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ABSTRACT
Assessing the correctness of a digital design is a challenging
task hampered by extremely large circuit netlists, counter-
intuitive property descriptions and ill-defined specifications.
In this paper we propose a new verification methodology,
inspired by the principle of least astonishment. The under-
lying idea is to provide an automatic assessment of what
constitutes “common behavior” for a system, and use this
to detect any anomaly in the design. Deviant behavior
is presented to the verification engineer through intuitive,
compact diagrams which lend themselves to quick inspec-
tion for correctness. To enable this methodology we in-
troduce Inferno, a new tool which can analyze the results
of a logic simulation trace and automatically extract high-
level diagrams representing the design’s transaction activity
across any user-defined interface. In addition, Inferno can
automatically generate a checker module corresponding to a
given transaction, suitable for use in a wide range of verifica-
tion methodologies. We envision the deployment of Inferno
in a closed-loop constraint-random simulation methodology
where any new transaction detected on the interface is pre-
sented to the user for analysis and, once deemed legal, it is
merged into an “approved transactions” checker, which flags
the detection of any new type of transactions. We provide
a series of examples and experimental results to show the
effectiveness of Inferno and some of its possible uses.

1. INTRODUCTION
As hardware designs continue to grow in complexity and

time-to-market pressure intensifies, hardware designers and
verification engineers must respond with ever-higher stan-
dards of productivity and quality. In fact, in many cases the
success of the project depends on producing a sufficiently
correct system at first tape-out. Formal and semi-formal
verification can greatly reduce the risk of bugs escaping to
silicon, but they require a significant investment of time and
effort on the part of the verification team. Moreover, they
typically require the user to manually specify the proper-
ties of the design which are to be proven, by deriving them
from a high-level, qualitative specification document, com-
plemented by their personally understanding of the system’s
functionality. Writing such properties – or checkers, when
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used in a simulation-centered methodology – is non-trivial
in the best case, and, when the verification engineer is not
completely familiar with the details of the implementation,
it can verge on the impossible. Designers, who understand
the inner workings of their own component, lack knowledge
of the system at a global level and of the complex interac-
tions between components; hence they are not in a position
to describe complex properties, which usually affect multi-
ple components. Recent literature provides a number of real
world experiences reporting on the complexity of running a
formal verification methodology in an industry context even
on a very small part of the design, and on the challenges of
verifying a complex system in general [12, 4]. Many factors
contribute to make the verification task so error-prone and
complex; however, more often than not these factors relate
to the models used to describe the system:
• Designs are commonly described at the register-transfer
level, which flattens the design into an amorphous structure
from which it is difficult to distinguish control signals from
data busses and to discern the role of different control nets.
• The most common software tools supporting the under-
standing of a design’s behavior are waveform viewers. Their
use is very cumbersome, requiring an engineer to visually
inspect complex waveforms over millions of cycles in the at-
tempt to understand the dependency chain between events
and detect a design error.
• Property languages are usually declarative, making it par-
ticularly hard for a verification engineer to express a desired
functionality to be verified. This is particularly true for
cross-module properties, whicj may involve many signals in
complex expressions, with the result that often the property
is harder to debug than the design itself.

Clearly, any way of reducing the user effort required by the
formal verification process would be of great use. In particu-
lar it would be greatly beneficial if abstract design behavior
could be extracted automatically and presented for anal-
ysis to the verification engineer through structures which
are intuitive and compact, thereby avoiding the need to in-
spect a large quantity of code or waveforms. Verification
could then focus on checking the correctness of the high-
level transactions, thus eliminating cumbersome activities
and error-prone inspections such as those described above.

Contributions. The goal of the solution presented in
this paper is to i) lower the barrier for the understanding of
the activity of a system across a user-specified communica-
tion interface, and ii) provide a mechanism to automatically
detect when anomalous activity is observed at that interface.
In this context, anomalous activity stands for interactions
that engineers have not yet understood or seen, which are
as such potential indicators of hidden bugs. We achieve the
first goal by providing a novel algorithm and a tool to auto-
matically extract the high-level communication activity at
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any user-defined interface within a design (it could be the
interface between two design components, or a set of signals
within a single module). By raising the level of abstraction
of the interaction protocol, it is easier to inspect and evalu-
ate the correctness of the communication activity. It is also
easier to detect any anomalous transaction, possibly indica-
tive of a hidden bug. This second observation suggests a
new verification methodology where the correct behavior of
a system is not defined a priori through a set of complex
properties, but instead it is surmised by analyzing the set of
transaction activities detected by our tool, which can also
be checked against a specification document. The second
goal of this work is to provide a means to automatically de-
tect when, in a constraint-based random simulation setting,
a new “uncertified” transaction is observed. We achieve
this by means of an automatic transaction checker gener-
ator which can be embedded in the system during simula-
tion. This methodology is inspired by the informal principal
of least astonishment which, applied to the world of design
verification, says that bugs are likely to hide in the anoma-
lous, or uncommon, behavior of a design. To support these
two goals we developed Inferno, a software tool which can
analyze the activity of a design interface during logic sim-
ulation and summarize the transactions observed through
simple and intuitive diagrams. In addition, Inferno has the
ability to automatically generate a checker flagging any un-
certified transaction, making it suitable for deployment in a
closed-loop random simulation environment where each new
transaction is flagged and presented to the user in diagram
form. If deemed correct, it is merged into the transaction-
checker, which becomes incrementally complete. Otherwise,
the design is updated and the process can restart.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of related solutions both in the
hardware and software verification domains. Section 3 gives
an overview of the Inferno architecture and its use in the
context of current checker-based and coverage-driven verifi-
cation methodologies. Sections 4 to 6 present the extraction,
analysis and checker-generation algorithms which enable In-
ferno to provide the high-level transaction models mentioned
above. Finally, Section 7 and 8 provide experimental results
and outline future research directions.

2. PREVIOUS WORK
A number of previous works have dealt with the problem

of automatically generating properties and specifications for
both software and hardware. On the hardware front, Hangal
et al. [10] have proposed a tool to extract simple “proba-
ble” properties (e.g., one-hot or mutually exclusive signals)
through simulation trace analysis, which can then be fed to
a formal property checker for verification. In [9], the authors
propose a more general approach to automatic property ex-
traction, by evaluating a wide range of possible “time rela-
tions” between group of signals. Our solution shares with
this line of research the idea of extracting design behavior
automatically from a simulation context; however, we at-
tack the problem as a high-level modeling one, by extracting
transactions observed at a user-selected interface. Moreover,
although the authors of [9] attempt to generate all possi-
ble properties, they do not differentiate between data and
control, thus a common control sequence (or transaction)
will likely go undetected unless it is observed many times
with different data. In contrast, we are able to recognize

a transaction even if it occurs only once in the execution
trace. The software verification community, faced with sim-
ilar challenges, has arrived at some solutions which are also
relevant. Ernst et al. [8] have proposed Daikon, which an-
alyzes software execution traces to suggest a list of possible
properties (or annotations) for use with the static checker
ESC/Java. Properties can also be generated using static
analysis, as in [3], where, however, the approach requires
that the program be first translated into a state machine.
Ammons et al. perform analysis to generate a specification
of the API in the form of “scenarios” describing common
sequences of instructions [1], while Yang derives constraints
on the order of occurrence of instructions [13]. The value
of such scenario- or transaction-based simulation and anal-
ysis is well recognized. Brahme et al., for instance, have
developed a system to allow verification engineers to write
testbenches and analyze results at the transaction-level [5].
Our tool brings the benefits of transaction-based analysis
to register-transfer level testbenches. Two additional im-
portant differences of our contributions with respect to the
solutions outlined above are that i) we restrict our focus to
control signals, so that we can abstract away the data and
determine the set of transactions of the system, and ii) In-
ferno is not restricted to identifying a predetermined set of
properties, but can analyze any control sequence observed
in simulation.

A key idea driving the development of our approach lies
in the empirical observation that bugs are more likely to
be hidden in behavior which deviates from the norm; this
is especially true as the verification process progresses and
bugs become harder and harder to locate. In the verifica-
tion methodology which we envision for Inferno, transac-
tions which have not been previously seen are suspected to
be faulty, and hence must be inspected by a user. This ob-
servation has also been explored in the context of software
verification, for instance by Engler [7]. An example reported
in [7] suggests that if a pointer dereference is normally as-
sociated with a null-check, then the one location where the
null-check is missing might be an oversight. Again, in or-
der to detect such aberrant behaviors, one must first have a
good picture of what the expected behaviors are.

Finally, we have the additional objective over the previous
literature of presenting the user with a high-level, intuitive
model of the activity observed, to improve the understand-
ing of the design and its correct behavior in the form of
transaction diagrams. This contribution has similarities to
the work of Arts et al. in the software world [2].

3. INFERNO ARCHITECTURE
In this paper we present Inferno, a software tool which an-

alyzes a simulation trace to “learn” about the behavior of a
design under verification. It then presents the user with in-
tuitive diagrams describing the observed behavior as a high-
level model, involving only key control signals. Inferno can
automatically split the sequence of signal activity observed
during simulation into transactions, basic sequences of ac-
tivity which, when composed together, form possible execu-
tion scenarios. The user can use the transaction diagrams
to learn about the design’s behavior (when Inferno is run
over a set of known-correct testbenches) or to quickly evalu-
ate the correctness of the communication protocol across the
interface of interest (for instance, when the trace is obtained
from constrained-random simulation).
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In addition, Inferno can automatically generate property
checkers, in the form of Verilog assertions, corresponding to
the transactions observed (and approved by the user) for
direct use in any verification methodology:

• In a coverage-driven verification methodology, the dis-
tinct transactions observed, and the number of obser-
vations at a given interface provides a valuable metric
to track the progress of verification.

• In constrained-random simulation, Inferno can main-
tain a set of “approved” transactions, and the checkers
can flag the detection of any newly observed ones. A
new transaction is then transformed into a high-level
diagram for user inspection. If deemed correct, a cor-
responding checker is generated, merged into the set
of approved transactions, and the simulation can con-
tinue. Otherwise, the design is modified to correct the
exposed bug. A possible terminating condition can be
set to a fixed number of simulation cycles with no new
transactions detected. A high-level flow of this veri-
fication methodology is illustrated in Figure 1. Note
that the known pool of transactions can be re-used
across multiple versions of the design to quickly re-
approve the correctness of an interface.

• Finally, once the user believes that the full set of possi-
ble distinct transactions has been observed, the checker
generated by Inferno can be used in a formal verifica-
tion context, to prove that, in fact, no other transac-
tion can be generated at the interface under analysis.
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Figure 1: Closed-loop simulation with Inferno. In-
ferno can be used in a simulation methodology to automatically
detect potential bugs. An initial set of approved transactions is
extracted from a known-correct direct-simulation trace and the
corresponding set of generated checkers is placed with the design.
If, during the following constrained-random simulation, any new
transaction is detected, it is submitted in diagram form to the
user. If approved, the corresponding checker will expand the ini-
tial known set and the process continues; if not a bug has been
exposed and the design modified.

From a structural standpoint (see also Figure 2) Inferno
takes as input i) a small configuration file listing either a
design module whose I/O interface is the target of the anal-
ysis or the specific signals to consider, ii) a simulation trace,
and iii) the design under verification. This last input is only
needed to determine the signals’ directions at the interface
of choice. The interface which Inferno considers for its anal-
ysis is a very flexible concept: it can be a communication
interface of the design (such as a module I/O) or it can be
custom-crafted from any combination of signals within the
design. When the interface is specified as a module I/O,
additional filters can be applied: for instance Inferno can

automatically disregard all “busses”, that is interface sig-
nals whose bit width is more than a user-specified constant.

Inferno then proceeds to process the simulation trace to
extract and record the values observed over time on the in-
terface signals. Each distinct “snapshot” of values consti-
tutes a new vertex in the high-level diagram describing the
interface protocol. Two vertices are connected by an edge
to indicate that the two snapshots are subsequent. At this
point Inferno can proceed in multiple ways: i) it can present
the structure it has already learned as a monolithic diagram
showing all the distinct activity observed at the interface un-
der study along with its observed time dependency, called a
Protocol diagram, or ii) it can further analyze the snapshot
sequence and break it into distinct transactions presented
as Transaction diagrams (for instance, in the case of a bus
protocol, possible transactions are read, write, burst read,
etc.). Section 4 describes in detail the algorithms involved
in this analysis. The resulting diagrams are presented to
the user for visual inspection and can be automatically con-
verted (and simplified) into Verilog checkers.

Inferno

Design

Simulation 
trace Transaction 

diagrams

Verilog 
Checkers

User specifies module to analyze 
or may select signals directly

Figure 2: Inferno Architecture. The user selects a de-
sign module I/O or a specific list of signals to monitor. Inferno
observes the values assigned to these signals over the course of
a simulation run. It then analyzes the trace, extracting a list of
transactions and presenting them in the form of high-level dia-
grams. In addition, it generates from the diagrams a set of opti-
mized checkers, which can be used to detect any new transaction.

4. EXTRACTING TRANSACTIONS
This section presents the algorithms we have developed

to extract the protocol and the transactions observed at the
interface under observation. To build these diagrams, In-
ferno extracts the direction of each signal which is part of
the interface under observation and processes the simulation
trace to detect any value change on the signals of interest.

4.1 Generating Protocol Diagrams
Protocol diagrams are generated by building a directed

graph with a vertex for each distinct pattern of values ob-
served at the interface under study. Edges connect vertices
which are consecutive in time; that is there is an edge from
vertex A to vertex B if the interface transitioned from con-
figuration A to configuration B during simulation. Practi-
cally speaking, vertices in the Inferno diagrams represents
“snapshots” of values observed at the interface under analy-
sis. Note that, due to our construction technique, there are
no two vertices corresponding to the same set of interface
values in a protocol diagram. Each vertex is labeled with
the corresponding values observed at the interface, separat-
ing the two possible signal directions. In addition, we label
each edge with the value changes which lead from the source
vertex to the sink one.
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Example 1. Consider a bus interface with the follow-
ing I/O signals: ack[1:0] as input, and cyc and stb as
outputs. During simulation, we observe the following inter-
face sequence: (00, 00)@0, (00, 00)@1, (00, 10)@2, (00, 11)@3,
(00, 11)@4, (00, 11)@5, (10, 11)@6, (10, 11)@7, (00, 10)@8 and
(00, 00)@9 (subscripts indicate simulation times). Inferno’s
protocol diagram generator will produce a diagram with five
vertices: A:00, 00, B:00, 10, C:00, 11, D:10, 11 and E:10, 00.
The directed edges in the diagram are: A→B, B→C, C→D,
D→B and B→A. Note that the protocol diagram abstracts
away the absolute time, and only tracks time dependencies
between events. 2

This relatively simple procedure is already quite useful:
it reduces a trace, possibly tens of millions of cycles long,
to one compact image showing transitions at the interface.
If an undesired behavior occurs only a few times over the
course of a long regression suite, chances of identifying it
through a waveform viewer are very slim, however it stands
a much better chance of being detected as an anomalous
vertex or edge in the corresponding protocol diagram. The
case study of Section 6 shows an example of this situation.

4.2 Generating Transaction Diagrams
The analysis to extract transactions starts by processing

the entire trace, labeling each distinct combination of values
observed during simulation, and hence generating a chain
of labels corresponding to the sequence of distinct config-
urations observed at the interface. Transactions are then
identified by properly partitioning this initial chain of la-
bels. In informal terms, a transaction is simply a sequence
of events corresponding to a particular high-level operation,
for instance a read or write to a bus, a cache, or a memory.
In general a transaction is a sequence which can be easily
understood as a high-level operation. On the other hand,
given a sequence of events, there are many different ways
to group them in transactions. Our objective is to define
ways of grouping events which lead to many repetitions of
few distinct transactions. We found that a technique which
gives good results exploits the fact that most interfaces are
designed by engineers reasoning through high level transac-
tions, hence they tend to create very well-defined transaction
boundaries in the design behavior. A key aspect in the con-
cept of transaction is that a system generates or processes
only one transaction at a time. Hence, there must be one
or more signal values or transitions indicating the end of a
transaction and the beginning of the next. In the simplest
scenario, the user can specify which signal values or tran-
sitions correspond to transaction boundaries (for instance,
in a Wishbone protocol, the assertion or de-assertion of the
stb signal). However, in general, Inferno must infer the
transaction boundaries from the trace itself. We proceed by
refining the partitioning of the chain of labels into transac-
tions through multiple passes. Below, we describe all phases
of this process, and report the related pseudocode in Figure
3.

Boundary label. (lines 2, 4-5) The first pass identifies
the first label of the chain that is repeated (called the bound-
ary label). Specifically, we consider the first label to be re-
peated in a trace to mark the end of a transaction. Hence,
we proceed in breaking the chain of labels at each occur-
rence of the boundary label. While this is not the only vi-
able technique to identify transaction boundaries, we found
experimentally that it works well in practice. It can be justi-

fied by noting that the stable interface value at the end of a
reset sequence almost certainly marks a transaction bound-
ary (though not necessarily the only one), and frequently it
is also repeated at the completion of each transaction, hence
it is observed in simulation as the first repeated label.

We also considered an alternative approach of setting the
boundary label to the label with the highest number of oc-
currences in the trace. Intuitively, this suggests that we
should extract the highest number of simple transactions.
However, in practice, we have not found this second ap-
proach to work well. We believe the reason may lie in the
fact that the first solution creates a better correspondence
with the transaction design intent.

Loop folding. (lines 6-11) The second refinement iden-
tifies loops within a transaction. A typical scenario is a
burst-read transaction, where a read sequence is repeated
multiple times within a transaction. Clearly all burst-reads
should be matched as the same transaction, regardless of
the specific number of read operations. We can do so by
identifying loops and then matching transactions which are
identical except for the number of loop repetitions.

Boundary refinement. (lines 3, 13-17) The transaction
extractor algorithm described so far works well in the case
where all transactions end with the same label. When this
is not the case, it fails to detect some of the boundaries, and
two or more transactions may be clustered into a single one.
The last refinement phase addresses this problem. It consists
of one final pass through all the transactions identified so far
checking if any transaction A is the suffix of another trans-
action B. That is, if B has a preamble after which it matches
A completely. In this case, we can reasonably conclude that
the boundary between them constitutes a new transaction
boundary. At this point, we repeat the extraction process
using the new boundaries in addition to the original one
(and refine them through loop folding). The process can
be repeated multiple times until it converges. However, we
found that usually one additional pass is sufficient.

1 TransactionExtractor (labels chain) {
2 new boundary set = first repeated label
3 do {
4 boundary set = new boundary set
5 partition chain into segments,cut at boundary set
6 for each segment {
7 identify all repeated sub-segments
8 for each repeated sub-segment {
9 count number of occurrences
10 modify transaction to only one repetition
11 }
12 }
13 for each distinct segment pair (i,j) {
14 if (j is contained in i) then
15 new boundary set += label ending (i-j)segment
16 }
17 } while (new boundary set != boundary set)
18 }

Figure 3: Transaction extractor algorithm.

At the end of this process we automatically generate a
set of graphs, each showing a distinct transaction with ver-
tices corresponding to the labels and edges corresponding to
transitions between them. For each transaction we indicate
the number of times it occurred, and the initial simulation
time at which it was observed.

Example 2. Consider a scenario where the initial chain
of labels generated for the transaction diagrams is A, B, C,
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A, B, C, B, C, A, D, B, C, A. The first repeated label
is A, hence the initial boundary segmentation produces 3
transactions: (B, C, A), (B,C, B, C, A), (B, C, D, A). The
loop folding algorithm will then fold the second transaction
and leave only two transactions: (B, C, A) and (D, B, C, A).
Finally, the last refinement discovers that D is also a trans-
action boundary since the first transaction is a suffix of the
second one. The final set of transactions is then: (B,C, A)
and (D). 2

While we have emphasized the usefulness of these dia-
grams for an engineer interested in learning more about the
operation of the design, they have other benefits as well.
For instance, similar to what Ammons [1] suggests, we can
compare several instantiations of the same module to check
if they generate the same diagrams. If not, the test cover-
age for some of them may be insufficient. Alternatively, we
can produce a new set of diagrams for each revision of the
design, enabling easy detection of unintended changes. We
can also use Inferno to compare different modules which are
intended to follow the same protocol. If they do not appear
to correspond, either one or both of the designs is incorrect
or the testbench stimulus is inadequate.
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u0: 000

s1: 00
u0: 000

s1: 00
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s1: 00
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s1: -0
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Figure 4: Protocol diagram for a Wishbone DMA.
Each vertex represents a distinct combination of interface val-
ues. Edges corresponds to transitions from one combination to
another. Vertices are labeled with the corresponding interface
values. Grey vertices and bold edges show the correspondence
with the transaction shown in Figure 5.

4.3 Example: Wishbone DMA
Examples of both protocol and transaction diagrams for

an interface following the Wishbone protocol are shown in
Figures 4 and 5. The protocol is primarily intended to allow
communication between separate modules in a system-on-a-
chip design, where a number of IP cores, possibly of differ-
ent origins, must interface with each other. The design from
which this diagram was extracted is a DMA (direct mem-
ory access) controller but we focus only on the Wishbone
interface. Although the protocol provides for more complex
cases, the only signals active in this design are cyc, stb,

and we from the master, u0, and ack and err from slave
s1. cyc is asserted and kept high throughout the course
of each transaction, while stb is raised at each operation
within the transaction. The we signal is asserted for writes
and de-asserted for reads, ack indicates that the slave has
finished processing the operation on its end, and err flags
error conditions. The protocol diagram shown in Figure 4
includes all states and transitions observed over the course
of an (extensive) regression test. Figure 5 shows the burst-
read transaction, one of eight transactions extracted from
the same run. The diagram shows that the transaction starts
with cyc being asserted, followed by the assertion of stb to
start the first operation. Since we is de-asserted, read is
performed. When the ack is received, stb is lowered to end
the operation. The burst-read transactions observed during
simulation may repeat the read sequence up to three times.
At the end of the transaction, cyc is finally lowered.

3-1 times

Figure 5: Transaction diagram for burst-read. The
graph shows each stage of the transaction through a vertex corre-
sponding to the values combination at the interface under study.
The dashed edges highlight the loop, which is to be repeated 3
times as specified. From the diagram, it is easy to recognize the
transaction’s preamble, core part and trailer. Edges are labeled
by the corresponding signal transitions, where a rising arrow rep-
resents a rising edge and a falling arrow a falling edge.

5. TRANSACTION CHECKERS
Once a user has inspected and approved the transaction

diagrams, Inferno can automatically generate checkers in
register-transfer level (Verilog) form corresponding to each
transaction. These checkers can be used in a range of dif-
ferent verification contexts to improve the confidence in the
correctness of the design, as discussed in Section 3. It is not
unreasonable to say that by extracting transaction diagrams
from a simulation trace, Inferno develops an “understand-
ing” of the design, which it can use to generate transaction
checkers. In practice, we attain this goal using the set of
vertices and edges of a transaction to establish the legal
behavior of the system. For each vertex, we generate an
expression corresponding to all legal outgoing edges from
it; then we build the transaction checker as the disjunction
of all these expressions. The initial vertex is used to ac-
tivate the checker. If the design performs a transition not
described in the checker, the fail output signal is raised
to flag a potential problem. Our initial automatically gen-
erated Verilog description is then sent through a synthesis
tool and optimized. In our experiments we found that SIS
[6] was sufficient to handle the complexity of the netlists
generated. Alternatively, commercial synthesis tools, such
as Synopsys’s Design Compiler, can be used.

A checker accepting a number of separate transactions
can be easily generated by combining the “fail” outputs of
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the individual checkers. This divide-and-conquer approach
to describe a complex set of transactions has proven to be
helpful in reducing the checker complexity. We wanted to
verify that no un-approved transaction was occurring in the
Wishbone example of Section 6. The checker describing all
possible activity of the interface was too complex to be man-
ageable in synthesis and simulation. However, when we ex-
pressed the checker as a composition of multiple transaction
checkers, we were not only able to verify that the checker
was an invariant across the entire simulation, but also ob-
serve which transactions was occurring. The checker gener-
ator can also be used to verify coverage. By expanding a
checker to detect when the final vertex of a transaction has
been observed and to include a “complete” signal, we can
easily count the occurrence of each type of transaction in a
coverage-driven verification context. Additional uses of the
transaction checkers have been described in Section 3.

6. LEARNING FROM TRANSACTIONS
We discussed in Section 3 a number of verification method-

ologies where Inferno can be effectively deployed. In the
context of design development, situations may arise when
a clear specification of the interface protocol is missing. In
this scenario Inferno can be key in developing a common
understanding of the protocol through visual inspection of
the diagrams, hence eliminating potential complex interface
bugs. A typical example is that of interfaces between in-
house components and third-party IP cores, where details
of the interface may be ambiguous and access to the design-
ers scarce. The benefits of high-level transaction modeling
in Inferno are illustrated by the following case study.

While analysis results of stable designs provide interesting
examples, it is ultimately more valid to observe the possi-
ble uses of a tool in a real world setting. By lending our
assistance to a group of student designers, we were able to
observe the beneficial effects of the protocol and transaction
diagrams, both in terms of direct bug-finding (i.e., identify-
ing bugs simply by examining the diagram), and in terms of
checking the equivalence of two instantiations of the same
module over the course of a single test (which revealed a
major difference in the coverage of the two modules).

The students were engaged in a project to design a dual-
core Alpha processor with independent voltage and frequency
scaling incorporated into the two cores. Each core had its
own L1 instruction and data caches, and they shared a L2
cache using the MESI protocol. Only one concurrent access
to the L2 cache was allowed, leading to the need for arbi-
tration. Moreover, since the L2 cache always operated at
the maximum frequency and voltage, while the cores could
operate at lower frequencies and voltages, the interface be-
tween the L1 and L2 caches was asynchronous. The initial
division of labor vastly underestimated the complications of
the cache protocol and allocated only one of the four engi-
neers to design all of the cache controllers and arbitration
logic. As the deadline approached and the caches still could
not pass simple tests, it became clear that this had been a
mistake. The other three designers were recruited to aid in
the debugging of the caches. However, they had very lit-
tle familiarity with that part of the design. The original
designer and one other engineer began together to analyze
the system with a waveform viewer. At the same time, the
other two team members (neither of whom was familiar with
this part of the design) decided to put Inferno to use. The

design was so far from being operational that it was impos-
sible to generate a trace long enough to reliably determine
the transactions; however, they could obtain a protocol di-
agram as the one shown in Figure 6, which they proceeded
to analyze. Over the course of the same night, despite the
significant difference in their background knowledge, both
teams independently discovered the same bug. As indicated
in Figure 6, the protocol diagram contains a transition from
the idle state to a state where the signals indicate that there
is data ready from the L2 cache. The most näıve examina-
tion suggests that this is suspicious, since there has obvi-
ously been no request for data from the L1 cache. Further
investigation revealed that it was, indeed, a bug. The dia-
gram for the corrected version is the same except that the
marked transition is missing.

This case study also exposed the benefit of Inferno in eval-
uating the quality of a testbench suite. We set up an ex-
periment which compared the transactions detected at the
interface of two separate instantiations of the same module
– since there were two cores, almost every module was du-
plicated. Once the design was sufficiently stable to execute
simple programs, transactions were generated for the inter-
faces of the arbiter with each of the cores. The results were
dramatically different, with only one transaction in common.
Further analysis showed that this was because the two cores
were executing the same program on the same data; hence,
the one which accessed the L2 cache first would always be
the first to request new data, while the other would always
find the cached values ready. Consequently, the transactions
were very different at the two interfaces: one would have all
misses and the other all hits. This result was key in driv-
ing the development of more varied testbenches, leading to
diversified coverage on both instances.

7. EXPERIMENTAL RESULTS
To evaluate the quality of our solution, we have exercised

Inferno on a number of widely varying designs: the Wish-
bone DMA described in Section 4.3, the PCI interface of
a PCI bridge, one of the cache arbiters in the dual-Core
Alpha processor from Section 6, a Serial Parallel Interface
(SPI) interface, the interface between the execute and mem-
ory stages of a Z80, a set of FIFO queues, a Reed-Solomon
decoder, and a USB protocol design. All but the cache ar-
biter testbench are available in [11].

Testbench gates FF cycles if.nets

Wishbone DMA 1,972 672 1,759,678 5
PCI protocol 334 95 8,298,177 13
Dualcore Alpha 109,441 22,608 9,310 10
SPI protocol 4,578 1,345 1,999 9
Z80 µp 3,628 277 14,436 16
FIFOs 4139 2091 2612259 12
R.-S. Decoder 987 231 272 19
USB 292 98 1517565 13

Table 1: Testbenches characteristics and setup. The
table shows for each testbench: number of gates and flip-flops,
the number of simulation cycles in the input trace for Inferno,
and the number of nets (signals) which are part of the interface.

Table 1 provides a brief characterization of the experi-
mental testbenches and Table 2 lists the results of our anal-
yses. As shown in Table 1, the number of bits monitored
on any one interface ranges from 5 to 16, and the lengths
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Figure 6: Protocol diagram for the cache arbiter interface in the dual-core Alpha processor. Notice that the labeled edge
shows the interface leaving idle state and entering a configuration where the arbiter signals data ready from L2 cache. This is clearly a
bug, since no one has requested any data, and yet it is there. This case study presents a situation where direct inspection of a simple
protocol diagram yields insightful understanding and debugging support.

of the simulation traces to be analyzed vary up to 8 mil-
lion cycles. Table 2 shows that the bus interfaces and cache
arbiter have a number of well-defined transactions which
we are able to detect, while the pipeline stage interface of
the Z80 does not follow a clear transaction pattern, as one
would expect. Only three potential transactions could be
identified for the Z80 interface, and inspection of the results
suggests that these are not actual transactions, but simply
coincidental loops of instruction sequences in the testbench.
Surprisingly, only three transactions were identified for the
SPI interface. Further inspection of the resulting diagrams
reveals that these do indeed correspond to behavioral trans-
actions, and the small number just reflects the simplicity of
the protocol: they are really the only transactions which can
occur. The other protocols all respond well to the analysis,
yielding a number of transactions.

Testbench prot. distinct total repeat

nets transact. states states

Wishbone DMA 5 8 10 10
PCI protocol 13 208 310 60
Dualcore Alpha 10 6 13 7
SPI protocol 9 3 28 1
Z80 µp 16 3 23 1
FIFOs 12 4 59 54
R.-S. Decoder 19 3 22 3
USB 13 40 25 20

Table 2: Transaction analysis. The table reports for each
test the number of signals in the interface, the distinct trans-
actions which Inferno could extract from the simulation trace,
the vertices in the protocol diagram, and the number of interface
configurations which are part of more than one transaction.

We also note that in all cases, including the Z80, the num-
ber of distinct configurations actually observed at the inter-

face (and therefore assumed to be legal) is far smaller than

the number of possible states, that is, 2(#signals monitored),
supporting the argument that protocol and transaction di-
agrams are actually a much more compact way to evaluate
the behavior of a system compared to a waveform viewer.
It also indicates that the checkers generated are fairly com-
pact, since they only span the small set of configurations
actually observed. Moreover, the protocol diagram has few
transitions compared to a clique, suggesting that the ex-
traction of transaction is indeed beneficial in understanding
the transition patterns between distinct interface configura-
tions. This point is also supported by the observation that
the configuration is frequently repeated in more than one
transaction, suggesting that it is not only the combination
of signals itself, but the context in which it appears, which
should interest us.

Finally, we have plotted the detection of transactions over
time (measured in simulation cycles) for three designs with
significant numbers of transactions. In Figures 7, 8 and 9
we marked the simulation cycle of first discovery for each
transaction. Note the periodic bursts in new transactions
observed, which could correspond to when the regression
testsuite switches to a new phase, stimulating different as-
pects of the design.

8. CONCLUSION
In this paper we presented Inferno, a software tool to au-

tomatically extract, or infer, transactions from a simulation
trace over a user-selected interface. Inferno presents the re-
sults of its analysis through intuitive “protocol diagrams”,
reporting the overall protocol observed at the interface, and
“transaction diagrams”, showing the flow of each distinct
type of transaction detected. In addition, Inferno can au-
tomatically generate transaction checkers in Verilog, that
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is, checkers which monitor the execution of a transaction.
Checkers can be used in the context of a constrained-random
simulation, or a coverage-driven methodology, and also in a
formal verification setting.

Dual-Core Alpha processor - arbiter protocol
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Figure 7: Cache arbiter. Number of distinct transactions
detected over time for the cache arbiter of the dual-core Alpha.
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Figure 8: Wishbone DMA. Number of distinct transactions
detected over time for the Wishbone DMA design.

In the context of random simulation-based verification,
Inferno enables a novel verification methodology, inspired
by the principle of least astonishment, by automatically ex-
tracting any new transaction observed at the selected inter-
faces, and presenting it to the user for evaluation through
simple, high-level diagrams, thus allowing a verification en-
gineer to focus in on the uncommon aspects of a design’s
behavior, in the hope of uncovering hidden bugs. The case
study in debugging a dual-core Alpha processor demonstrates
Inferno’s usefulness in practice, even for large designs. In
addition, experimental evaluation on a range of designs in-
dicates that Inferno is effective in summarizing the common
behavior of a system and presenting it to the user through
simple and intuitive diagrams. We plan to explore this
methodology further by developing additional techniques to
decompose the inherent structure of an interface activity
into simple components and by investigating more scalable
solutions for our assertion generation engine.
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