ϕ1(�r′)

∂G1

∂n
(�ro;�r′)−G1(�ro;�r′)

∂ϕ1

∂n
(�r′)
]

d�r′

=
nc

∑
i=1

qi

ε1
G1(�ro;�ri) (30)

and

1
2

ϕ1(�ro) +
Z

Ω

[
−ϕ1(�r′)

∂G2

∂n
(�ro;�r′)+G2(�ro;�r′)1

ε
∂ϕ1

∂n
(�r′)
]

d�r′

= 0 (31)
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Figure 5: Capacitance calculation of the TSA molecule.

where the unknown quantities are potential ϕ1 at the dielectric in-

terface and its normal derivative ∂ϕ1
∂n on the inner surface. The nor-

mal derivative at the interface has a jump that is related to the rel-
ative dielectric constant ε. The free charges, qi, are derived from
quantum mechanical calculations. The Green’s functions are:

G1(�r;�r′) =
1

4π|�r−�r′| (32)

G2(�r;�r′) =
e−κ|�r−�r′ |

4π|�r−�r′| (33)

where κ = 0.124 Å−1, equivalent to an ionic strength of 0.145 M
at 25◦ C was used. A dielectric constant of 4 ε0 was used inside
the TSA molecule and a dielectric of 80 ε0 was used externally.
Once the potential and its normal derivative are computed on the
molecular surface, potentials everywhere can be calculated. In par-
ticular, the potential at each charge location, known as the reaction
potential, is given by

ϕREAC(�ri) =
Z

Ω

[
G1(�ri;�r

′)
∂ϕ1

∂n
(�r′)−ϕ1(�r′)

∂G1

∂n
(�ri;�r

′)
]

d�r′.

(34)
The solvation energy can be calculated by multiplying these poten-
tials with corresponding charge magnitudes.

The spectral method is again compared with the standard panel
method implemented with precorredted-FFT acceleration [21, 32,
46]. The results are shown in Fig. 6. Note that the size of matrix
equation is twice the size of the basis set shown on the x-axis, since
there are two sets of unknowns in the coupled integral equations.
This problem is also more challenging due to the presence of dou-
ble layer potentials. To converge to three significant figures, the
spectral method requires 488 basis functions while 8502 panels are
needed, a factor of 20 improvement.

6. CONCLUSION
This paper describes a novel approach to discretizing integral

equations with singular kernels, such as those associated with elec-
trostatic analysis of molecular surfaces. A spherical harmonic an-
alytic representation of the surface is generated and used to con-
struct a mapping from local patches to the surface, and a global,
numerically orthogonal basis is defined on local patches and used
to represent the solution. Integration on a patch is done by quadra-
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Figure 6: Solvation energy calculation of the TSA molecule.

ture in carefully chosen polar coordinates. In an iterative solver
implementation, integration over a patch by quadrature only needs
to be done once per evaluation point. Therefore, our approach can
be very efficient as number of patches is small and kept constant
as the basis size increases. Computational results demonstrate the
method is capable of achieving spectral convergence. In compar-
ison to the standard panel method, our approach requires many
fewer unknowns for a given accuracy.

While in the panel method, both geometrical discretization and
basis supports are defined on a mesh, they are decoupled in the
proposed spectral method. On the other hand, mapping functions
are required to describe the geometry. In simulation of molecular
electrostatics, spherical harmonics can be a good candidate for rep-
resenting molecular surfaces, but work is needed to generalize the
mapping to more irregular molecules.
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