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ABSTRACT
Process variations in modern VLSI technologies are grow-
ing in both magnitude and dimensionality. To assess per-
formance variability, complex simulation and performance
models parameterized in a high-dimensional process varia-
tion space are desired. However, the high parameter dimen-
sionality, imposed by a large number of variation sources
encountered in modern technologies, can introduce signif-
icant complexion in circuit analysis and may even render
performance variability analysis completely intractable. We
address the challenge brought by high-dimensional process
variations via a new performance-oriented parameter dimen-
sion reduction technique. The basic premise behind our ap-
proach is that the dimensionality of performance variability
is determined not only by the statistical characteristics of
the underlying process variables, but also by the structural
information imposed by a given design. Using the powerful
reduced rank regression (RRR) and its extension as a vehicle
for variability modeling, we are able to systematically iden-
tify statistically significant reduced parameter sets and com-
pute not only reduced-parameter but also reduced-parameter-
order models that are far more efficient than what was possi-
ble before. For a variety of interconnect modeling problems,
it is shown that the proposed parameter reduction technique
can provide more than one order of magnitude reduction in
parameter dimensionality. Such parameter reduction imme-
diately leads to reduced simulation cost in sampling-based
performance analysis, and more importantly, highly efficient
parameterized interconnect reduced order models. As a gen-
eral parameter dimension reduction methodology, it is an-
ticipated that the proposed technique is broadly applicable
to a variety of statistical circuit modeling problems, thereby
offering a useful framework for controlling the complexity of
statistical circuit analysis.

1. INTRODUCTION
As IC technologies enter the nanometer regime, captur-

ing various process variations and assessing their impacts
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on circuit performance become increasingly critical and dif-
ficult [1]. While the growing magnitude of process varia-
tions pushes for more complex parametric models that may
go beyond those based on the first-order sensitivities, the in-
creasing sources of process variability impose a formidable
high-dimensional parameter space in which a given design
must be verified and optimized.

While the notorious issue of curse of dimensionality, coined
by Bellman [2], emerges in many fields of science and engi-
neering, its manifestation in variation-aware circuit design
is particularly problematic. For instance, a full considera-
tion of inter-/intra-die wire width, thickness and dielectric
thickness variations in multi-layer interconnect structures
can easily introduce several tens of geometrical variation
parameters. Modeling interconnect variations and perform-
ing timing verification in such high-dimensional parameter
space involve obvious challenges. Curse of dimensionality
impacts a wide range of CAD problems since the feasibility
as well as the efficiency of many CAD algorithms critically
depend on the dimension of the parameter space. For exam-
ple, the cost and complexity of many empirical macromod-
eling techniques (e.g. RSM based performance modeling)
grow exponentially in the number of parameters[3, 4]. The
same issue appears in a large body of more formal parame-
terized interconnect reduced order modeling algorithms and
variational analysis techniques developed for capturing in-
terconnect variability [5, 6, 7, 8, 9, 10, 11]. For many of these
techniques, the inclusion of a large set of variational param-
eters can make the circuit modeling and analysis extremely
costly, and under many cases, may even render those tasks
impractical. Furthermore, we notice that the efficiency of
many statistical timing analysis techniques also depend on
the dimension of underlying parametric variations as well as
the way in which these variations are processed [12, 13, 14].

In the CAD community, the standard practice employs
PCA (principle component analysis) and its variants for pa-
rameter reduction [15, 16]. Although widely adopted, these
techniques are limited since parameter reduction is achieved
by only considering the statistics of the controlling parame-
ters while neglecting the important correspondence between
these parameters and circuit performances under modeling.
Parameter screening is often applied under the context of
response surface modeling [3], however, the technique is em-
pirical in nature as it prunes parameters one at a time based
on sensitivity-like measures.

Given the fact that systematic CAD specific parameter re-
duction methodologies are lacking, in this paper we propose
a new performance-oriented parameter reduction approach.
Unlike the standard principle component analysis (PCA),
our approach is performance-oriented in the sense that not
only the statistical properties of underlying process param-
eters but also the correspondence between these parame-
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ters and circuit performances of interest are simultaneously
exploited. To build our parameter reduction methodology
on a rigorous statistical foundation, we adopt the power-
ful reduced-rank regression (RRR) [17] and extend it to for
practical circuit modeling purpose. This new methodology
allows us to perform systematic parameter dimension re-
duction while exploiting the valuable structural information
imposed by a given design, making it possible to achieve
design specific parameter reduction in a way that is much
powerful than what was possible before. We show that the
proposed technique can lead to more than one order of mag-
nitude parameter reduction for a variety of interconnect cir-
cuit examples. Our performance-oriented parameter reduc-
tion technique reduces the number of statistical samples re-
quired to derive accurate performance statistics. Further-
more, the achieved parameter dimension reduction dramat-
ically simplifies parameterized interconnect model order re-
duction and leads to highly accurate and compact intercon-
nect simulation models. We demonstrate the proposed tech-
niques by extracting highly efficient reduced-parameter as
well as reduced-parameter-order interconnect models. In the
latter, the parameter dimension and the circuit size are re-
duced simultaneously by applying parameter reduction and
model order reduction. As a general parameter reduction
methodology, it is well expected that the proposed frame-
work can be broadly applied to a variety of other circuit
modeling problems hence providing a new way to reduce
the cost of statistical circuit analysis.

2. PRINCIPLE COMPONENT ANALYSIS
In this section, we review the conventional principle com-

ponent analysis (PCA) and its limitations. Then, we point
out the need for more powerful parameter reduction tech-
niques specifically for variational circuit analysis.

The objective of PCA is to identify data patterns and
describe the data in a more descriptive way. Using PCA,
one tries to achieve data reduction by performing variable
transformations and computing a few linear combinations
of the original variables to capture the most of statistical
variance of the data. PCA is usually conducted in four steps:
a) collect data and get the covariance matrix of the data; b)
compute the eigenvectors and eigenvalues of the covariance
matrix; c) select the eigenvectors which correspond to the
first few largest eigenvalues to be the principle components;
d) represent the original data set using the selected principal
components.

Useful parameter dimension reduction can be achieved if
the eigenvalues of the covariance matrix drop off quickly.
However, one critical observation is that such parameter
reduction is achieved by merely considering the statistical
characteristics (correlations) of a given data set without any
account for other statistical data that may depend on the
data set under analysis. Under the context of statistical
circuit analysis, PCA is commonly used to perform data re-
duction in the process parameter space. Once the process
variables are compressed based upon their variances and cor-
relations, statistical circuit analysis is carried out based on
the reduced process variables in an independent subsequent
step.

It is worth noting that the main objective and challenge of
most statistical circuit analysis tasks is to analyze the sys-
tem performance variability, which is a function of under-
lying process variations. Therefore, performing parameter
reduction while considering only the statistical property of
process variations using a standard technique such as PCA
can be rather limited, and under certain cases, it may even
lead to misleading parameter reduction. To see this issue
more clearly, let us consider an RC circuit with a single volt-
age source input and no grounded resistors, representing the
widely used on-chip RC interconnect model used for timing
analysis. We assume that the RC circuit is perturbed by

the manufacturing fluctuations in the forms of wire width,
thickness and dielectric layer thickness variations. It is well
known that the DC voltage response of such circuit can be
trivially determined by the input voltage excitation regard-
less of any RC element variations. However, if one blindly
applies PCA to reduce the dimension of RC variations for
the purpose of modeling the DC circuit performance, one
will fail to identify the trivial fact that the dimensionality
of the variability of the DC performance is essentially zero.
Next, we consider the more useful issue of modeling the tim-
ing performance variations of the RC circuit. Suppose that
variance of wire width W is greater than that of dielectric
layer thickness H. Then a relevant question to ask is: which
variation is more critical (statistically) in terms of the delay
variability? Without taking any circuit information into ac-
count, PCA may just pick W since it has a larger variance.
However, in terms of delay the W variation may not neces-
sarily be a more dominant factor, since the increase in W
leads to an increase in wire capacitance but also a decrease
in wire resistance so that the delay may not be influenced
much.

3. PARAMETER DIMENSION REDUCTION VIA
REDUCED RANK REGRESSION

To achieve more powerful parameter dimension reduction,
it is clear that a framework that can take into account the
meaningful structural information of a given design is de-
sired. To facilitate a new statistical parameter reduction ap-
proach rigorously, we adopt reduced rank regression (RRR)
as a suitable modeling tool and extend it for practical circuit
modeling needs.
3.1 Linear reduced rank regression

Regression analysis has been widely used in statistical
data analysis. We consider the general multivariate linear
model

Y = CX + ε, (1)

where Y is an m × N matrix containing N -samples of m
dependent variable vectors, X is an n×N matrix containing
N -samples of n predictor variables, C is an m×n regression
coefficient matrix and ε is the zero-mean random errors of
the regression. As a standard approach, C can be found by
using the least square regression. The least squares criterion
is to minimize the trace (sum of the diagonal elements) of the
covariance matrix, Σεε of ε, such that an optimal solution
for C can be obtained as

C = Y XT (XXT )−1. (2)

It is easy to show that the minimization of the trace of Σεε

also implies the minimization of the standard deviation error
for each dependent variable Y .

Notice that the above linear regression model does not
lend itself to parameter reduction. The standard regression
model does not exploit any statistical redundancy and cor-
relation between Y in the model. In practical problems,
however, it is very likely that significant model redundancy
may exist, which manifests in the possibility of constructing
a rank-reduced regression matrix C̃.

Suppose that we have a predictor variable vector X ∈ R
n

and a dependent variable vector Y ∈ R
m, with each having

a zero mean. We denote the covariance matrix of X as
Cov(X) = Σxx, and the covariance matrix between X and
Y as Cov(Y, X) = Σyx = ΣT

xy. The following theoretical
result can be shown [17]:

Theorem 1. For any positive-definite matrix Ω, an m×r
matrix Ar and r × n matrix Br can be found to minimize
the trace

tr{E[Ω1/2(Y − ArBrX)(Y − ArBrX)T Ω1/2]}, (3)
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Figure 1: Comparison between PCA and RRR

where

Ar = Ω−1/2U, Br = UT Ω−1/2ΣyxΣ−1

xx , (4)

and U = [U1, ..., Ur] contains r normalized eigenvectors cor-
responding to the r largest eigenvalues of the matrix

D = Ω1/2ΣyxΣ−1

xx ΣxyΩ1/2. (5)

It is straightforward to show that (4) can be found equiv-
alently by computing the SVD of the matrix

E = Ω1/2ΣyxΣ
−

1

2
xx . (6)

The complete proof of the theorem can be found in [17].
It is critical to note that, a successful application of RRR

also implies the possibility of parameter reduction. In other
words, by the previously described rigorous procedure, the
inherent redundancy in the predictor variables can be fil-
tered out statistically. To see this point, we first notice that
we have computed a rank-r regression model that minimizes
the statistical errors in Y in the sense of (3)

Y = ArBrX + ε̃, (7)

where ε̃ represents the model error. We can construct a new
set of variable Z ∈ R

r (r < n) as

Z = BrX, (8)

leading to an optimal regression model

Y ≈ ArZ. (9)

Under our context of circuit modeling, it is important to
notice that a reduced rank model such as (9) is computed
not to simplify a given more complex model (e.g. (1)), in-
stead, it is used as a means to reveal the redundancy in the
predictor variables (e.g. process variations) to fulfill the pur-
pose of parameter reduction. In our circuit modeling task,
Y does not have to be the circuit performances of inter-
est, more generally it can be chosen to be some other easily
computed circuit responses that are closely related to the
performances, as described in the following sections of the
paper. Furthermore, it can be noted easily that the stan-
dard PCA can only be applied to reduce data redundancy
in either X or Y , but not the both simultaneously. We show
the differences between PCA and RRR in Fig. 1.

3.2 Nonlinear reduced rank regression
For many realistic circuit problems, we have noticed that

the linear regression models in (1)(7) are not completely
adequate to capture the noticeable nonlinear relationship
between process variables and circuit performances, espe-
cially when the range of the process variations is relatively
large. To seek a more robust parameter reduction under
these cases, we adopt the same notion of reduced rank re-
gression as described in the previous subsection but cast it
under a more general quadratic model. Consider the follow-
ing quadratic regression model

Y = f (X) ≈ [ C1 C2 ]

[
X

X ⊗ X

]
, (10)

where the quadratic terms of X are expressed using the
tensor product: X ⊗ X = [x2

1, x1x2, · · · , x1xn, · · · , x2

n]T , C1

and C2 are the first order and second order coefficient ma-
trices, respectively. To apply the reduced rank approxima-
tion, ideally one would like to find some regression matrices

Ãr1
∈ R

m×r, Ãr2
∈ R

m×r2

, and B̃r ∈ R
r×n such that the

error of the following reduced-rank regression model can be
minimized in a statistical sense

Y ≈
[

Ãr1
Ãr2

] [
B̃rX(

B̃rX
)
⊗

(
B̃rX

) ]
. (11)

However, it turns out that an optimal model in the form
of (11) is difficult to solve. Instead, we include the quadratic
terms X⊗X in the linear RRR model as additional predictor
variables by defining a new predictor vector

X̃ =

[
X

X ⊗ X

]
. (12)

We compute the new covariance matrices Cov(Y, X̃) = ΣY,X̃

and Cov(X̃) = ΣX̃,X̃ and follow the linear RRR procedure
to get a reduced-rank model

Y ≈ Ar [ Br1
Br2

]

[
X

X ⊗ X

]
, (13)

where Ar1
∈ R

m×r, Br1
∈ R

r×n and Br2
∈ R

r×n2

. The
above model is optimal in a sense similar to (3) (the re-
gression model is cast in a quadratic form here). Compared
with the model in (11), here we have

ArBr1 ≈ Ãr1B̃r, (14)

ArBr2 ≈ Ãr2(B̃r ⊗ B̃r).

The reduced parameter set Z ∈ R
r is expressed in a quadratic

form of X

Z = Br1X + Br2(X ⊗ X). (15)

4. STATISTICAL CIRCUIT MODEL GENERA-
TION WITH PARAMETER REDUCTION

In this section, we apply the nonlinear RRR based param-
eter reduction to practical circuit applications. We focus on
statistical interconnect modeling problems and develop spe-
cific techniques to develop compact parameterized simula-
tion models.

4.1 Capturing interconnect parametric variations
We use the standard modified nodal analysis (MNA) equa-

tions to describe an interconnect network{
(G + sC) x = Bu

y = LT x
, (16)

where u ∈ Rn×1 and y ∈ Rm×1 represent the inputs and
outputs, x ∈ RN×1 represents the system unknowns, G, C ∈
RN×N are the conductance and capacitance matrices, B ∈
RN×n and L ∈ RN×m are the input and output matrices,
respectively.

In order to possibly capture process variations, without
loss of generality, we consider the RC circuit as shown in
Fig. 2 as an example. The circuit has one nonlinear driver
providing the input and three output circuit nodes driving
three downstream stages. The circuit is divided into several
regions spatially and the local geometrical variations are in-
troduced on a per region basis to capture possible spatial
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Figure 2: An RC circuit with parametric variations.

process variations. Variations considered in this paper only
include various geometrical parameters such as wire width
and thickness, dielectric layer thickness, though other types
of local or global parameters can be treated in a similar
way. Generally, we consider a set of np local and global ge-
ometrical variation variables: �p = [p1, p2, · · · , pnp ]T . With-
out loss of generality, we capture their influences in (16)
by expanding conductance and capacitance matrices into
quadratic forms in �p as

G = G0 +
∑

i

Gipi +
∑
ij

Gijpipj , (17)

C = C0 +
∑

i

Cipi +
∑
ij

Cijpipj . (18)

In practice, we may only consider variations in resistances
and capacitances and neglect inductance variations, which
have been observed to be small.

4.2 RRR-based interconnect parameter reduction
A full account of global and local variations in a large

multi-layer interconnect network can lead to the considera-
tion of a large set of geometrical variables, i.e., np is large.
However, if we are only interested in analyzing the circuit
performances at the output nodes, the effective parameter
dimension of a given network may not be very large since the
specific circuit structure can hide certain parametric varia-
tions and may even introduce canceling effects between mul-
tiple variations. To seek the true parameter dimension in a
statistically rigorous fashion, we exploit the proposed non-
linear RRR based parameter reduction.

To apply nonlinear RRR, one would very naturally choose
the underlying process variations, i.e., �p, as the predictor
variables (X/X̃). In the proposed approach, RRR is only
employed as a tool to perform parameter reduction but is
not used for performance modeling. Therefore, the depen-
dent variables (Y ) may not have to be chosen as certain
performance measures such as circuit delays. In practice,
this flexibility is particularly useful because in many cases
a compact simulation model is often needed but not a per-
formance model. For interconnect models, we use transfer
function moments as the dependent variables based on their
strong correlation with timing performance. One important
benefit of such choice is that transfer function moments are
also easy to compute. We have developed computationally
efficient procedures to generate closed-form expressions for
transfer function moments and their dependency on the un-
derlying geometrical variations. As such, statistical mea-
sures required by RRR, e.g. Σx̃x̃ and Σx̃y, can be efficiently
obtained in closed-form without resorting Monte-Carlo sam-
pling, leading to high efficiency of the proposed parameter
reduction.

Without loss of generality,a transfer function moment at
a particular output of interest can be written as

mk = mk0+

np∑
i=1

αk,ipi+

np∑
i=1

βk,i,ip
2

i +

np∑
i=1

i−1∑
j=1

βk,i,jpipj , (19)

where k = 1, · · · , ns and ns is the number of moments to
be observed. For example, if we want to capture the first
three moments for five output nodes, then ns will be equal to
15. In the above equation, mk0 is the nominal case moment,
αk,i and βk,i,j are the first and second order coefficients cap-
turing the dependency of mk on �p. For many interconnect
networks, we have observed that considering the first few
(three) moments using the second order formulas is usually
sufficient for parameter reduction purpose under the typical
ranges of interconnect variations ( 30% 3σ variations [1] ).

In the light of (12), we use X̃ to denote the zero-mean
linear and quadratic terms associated with the geometrical
variations �p, which are assumed to have zero mean. We

partition X̃ into X̃ =
[

XT
f XT

c XT
s

]T
, where Xf =[

p1, p2, · · · , pnp

]T
consists of the 1st order terms, Xs =[

p2

1 − σ2

p1
, · · · , p2

np
− σ2

pnp

]T

consists of the pure square terms,

Xc =
[
p1p2, · · · , pnp−1pnp

]T
consists of the 2nd order cross

terms, and σpi
is the standard deviation of each pi. Notice

that, Xf , Xc and Xf all have zero mean.
Expressing all the moments as quadratic functions of �p

gives

Y =

⎡
⎢⎣

Δm1

...
Δmns

⎤
⎥⎦ = [ Sf Sc Ss ]

[
Xf

Xc

Xs

]
= SX̃, (20)

where Y contains all the ns moments but subtracted by their
mean values, Sf , Sc and Ss are coefficients for the first order
terms, the pure square terms and the cross terms, which can
be computed efficiently.

Given the joint probability function (jpdf) of the process
variables �p, the covariance matrices required by the nonlin-
ear RRR algorithm described in Section 3.2 can be com-
puted using (20). In the following, we consider a widely
assumed special case in which the process variables �p are
jointly Gaussian with zero mean. In this case, covariance
matrices can be obtained in simple closed-form expressions.
We further assume that �p are independent with standard
deviations σpi

’s since otherwise the standard PCA analysis
can be always applied to obtain a set of independent Gaus-
sian variables. We compute the covariance matrix Cov(X̃)
in a partitioned form as

ΣX̃X̃ = E
{

X̃X̃T
}

=

[ ∑
f ∑

c ∑
s

]
, (21)

where the diagonal elements of the above matrix are cate-
gorized into three groups. The covariances of the first order
terms are given as: (Σf )ii = σ2

pi
while those of the pure

square terms and the second order cross terms are given
as (Σs)ii = 2σ4

pi
and (Σc)ij = σ2

pi
σ2

pj
, respectively. The

covariance matrix between Y and X̃ is given as

ΣY X̃ = E
{

SX̃X̃T
}

= SΣX̃X̃ . (22)

We set the positive-definite matrix Ω (4) to be the identity
matrix, and compute the SVD (Singular Value Decomposi-
tion) of E matrix (6) to obtain the matrix U as

UΣV T = ΣY X̃Σ
−

1

2

X̃X̃
= SΣ

1

2

X̃X̃
, (23)
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where matrix U contains the first few singular vectors which
have the largest singular values. Finally, the reduced set of
parameters Z can be expressed using (15), from which the
statistical distributions of Z can be also computed.

4.3 Reduced-parameter interconnect models and
parameterized model order reduction

To be benefited by parameter reduction in simulation, we
need to cast our circuit model such as (16) in the reduced
parameter set Z. Hence, the dependency of the system ma-
trices on the new parameters should be computed

G = G0 +
∑

i

Gzi
zi +

∑
ij

Gzij
zizj , (24)

C = C0 +
∑

i

Czi
zi +

∑
ij

Czij
zizj . (25)

Applying the chain rule gives the first order sensitivities with
respect to the new parameters as

Gzk
=

∂G

∂zk
=

∑
i

∂G

∂pi

∂pi

∂zk
; Czk

=
∂C

∂zk
=

∑
i

∂C

∂pi

∂pi

∂zk
.

(26)
To fully compute the above expressions, we still have to find
∂pi

∂zk
first. To simplify the computation, a good approxima-

tion is to retain only the dominant linear terms (matrix Br1
)

in (15) to solve pi’s (or xi’s) using zi’s in the form

pi =

nz∑
j=1

tijzj , i = 1, ..., np. (27)

Notice that the linear portion of (15) represents a set of
under-determined linear equations since the number of zi’s
(nz) is less than the number of pi’s (np) due to the param-
eter reduction. However, we shall recall the a successful
application of parameter reduction also implies that statis-
tically not all the original parameters (pi’s) are important
but only a few combinations of them (zi’s) are. This obser-
vation allows us to use the standard solution methods for
under-determined systems such as pseud-inverse to express
pi’s in terms zi’s. Consequently, we are able to compute
∂pi

∂zk
so that the sensitivity matrices in (26) can be handled.

The second order dependencies of the system matrices on Z
can be obtained by substituting (27) into (17) and (18) and
collecting the coefficients matrices which correspond to the
second order terms zizj .

Upon obtaining the new simulation models in the reduced
parameter set z, the immediate benefit of parameter reduc-
tion is to conduct Monte Carlo simulation by sampling in
the new parameter space, which is much more efficient. We
have applied variance reduction techniques such as Latin
Hypercube Sampling (LHS) to reduce the number of ran-
dom samples needed to estimate performance statistics by
working in the reduced parameter space. Due to the appli-
cation of our RRR based parameter reduction, LHS becomes
an effective variance-reduction tool in the low-dimensional
parameter space.

Equally important, the reduction of parameter dimen-
sion is also a key to enable parameterized model order re-
duction techniques to compute compact simulation models
while considering the impact of process variations [9, 10, 11].
It is important to notice that the efficiency and the cost of
these algorithms critically depend on the parameter dimen-
sion. By performing parameter dimension reduction, we are
able to compute highly efficient reduced order models while
capturing a large set of (original) process variables. This
leads to compact reduced-parameter-order models.

5. NUMERICAL RESULTS

Region 1 Region 5…

(1)

(2)

Figure 3: Two coupled lines.

We demonstrate the application of the proposed tech-
niques on several interconnect circuit examples. We apply
the RRR based algorithms to significantly reduce the pa-
rameter dimension and compute the compact parameterized
reduced order models in the reduced parameter space. We
assume that the random interconnect geometrical variations
are independent and Gaussian, although our methodology
can be applied to other types of statistical variations. The
accuracy of our reduced-parameter models as well as the
reduced-parameter-order models are verified by examining
50%Vdd delays and frequency domain responses.

5.1 Two coupled lines
First, we consider two coupled long RC lines as shown

in Fig. 3. The wire width W and thickness T of each line
are both 1 μm, and the dielectric layer thickness H is 0.5
μm. The spacing S between two lines is 0.8μm. We divide
the two lines into five regions and include 20 resistors and
60 capacitors (20 of them are coupling capacitors) in each
region. To realistically relate the RC parameters with the
geometrical parameters, which are subject to process varia-
tion, capacitance values are calculated using the closed-form
formulas based on the geometrical values [18] while the unit
length resistance is calculated using the cross section area
and the conductor resistivity. To model process variations,
in this example for each region we consider four geometri-
cal variations in wire width (W ), wire thickness (T ), wire
spacing (S), and dielectric layer thickness (H). Therefore,
there are a total of 20 variation variables. Since the second
order sensitivities of capacitance and resistance with respect
to the geometry are quite small compared with the first or-
der terms, the R and C values can be safely expressed in the
first order sensitivity in these geometrical parameters. The
3 σ geometrical variation ranges are from 15% to 30%. We
apply the nonlinear RRR-based parameter reduction algo-
rithm in Section 3.2 to generated three parameter-reduced
models with one, two and three parameters, respectively.
Therefore, the maximum parameter reduction achieved is
20x for this example.

5.1.1 Delay distributions
We compare the original model and two reduced-parameter

models by examining the delay at terminal (1) when a ramp
input is applied, as shown in Fig. 3. For the 3-parameter
model, we demonstrate the reduction on the number of ran-
dom samples required to collect the delay distribution when
the 3 σ variations of all parameters are set to be 30%. First,
we perform Latin Hypercube Sampling (LHS) [19] sampling
in the full 20-parameter model to get the delay distribution.
LHS is used as a variance reduction technique to improve
the sampling efficiency. It is observed that a minimum of
4, 000 samples are required in order to get a stable delay dis-
tribution. If sampling in the 3-parameter model using LHS,
it is observed that 800 samples are enough to provide an
accurate estimation of the same distribution. We compare
the PDFs and CDFs of the two models in Fig. 4.

In Fig. 5, we verify the accuracy of two reduced-parameter
models on a per sample basis. We generate 1, 000 statisti-
cal samples in the full parameter space and compute the
reference delay for each circuit sample using circuit simu-
lation. Then, we map these 1, 000 samples in the original
20-dimensional parameter space to the new reduced (1/3 di-
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Figure 4: Comparison of the full and the reduced-
parameter models on the delay PDF and CDF.
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Figure 5: Relative delay errors of the reduced-
parameter models for 1,000 random samples.

mensional) parameter space using (15). For each sample we
obtain the corresponding delay based on reduced-parameter
models and compare it against the reference value. As can
be seen, both reduced parameter models are rather accurate
while keeping three parameters in the model can improve the
accuracy further.

More experiments are conducted on the three reduced-
parameter models in one, two and three parameters, respec-
tively in Table 1. Four different combinations of geometri-
cal variations are considered. For each case, we use 10, 000
Monte Carlo samples in the full 20-parameter model to get
stable estimation of the delay distribution and compute the
mean and the standard deviation (std) as reference values.
Then, we verify the accuracy (relative error in mean/std.)
of the three reduced-parameter models by generating 4, 000
and 800 LHS samples, respectively. As can be seen, 800 LHS
samples of the reduced models can provide quite accurate es-
timations on the mean and standard deviation values while
the three-parameter model is offering an excellent accuracy.

5.1.2 Formation of the reduced parameter space
As shown in Section 3.2, the original set of parameters

in X can be reduced into new variables in Z using a trans-
formation as in (15). From another angle, (15) reveals the
importance of each old parameter with respect to the per-
formance of the circuit in a statistical sense, which can be
clearly understood by examining the weighing coefficients.
For example, the (i, j) entry of matrix Br1 describes the
linear contribution of the jth original parameter xj to the
ith new parameter zi. To show a more clear picture of each
xj ’s statistical importance, we plot the linear weighing coef-
ficients for the first three new parameters (z1, z2 and z3) in
Fig. 6. We designate the variation sources from each of the
five regions using the corresponding the region number. It
is evident that the wire width and thickness variations, es-
pecially those in the first few regions, contribute most to the
new parameters. This result can be well explained by cir-
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Figure 6: Weighing coefficients for the two coupled
lines.

Table 2: Average delay errors of the linear and non-
linear reduced-parameter models for the RC circuit.

Var. of Paras. 1 para. 2 paras. 3 paras.
σW σH σT Lin. Lin. Non. Lin. Non.
15% 10% 10% 1.7% 0.9% 0.7% 0.3% 0.2%
10% 15% 10% 2.0% 1.2% 1.2% 0.4% 0.2%
10% 10% 15% 1.5% 1.0% 0.9% 0.8% 0.7%

cuit intuition. However, our approach provides a statistical
approach to reveal the importance of the variation sources
quantitatively.

5.2 An RC circuit
We consider an RC circuits with 776 circuit unknowns

and 1, 276 RC elements. The nominal wire width and thick-
ness are W = 0.35 μm and T = 0.65 μm, and the nom-
inal dielectric layer thickness is H = 0.65 μm. The cir-
cuit is divided into five regions and three local variations
associated with the above geometrical parameters are in-
troduced for each region, leading to 15 variation sources in
total. 19 widely separated nodes are selected as the output
nodes and are considered in the reduced-rank regression.
We compute three reduced-parameter models in one, two
and three parameters. For a given parameter size, we con-
sider two reduced-parameter models, one computed by the
linear RRR-based reduction (Section 3.1) and the other by
the nonlinear RRR-based reduction (Section 3.2).

In this example, we demonstrate the accuracy of these
reduced-parameter modelings by performing statistical sam-
pling. We generate 500 Monte Carlo samples based on the
full 15-parameter model and compute the circuit delay at
one particular node when a ramp input is applied. We
transform the above 500 samples from the original param-
eter space into the reduced parameter space and compare
the delay differences between the original and the reduced-
parameter models. In Table 2, three parameter variation
combinations with different standard deviations are consid-
ered. For various reduced-parameter models, we compute
the average delay error of the 500 samples by resulting the
delays computed by the full model as reference. We only
give the results of the linear RRR-based model for the one
parameter case because the nonlinear model leads to a al-
most identical accuracy. As observed, the accuracy of the re-
duced model can be improved by including a larger number
of parameters. Unlike the previous example, for this partic-
ular circuit, both the linear and nonlinear RRR models are
fairly accurate. The accuracy can be somewhat improved
by adopting nonlinear models.

5.3 An RC mesh
We consider an RC mesh which is divided into nine blocks
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Table 1: Comparison of delays between the original model and the new model
Variations of Parameters 10K M.C (20 Paras.) 4K LHS Rel. Err. 800 LHS Rel. Err.
σW σH σT σS Mean Std. 20 paras. 1 para. 2 paras. 3 paras.
5% 10% 10% 10% 885.9 ps 52.4 ps 0.00%/1.11% 0.94%/3.96% 0.54%/2.78% 0.01%/0.16%
10% 5% 10% 10% 893.2 ps 68.7 ps 0.00%/0.78% 1.50%/5.44% 0.74%/1.68% 0.00%/1.86%
10% 10% 5% 10% 885.3 ps 51.3 ps 0.00%/2.07% 0.88%/3.32% 0.49%/0.95% 0.21%/0.29%
10% 10% 10% 5% 892.4 ps 69.0 ps 0.09%/0.56% 1.40%/5.67% 0.64%/2.05% 0.73%/2.55%

1 2 3

4 5 6

7 8 9

2.4cm X 2.4cm2.4cm X 2.4cm

Figure 7: An RC mesh with nine blocks.
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Figure 8: The frequency response of the two-
parameter model for the RC mesh.

as shown in Fig. 7. In each block there is an 8-by-8 sub-
mesh containing about 120 resistors and 56 capacitors. The
whole design has 576 circuit unknowns and 1, 609 circuit el-
ements. The nominal wire dimensions are set in a way iden-
tical to the previous circuit example. We neglect the effect
of coupling capacitance since the line spacing is relatively
large. We consider the variations in wire width and thick-
ness (W/T ) and dielectric layer thickness (H) for each of the
nine regions, giving a total of 27 local geometrical variations.
For a single circuit input, we select the first three transfer
function moments of eight circuits nodes located in differ-
ent blocks (as shown in Fig. 7) to be the dependent vari-
ables (observations) in the nonlinear reduced-rank regres-
sion. We compute a two-parameter reduced model and ver-
ify the model accuracy by observing the frequency response
of one selected observation nodes. We conduct Monte-Carlo
simulations using the two-parameter model under three dif-
ferent settings where in each setting we choose the standard
deviation of one variation to be 15% while keeping the stan-
dard deviations of the remaining parameters as 10%. The
mean values and the standard deviations of the frequency
response obtained from the reduced-parameter model are
compared against with the true values (obtained from the
full model) in Fig. 8. In the left plot, the results of the full
and reduced-parameter models are indistinguishable. The
right plot shows the relative errors in the three different
cases. As observed, the two-parameter model is very ac-
curate while reducing the parameter dimension from 27 to
only two.
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Figure 9: Comparison between the full, reduced-
parameter, and reduced-parameter-order models.

5.4 Combining parameter dimension
reduction with model order reduction

In the previous subsections, we have demonstrated the
accuracy of the reduced-parameter interconnect models as
well as the improved efficiency brought by these models in
sampling-based circuit analysis. To tackle the statistical
analysis complexity brought by the high parameter dimen-
sion and the large design size simultaneously, we combine
parameter reduction and model order reduction techniques
to compute compact reduced-parameter-order models. It
should be noticed that the cost of most parameterized in-
terconnect model order reduction algorithms grow exponen-
tially in the number of the parameters, thus a significant
reduction in the parameter space will lead to highly efficient
parameterized models as shown by the following circuit ex-
amples.

5.4.1 Two coupled RC lines
For the two coupled RC line circuit modeled using 204 cir-

cuit unknowns in Fig. 3, we first apply the nonlinear RRR
based algorithm to reduce the parameter dimension from 20
to one and then use the parameterized model order reduc-
tion algorithm in [10] to compute a passive one-parameter
12th-order reduced model. Six transfer function moments of
nodes (1) and (2) are selected as the dependent variables in
the RRR procedure. Since the model order reduction algo-
rithm performs moment-matching with respect to the pro-
cess variable, a direct inclusion of 20 parameters will lead
to an explosion in model size. This difficulty is completely
avoided by performing a reduction in the parameter space
first.

We compare the frequency responses of the full model and
the one-parameter 12th-order model on circuit samples gen-
erated by perturbing all the 20 geometrical parameters by
±10% and ±20%, respectively. In Fig. 9, four samples of
the frequency responses at nodes (1) and (2) are obtained
based on three models: 20-parameter full-order model, one-
parameter full-order model and one-parameter 12th-order
reduced model, are plotted. We also plot the transfer func-
tions of three circuit nodes located in different regions (as
shown in Fig. 10). Not surprisingly, the accuracy of the
reduced models becomes worse at the node (region 2) that
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Figure 11: Frequency responses of various models
for the RLC line.

is far away from the observation nodes (nodes (1) and (2)
in region 5) used in the RRR procedure.

5.4.2 An RLC line
We apply the same reduction procedure to an RLC line.

The line is 4 mm long and it contains 120 resistors, induc-
tors and capacitors. We divide the line into ten regions
and each region has three geometrical variations with the
nominal values as: wire width W = 1.2 μm, wire thickness
T = 1μm, and dielectric layer thickness H = 1 μm.

Again we apply the nonlinear RRR algorithm to reduce
the number of the variation parameters from 30 to one ,
resulting a 30x reduction. Then a one-parameter reduced
order model is computed, which has a size of 16. We intro-
duce ±25% variations on all 30 geometrical parameters to
generate a set of circuit samples.

In Fig. 11, two circuit samples are selected and the full
model, the one- parameter full model and the one-parameter
16th-order reduced model are compared in terms of the fre-
quency response at the output. These models show indis-
tinguishable curves for the lower frequency band. The error
produced by the reduced models in the high frequency re-
gion is well expected since the first three transfer moments
expanded at DC are used as observations in the RRR pro-
cedure. Including other moments into the regression model
will improve the accuracy. The linear weighing coefficients
of the first three new parameters are plotted in Fig. 12.
Similar trends (Fig. 6) have been observed.

6. CONCLUSIONS AND FUTURE WORK
A performance-oriented statistical parameter reduction

algorithm is proposed based on reduced-rank regression. This
novel approach enables us to analyze interconnect varia-
tions by reducing the cost of sampling-based simulation and
generating very compact parameterized interconnect mod-
els with only a few compressed parameters. We are cur-
rently extending the proposed parameter reduction tech-
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Figure 12: Weighing coefficients of the RLC line.

nique from interconnect modeling to more challenging non-
linear analog circuit problems while achieving encouraging
initial results. It is expected that the proposed parameter
reduction technique and its extensions will facilitate effec-
tive circuit/system-level variation modeling for a variety of
circuit applications.
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