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Abstract— Trajectory-based methods offer an attractive
methodology for automated, on-demand generation of macro-
models for custom circuits. These models are generated by
sampling the state trajectory of a circuit as it simulates in the time
domain, and building macromodels by reducing and interpolating
among the linearizations created at a suitably spaced subset of the
time points visited during training simulations. However, a weak
point in conventional trajectory models is the reliance on a single,
global reduction matrix for the state space. We develop a new,
faster method that generates and weaves together a larger set of
smaller localized linearizations for the trajectory samples. The
method not only improves speedups to 30X over SPICE, but as a
side benefit also provides a platform for parametric small-signal
simulation of circuits with variational device/process parameters,
at a speedup of roughly 200X over SPICE.

I. INTRODUCTION

Macromodels are simplified circuits which capture just the
essential behaviors of some target circuit, and are fast enough
to support full system simulation. Trajectory-based methods
[8] [15] [14] [5] [4] [3] are an increasingly popular methodol-
ogy for automatic macromodel construction. These methods
enjoy several attractive properties: they can be built from
simulation data during standard transient circuit simulation;
they usefully exploit powerful linear model order reduction,
interpolation, and datamining ideas for numerical accuracy and
efficiency; they have recently been extended to highly scalable,
and parametric forms.

Trajectory methods sample the state trajectory of a circuit as
it is simulated in the time domain, and build a macromodel by
reducing the linearizations created at an appropriately chosen
subset of the time points visited during training simulations,
and then interpolating among them. Interpolation combines
these reduced linearizations to predict the dynamic behavior of
the circuit at any new point in the state-space not visited during
prior training. Trajectory methods can build macromodels
automatically (“on demand” in language of [17]) using trusted
simulation data.

One significant weakness of conventional trajectory meth-
ods, however, is their reliance on a single, essentially global
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reduction matrix for projecting from the intractable, large, full
state space of the original circuit, down to a smaller, more effi-
cient state space for interpolation. There is no reason to believe
that a single projection matrix is likely to be optimal across
a large, high dimensional state space. However, we cannot
simply build an arbitrary set of local projection matrices if we
still plan to approximate the circuit response at each timestep
by interpolating from among a set of local linearizations
at previously visited trajectory pionts. In other words, we
trivially combine the essential data we need from the trajectory
samples, if each uses a different local linearization. The result
is that our global reduction is less efficient, yields a larger
subspace than is likely needed, and some efficiency is lost.

In this paper, we suggest a practical strategy for building and
combining local linearizations in a trajectory-based engine.
The key idea, which exploits the scalable algorithm introduced
in [17], is to build the local reductions for groups of k points
that are actually used to interpolate the state space equation
at a new point in the state space. The interpolation compu-
tation is thus, handed off from one local group to another
as the circuit evolves through its state space. A somewhat
surprising side benefit of this strategy is that the methodology
provides a natural platform for efficient small-signal analysis
of parametric circuits, i.e., ac analysis of circuits with variable
device or process parameters. The scalable architecture ideas
and local models provide us with the opportunity to store and
interpolate the small signal state space equation for the circuit
at their DC bias points for different device and parameter
values. The small signal models thus generated capture the
variational behavior of the circuit over large ranges of device
and process parameters. This capability provides extremely
fast and efficient design space exploration opportunities.

This paper is organizes as follows. Sec. 2 gives some basic
background on trajectory methods, and the features missing
in prior efforts. Sec. 3, 4 and 5 describes the key innovations
in our new algorithm: compact local reduced order models;
extensions for parameter space modeling and support for
circuit loading effects. Sec. 6 shows experimental results for a
range of circuits and their trajectory/parameter macromodels;
our largest models achieve up to ∼30X speedups for transient
and ∼200X speedups for AC simulation. Finally, Sec. 7 offers
concluding remarks followed by acknowledgements in Sec. 8.
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II. BACKGROUND

A. Trajectory-Based Models

Circuit simulators represent a circuit as a set of nonlinear
differential equations. In state-space form, these can be written
as:

dg(x)
dt

= f(x) + B(x)u

y = CT x

}
(1)

The twin difficulties of simulating complex circuits are: (a)
the nonlinearities associated with each transistor require many
expensive model evaluations as the circuit moves through its
state-space, and (b) the order (N) of the resulting equations
is large. Together, these make large circuits with complex
models that are slow to simulate. We can use trajectory
methods to attack these problems in two ways. First, we
replace expensive nonlinear model evaluations with simpler
lookups and interpolation. Since evaluating f(.) and g(.) is
expensive, we approximate these as a simple first-order Taylor
series, expanded around some state x0, for example:

f(x) � f(x0) + A0(x − x0)
g(x) � g(x0) + G0(x − x0)

}
(2)

where A0, G0 are the Jacobians of f and g respectively at x0.
(One can also choose a second-order expansion, at additional
complexity; see [5].) Second, we reduce the dimensionality
of the overall system of equations. We approximate the real
N -dimensional state-vector x with a much smaller vector z of
order q � N . The idea is to approximate the original system
by carefully selecting a reduced subspace wherein most of the
dynamics of the system occur. This can be done via projection
methods, by constructing a suitable reduction matrix V of size
N×q whose columns define a basis in the reduced state-space.
So, we approximate states x from the original state-space by
reduced states z:

x � x̂ = V z (3)
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Fig. 1. Models generated at sampled points on the trajectory of a system in
its state-space. State-space equation at a new point in state-space is generated
through interpolation of the reduced order sampled models.

Reduction techniques combining Krylov [16] [11] [9] and
TBR [8] methods can be employed here. The pseudo-code for
computing the projection basis V for trajectory based models

based on first order approximation of the original system
is shown in Algorithm 1. [3] presents an extension of this
algorithm for generating the projection basis V that captures
the process variation information as well.

Algorithm 1 Algorithm for generation of projection basis V

1: Let xi be the trajectory samples for i={1,2,...,s}
2: Vagg=[]
3: for all i do
4: Compute trajectory linearizations around xi

Gi
dx

dt
= f(xi) + Ai(x − xi) + Biu

y = CT x

5: Construct q1th order orthogonal Krylov bases V1 and
V2 using Arnoldi [10] or block Arnoldi [7]

span{V1} = Kq1{A−1
i Gi, A

−1
i Bi}

span{V2} = Kq1{A−1
i Gi, A

−1
i (f(xi) − Aixi)}

6: Ṽ = [V1 V2 xi]
7: Ṽ ′ = svd(Ṽ )
8: Vi = Columns of Ṽ ′ corresponding to singular val > ε1
9: Vagg = [Vagg Ṽ ′]

10: end for
11: V ′

agg = svd(Vagg)
12: V = Columns of V ′

agg corresponding to singular val > ε2

If we linearize at appropriately spaced points on the tra-
jectory, and then reduce the order of these linearizations, we
can approximate the dynamics at any new point in the space
by interpolating among these saved linearized reduced order
equations.

Suppose reduced linearizations have been generated at s
points on the trajectory. Interpolation builds a single effective
linearization for the new point x in state-space as a weighted
sum of these s stored linearizations.

wi(z) =
(exp(zi − z)2)−k

s∑
i=1

(exp(zi − z)2)−k

for i=1,2,..,s (4)

where, wi(z) is the weight contribution of the ith linearization
on the trajectory, for the point z’s state-space matrix in the
reduced order state-space. We used a value of k ∼ 5 in our
implementation.

The weighting function [14] [18] (Equation 4) is based on
the heuristic that the state-space equations for the points lying
inside the spheres in Figure 1 are similar to the equation for
the linearized point at the center of the respective spheres. In-
terpolation lets us approximate the overall state-space equation
as shown in Eqn 5.

This formulation has been referred to as piecewise linear
trajectory-based model order reduction [14]. The “piecewise
linear” derives from the first-order Taylor expansion and the
weighted linear combination form for the interpolation. The
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where,

Gir = V T GiV , Air = V T AiV , Cr = CT V &
sX

i=1

wi(z) = 1.

strategy works well when we have enough training trajectories
to create a sufficient density of “overlapping” linearizations, as
represented by the spheres in Figure 1, and when the dynamics
of the circuit can be approximated with much reduced versions
of these linearizations. In several experiments to date, these
seem to be viable assumptions.

The basic idea of trajectory models can be easily extended to
capture the small signal behavior of the circuit in its parameter
space. Rewriting the state-space equation for the circuit around
a DC operating point, we can get the small signal equation for
the circuit.

sG0x = A0x + B0u (6)

sG0rz = A0rz + B0ru (7)

Projection techniques (Eqn. 3) can be used to represent Eqn. 6
in a compact form for fast evaluation of the frequency response
of the circuit (Eqn. 7). Multiple reduced order small signal
equations can be generated for different values of design and
process parameter values. These can then be interpolated to
predict the small signal characteristics of the circuit at any
new point in the “parameter space” (Fig. 2). A similar idea is
presented in [3] to generate parametrized models for transient
simulation of a circuit.

Fig. 2. Small signal models of the circuit can be sampled in the parameter
space. Interpolation can then be used to predict the frequency characteristics
of the circuit at any new point in the parameter space.

B. Extensions for Supporting Scalability

In recent extensions to this modeling methodology [17],
a rigorous training strategy was used to generate trajectory
points that sample as much of the reachable state-space of the
circuit as possible. The resulting models would thus be robust
across a wider variety of test inputs. Instead of interpolating
all the trajectory linearizations, reduced order equations are
generated at a new point in the state-space by interpolating
only the k closest trajectory samples. This strategy works
because the weighting function (Eqn 4) has been chosen in

such a way that the resulting weight values are non-zero only
for a few closest neighbors of the current point in the state-
space. Efficient search schemes have been proposed in [17]
to find the k nearest neighbors of a given point in a high
dimensional state-space. The search time for these algorithms
is nearly independent of the number of trajectory samples.
Thus, robust macromodels with efficient model evaluation
times can be generated for system level simulation of analog
circuits.

C. Inadequacies in Trajectory Methods

While implementing these methods, we observed some
practical inadequacies in the proposed modeling methodolo-
gies:
• Simulation speed-ups: Model order reduction (MOR)

methods have been the tool of choice for generating macro-
models for linear circuits [12] [13]. This is primarily because
they yield reduced state-space equations whose order (q) is
significantly smaller than the order of the original set of state-
space equations (N ). In other words, the reduction matrix V
is of size N×q, where q � N . A similar idea is used for
generating reduced order linearizations for trajectory based
models. However, the reduction matrix V , in this particular
case, is not the same as that for the linear case. Rather it is
composed of a large number of individual reduction matrices
corresponding to each linearization point; all combined into
one through a biorthonormalization algorithm (Algorithm 1).
The number of columns in matrix Vagg in step 11 of Algorithm
1 is of the order of O(s). Performing singular value decompo-
sition (SVD) of Vagg and picking columns corresponding to
significant eigenvalues results in the reduction matrix V of size
N ×q. It was observed through multiple experimentations that
q ≤ N . However, the value of q was not significantly smaller
than that of N as is commonly observed while generating the
reduction matrices for state-space equations for linear systems.
Thus, the size of the interpolated reduced order state-space
equations computed for predicting the dynamics of the non-
linear system at a given point in state-space is not significantly
different from that of the original state-space equation. Hence,
simulation speed-ups reported in published literature using
trajectory based models are smaller than those commonly
observed while applying MOR techniques to linear systems.
• Variational Models: The idea of storing piecewise lin-

earized samples of a non-linear circuit can be extended to
predict the small signal behavior of the circuit across pa-
rameter variation – process as well as design parameters
(Fig. 2). In constrast to approaches such [19] which build
efficient nonlinear response surface from simulation samples,
our interest is in extending the trajectory platform to generate
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these samples, across both process and design variable pertur-
bations, in the most accurate and efficient manner. The first
such attempt in this direction was [3], which aims to model
the complete non-linear characteristics of the circuit across
process parameters. However, our recent experience with the
localized reduction strategy suggests that the improvements
obtainable by the global reduction strategy of [3] may be
severely limited when generating models over large range of
parameter variations. This is primarily because of merging
together of large number of reduction matrices as described
in the previous paragraph. The problem is quite common in
circuits with complex nonlinearities e.g., transistor models like
BSIM3.

Earlier approaches based on trajectory based models [14]
[8] [5] [3] did not face this problem because of naive training
strategies (model trained across a few waveforms at most)
and simplistic circuit examples. As an illustrative example,

Fig. 3. Schematic of a nonlinear transmission line circuit similar to the ones
used in [14] [3].

we present here a nonlinear transmission line circuit (Figure
3) similar to the ones used in [14] [8] [3]. All the resistor (R),
capacitors (C) and and inductors (L) are linear elements. The
diode is a nonlinear element represented by Equation 8.

id(v) = Id(eαv − 1) (8)

Here, α = 1/vt, where vt is the threshold voltage. The number
of repeated blocks, composed of R, L, C and nonlinear diode
elements, that we used was 400 resulting in a state space
equation of order 799 (N ). After training across a single
training waveform, the reduced order state space equation
turned out to be of order 31 (q). When we generated a reduced
order basis across variations in the parameter α for the same
training waveform (using the algorithms described in [3]), the
resulting reduced order state space turned out to be of order 33.
We varied the parameter α across 4 orders of magnitude during
generation of this reduced basis. This extremely small increase
in the dimensionality of the reduced state space is primarily
because of the architecture of the circuit example. The circuit
is structured in such a way that the voltages at the capacitive
nodes always have a strong correlation between them. This
prevents excitation of the circuit to different (“new”) regions
of its state space even with wide variations in the nonlinear
diode parameter. On the other hand, if we take a complex
analog circuit with BSIM3 [1] transistor models (Figure 6)
as an example, the reduced order state space for a particular
single training input was 9 compared to the original state space
of order 24. However, when the model was trained across
threshold voltage as the process parameter, the final state space

equation turned out to be of order 21. This was for only a
30% variation in threshold voltage. Thus, we can see that
the biorthogonalization algorithm for generating reduced order
models across parameter variations [3] leads to inefficient
models in the case of real circuit examples.
• Loading Effects: An important inadequacy of the tra-

jectory based models that has been incompletely addressed
to date is that of capturing loading effects. We macromodel
so that circuit-level models can be inserted in system-level
contexts and simulated. Previous approaches demonstrated
the feasibility of building trajectory models for an individual
circuit. Some prior methods [17] [6] have addressed the issue
of inserting such models back into the simulator in a system
context. A method to capture the circuit behavior in presence
of different sets of output loading environment has been pre-
sented in [6]. In the proposed method, this is done by training
the model across a range of loading conditions. The generated
trajectory points are then merged into a single trajectory model
for the circuit. The generated models, however, do not load the
other circuits they are connected to. Also, the model accuracy
is strongly dependent on the type of loading conditions in
which the model was initially trained. No systematic approach
for capturing the input and output loading effects of the circuit
being macromodeled has been suggested.

We address these problems in the following section.

III. LOCAL REDUCED ORDER MODELS

One drawback of current trajectory based models is the
limited simulation speed up that has been achieved to date.
Simulation speed-ups up to ∼ 10X have been reported. We
believe that there is a significant scope for improvement out
here. The primary reason for the small simulation speed-
up is the very small reduction in the order of the reduced
state-space equation as has been discussed in section II-C.
Merging a large number of reduction matrices corresponding
to individual circuit linearizations gives us a common reduced
order basis which may be applied across all the trajectory
points. Earlier implementations [14] [4] [8] [15] of trajectory
schemes interpolated all the circuit linearizations to predict
the dynamics of the system at a new point in the state-space.
This introduced a constraint that the reduced order equations
at all the linearization points had to be generated using the
same reduction basis (Vcommon). Using a different basis for
different linearization points would make their interpolation
expensive, if not impossible. However, recent improvements
in the modeling methodology [17] (section II-B) that support
robust training, thereby generating a large number of trajectory
points, do not use all the linearizations for interpolation.
Rather, they interpolate only a few (k ∼ 5) nearest neighbors
to predict the dynamics at the current point in state-space.

Since we are interpolating a chosen set of a few nearest
points each time, we only need to make sure that the reduced
order linearizations at these few points have been generated
from the same reduced basis. This provides us with an excel-
lent opportunity to use a much more compact local reduction
matrix of size N×q′ (q′ � N ) for the k nearest linearizations.
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The reduction matrix needs to be composed of individual
Krylov subspaces for only these k trajectory points and not
for all the points in the model. In other words, the for loop
in Algorithm 1 needs to run for i = {1, 2, ..., k} instead of
i = {1, 2, ..., s} (where s is the number of trajectory samples
in the models, typically on the order of 10,000-100,000). We
call this smaller reduction matrix Vlocal.

Generating Krylov subspaces and reduced order state-space
equations from the original set of equations of order N is an
expensive process which cannot be performed while evaluating
the models. Therefore, we need to compute these reduced
order basis and the corresponding set of reduced linearizations
during the model generation stage itself. However, this poses a
new challenge for us. We need to compute reduced order bases
for all different k nearest neighbors that we could encounter
during the model simulation process as the model moves in
its the state-space. In order to guarantee that we do have the
reduced order equations for the k nearest trajectory points
using the same reduction matrix at each point of the simulation
trajectory, we need to compute a reduction matrix for a large
number of groups of trajectory points such that: for any point
in the state-space, there exist its k nearest trajectory samples
that belong to the same group.

An obvious way of ensuring this would be to make
(

s
k

)
groups of trajectory samples and build a reduction basis
for each one of them. Using conservative values for the
number of trajectory samples and nearest neighbors required
for interpolation (s = 1000, k = 5), tells us that the number
of groups that we would have to handle would be ∼1013. This
brute force approach would obviously create groups of points
that are spatially located far from each other and hence would
never be used. In other words, they will not be the k nearest
neighbors for any given point in the state-space.

To make the problem tractable, we change the requirement
for the groups slightly. We create groups of trajectory lin-
earizations such that for each of these linearizations (xi), its
k′ nearest neighbors lie in the same group. If any new point
in the state-space (P ) is closest to a trajectory linearization
x1, then the two points should share a few nearest neighbors
between them. This assumption is not always true as can be
seen in Figure 4 for highly skewed points.

x

x
x

x

x

x
1
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3

4

6

5

x7

P

Fig. 4. Trajectory point x1 and new point P may not share common nearest
neighbors for k′ = k (dashed lines), even though x1 is the nearest neighbor of
P. However, making k′ > k (dotted line) increases the probability of sharing
k common neighbors.

However, we could avoid this condition with high proba-
bility if we make k′ > k. For a new point P in the state-
space whose nearest neighbors do not belong to the same
common group sharing the same reduction matrix, we could
go back to the common reduction matrix (Vcommon) and
the corresponding reduced order linearizations obtained by
considering all the trajectory points together (Algorithm 1).
The worst case average number of copies of reduced state-
space equation that would need to be kept for each trajectory
point corresponding to different reduced bases is ∼k′. This
is not a significant penalty on model size because all these
new reduced order state-space equations are of order q′ where
q′ � q ≤ N . However, in practice, we do not need to keep
these many copies for each point. We observed that the new
local models were approximately of the same size as the ones
generated using a single reduction basis.

Algorithm: We start with the trajectory linearizations
{x1, .., xs} that we obtained during model training. We group
them into disjoint clusters {c1, .., cl} of trajectory points
obtained through Gaussian Mixture Models (GMMs) [2]. Each
of these gaussian clusters would have two types of trajectory
samples as its member elements (Figure 5)–

1) Points with a very high probability of being a member
of their particular cluster. These points typically lie near
the core of the Gaussian distribution.

2) Points with very low probability of membership. These
points populate the edge of the distribution and are very
close to other GMM clusters.

For fringe points belonging to a cluster with very low mem-
bership probability, we compute their k′ nearest neighbors and
the respective GMM clusters they belong to. We repeat this
process for all the fringe points of all the GMM clusters. We
group all the fringe points and their k′ nearest neighbors into
new clusters {cl+1, .., cm} such that in each such group, the
member elements and their k′ nearest neighbor belong to the
same set of GMM clusters. The resulting final set of clusters
{c1, ..., cl, cl+1, .., cm} are the local groups for which we
compute the local reduction matrices (Vlocal). These reduction
matrices are then used to project the trajectory linearizations
of their particular group down to a reduced order state space.
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Clusters

Clusters of points
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Fig. 5. Creation of clusters such that each linearization point and its k′
nearest neighbors belonging to the same cluster.
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Model Evaluation: The nearest neighbor search for finding
the k nearest neighbors is performed in the reduced order
state-space obtained using Vcommon. Once these neighbors
are found, we move to a new reduced state-space using
Vlocal corresponding to the common cluster that the nearest
neighbors belong to. Model interpolation and evaluation is
performed in the reduced state-space after which we return
back to the common reduced space corresponding to Vcommon

for the next nearest neighbor search using Eqn 3. In the
rare case when we can not find a precomputed common
cluster for the nearest neighbors, we use state-space equations
corresponding to Vcommon for model evaluations.

Compact models: The local reduction matrices are computed
for groups of trajectory linearizations of size ∼ k′. Thus, the
SVD computation in step 11 of Algorithm 1 is performed
on matrix Vagg whose number of columns is of the order
of O(k′) where k′ is independent of the type of circuit
being macromodeled. Thus, the size of the local reduced
order models is almost independent of the order of original
state-space equation (N ) as well as the number of trajectory
linearizations (s). Therefore, the models generated using the
algorithm, would be smaller and faster for bigger circuit sizes.

IV. GENERATING VARIATIONAL MODELS

A rather useful side-effect of the mechanisms developed
in the previous section is we create a very natural platform
for variational macromodels – that is, models parametrized by
device or process parameters. In this section, we show how
to use the piecewise linear model order reduction approach
to model a circuit’s small signal characteristics across its
parameter space. Multiple small signal matrix equations (Eqn.
6) are generated – one for each sampled point in the parameter
space. These linear equations are then interpolated using a
weighting function as given in Eqn. 9:

wi(z) =
(zi − z)2
s∑

i=1

(zi − z)2
(9)

The weighting function is different from Eqn. 4. For the
trajectory case, we had to ensure that the interpolated matrices
were stable. This was done by skewing the weight function
towards the nearest interpolated point. Since, all the trajectory
points themselves had stable state space equations, the heuris-
tic was that a synthetic state space equation formed by heavily
weighting the closest stable matrix equation along with some
other equations would also result in a state space equation.
There is no such constraint for the small signal model which
is why we choose a smoother interpolating function, thereby
requiring fewer sampled models.

For regions of the parameter space that might have linear
characteristics, pruning ideas similar to [17] are used for re-
moving reduntant information. We visit each sampled point in
the parameter space and use all other points except the current
one to predict the circuit’s characteristics at this point. If the
error between the sampled and interpolated matrices is less

than some fixed threshold (acceptable error), we discard that
particular sample from our model. We observe better pruning
results because of smoother weight function being used in this
case (Eqn. 9). Using the projection basis V for each sampled
model, local reduction matrices Vlocal are generated for groups
of these sampled parameter space points. These overlapping
local groups are generated by the same algorithm as described
in Section III. For efficiency purposes, the pruning step can
be done after the local model generation. Once the redundant
points have been discarded, a final local model generation step
can be applied on the remaining sampled points to create the
final model for interpolation.

A practical application of the variational models can be in
hierarchical synthesis of circuits. We can optimize for the pa-
rameter values of the macromodeled circuit so that the system
level specifications are met. For such applications, interesting
regions of the parameter space should be modeled. Performing
a brute force sampling of the parameter space can make the
model too large in terms of memory requirements and hence,
inefficient for fast evaluation. Our modeling infrastructure can
easily handle model of sizes of ∼10,000 sampled points. The
number of parameters is not a concern since our modeling
flow can easily handle > 24 dimensional searches [18].

V. CAPTURING LOADING EFFECTS

In our new modeling tool, we have also added the capability
to capture the loading effects of the circuit. We start with
the circuit linearization equations at a particular point in
state-space obtained during model training. We select the
KCL equation for the nodes of interest (input and output). A
simplification that we introduce is to connect all other nodes
of the circuit to ground. Thus, we get the following set of
equation:

Cẋin/out + Gxin/out = I (10)

This equation is exactly similar to the KCL equation one
would get if the input/output node were connected to one
resistance, capacitance and current source. Thus, the C and
G of Eqn. 10 become the equivalent input/output capacitance
and conductance for the circuit. These values are functions
of the state-variable xi. Thus, we would get different input
and output impedance values for different trajectory samples.
The impedance value at a new point in the state-space, during
model evaluation, is computed by interpolating the equivalent
C and G values for the different trajectory samples using the
same weighting scheme as given in Equation 4.

VI. EXPERIMENTAL RESULTS

We have implemented a version of the piecewise model
order reduction (PW-MOR) modeling framework built into
Berkeley-SPICE3f5 (“SPICE3”) that supports BSIM3 transis-
tor models. Our infrastructure supports large training runs, au-
tomatic model extraction, model pruning and native simulation
support for generated macromodel inside the SPICE simulator
itself. A simulateable circuit netlist is all that is required from
the user to generate the macromodel for a given circuit. The
generated macromodel can be used in another SPICE netlist
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as a new SPICE element ready to be simulated along with
other circuit elements. In this section, we present some of the
results obtained by using our new modeling tool for generating
macromodels for analog circuits.

Vout+

Vss

Vdd

Vout−Vin+ Vin−

Fig. 6. Schematic of folded cascode opamp with common model feedback.

We generated a trajectory based macromodel for a 40
transistor folded cascode opamp circuit with common mode
feedback stage (Figure 6). We trained the model using a
varied range of input waveforms with different amplitudes
and frequencies. The final macromodel consisted of ∼8000
trajectory points. The original state-space equation was of
order 24(N ). We got reduced set of equations of order 19(q)
by using a single reduction matrix(Vcommon) to reduce all
the sampled state-space linearization. Using the new localized
model order reduction technique generated equations with
order ranging from 7-11(q′). We used k′ = 30 to generate
clusters for computing the local models. Interpolation of state-
space equations were done with 5 nearest neighbors in our ex-
periments (k = 5). The macromodel without the local reduced
order models was ∼9X faster to simulate than the transistor
level circuit. After we included the localized reduction of
state-space linearizations, the macromodel became ∼ 18.4X
faster. Thus, we got an extra 2X simulation speed-up in the
macromodel due to the introduction of the localized models.
In another example, a filter circuit (Fig. 7) consisting of three
copies of the opamp circuit was macromodeled as a single
circuit block. Local reductions reduced the size of the state
space equation from 70(N) to 12-20(q’). The macromodel
simulated ∼30X faster than the transistor level circuit.

In Out

Fig. 7. Circuit schematic of the filter being macromodeled. Component
opamps are the ones from Figure 6. The complete filter block was macro-
modeled as one single circuit.

In the experiment, we observed smaller macromodel simu-
lation time due to faster interpolation and solution of the state-
space equation due to smaller sizes of the localized reduced
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Fig. 8. Almost indistinguishable waveforms produced by the filter circuit of
Figure 7 and its macromodel for a large signal input. Average error is less
than 2%.

TABLE I

MACROMODELING DATA FOR DIFFERENT CIRCUITS

Circuit Size of full Size of reduced Simulation
schematic state space(N) state space (q’) Speed-up

Opamp 24 7-11 18.4
Filter 70 12-20 29.7

order models. Since the nearest neighbor searches were still
done in the common reduced order basis space, we observed
an increase in the fraction of time the macromodel evaluator
spent in nearest neighbor searches. The evaluator now spent
∼12% of its time in approximate nearest neighbor searches.
Nearest neighbor search took ∼5% of the model evaluation
time without the local models.

In another experiment, the small signal model of the opamp
circuit (Fig. 6) was generated in the parameter space. Table
II shows the range of the various parameters for which the
model was generated that resulted in ∼800 sampled points.
Local reduced order models were generated with final model
sizes of 4-10. To test the accuracy of the generated model, gain
and bandwidth of the circuit was computed at 500 randomly
chosen points in the parameter space with the ranges listed
in Table II. Average errors of < 3% were observed against
ac simulation of SPICE. Figure 9 compares the frequency
response of the circuit and model at a particular point in
the parameter space. Pruning the sampled points reduced the
size of the model from ∼800 to ∼300. Average model error
increased to ∼5.5%. Simulation speed-ups in the range of 200-
400X were observed. This large speed-up number is primarily
because SPICE has to first do a DC convergence before
running the AC analysis while our model performs simple
interpolation. The model pruning step does not drastically
change the simulation speed up number since our modeling
scheme is fairly robust to model sizes [18]. However, pruning
is very useful to contain the memory requirements of the
model.

The final experiment was set-up to test the quality of the
input-output models generated by our modeling methodology
as discussed in section V. We generated the trajectory models
for a stand alone 5-stage ring oscillator VCO circuit. The
loading effects of the circuit were also captured during the
model generation phase. We then inserted the model into a
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Fig. 9. Plot comparing the frequency response of model (solid) and circuit
(dashed) under parameter variation at an untrained point in the parameter
space.

TABLE II

PARAMETER RANGES FOR SMALL SIGNAL MODEL GENERATION

Parameter Range of
Name Values

tox 4.7-6.7nm
W-diff pair 90-160µm

Input DC bias 500-1500mV
Cascode cap 100-1500fF

W-current mirror 2-15µm

phase locked loop (PLL) of figure 10. All the other blocks
of the PLL were composed of native SPICE elements. The
PLL circuit that was used was a very simplistic one with unity
frequency multiplication (input frequency = output frequency).
Plot of waveforms (Figure 10) at Vcontrol of the VCO showing
the frequency capture by the PLL shows a close match between
the macromodel and circuit simulation outputs.

VII. CONCLUSIONS

We have presented a tool for efficient and accurate modeling
of analog circuits using trajectory based models. The tool
supports three new ideas: smaller, localized reduced order
models at the trajectory linearization points, small signal
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Fig. 10. Plot comparing the waveforms produced at Vctrl of the VCO during
frequency capture by the PLL simulated with modeled and circuit level VCO.

variational models in the parameter space and state dependent
circuit loading characteristics. The local models give us ∼2X
extra speed up over standard trajectory models. The same
idea extended for ac variational models provides 200-400X
speedup for computing small signal characteristics against
SPICE, thereby, offering hierarchical design space exploration
opportunities. The input and output impedances in the macro-
model help us get better accuracy while simulating the model
in a system level context. Our ongoing work focuses on both
algorithmic and engineering implementation improvements to
our infrastructure. We believe this work will be an excellent
platform from which to propagate trajectory models into more
widespread use.
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