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Abstract: SAT-based Bounded Model Checking (BMC) has 
been found promising in finding deep bugs in industry designs 
and scaling well with design sizes. However, it has limitations 
due to requirement of finite data paths, inefficient translations 
and loss of high-level design information during the BMC 
problem formulation. These shortcomings inherent in Boolean-
level BMC can be avoided by using high-level BMC. We 
propose a novel framework for high-level BMC, which includes 
several techniques that extract high-level design information 
from EFSM models to make the verification model “BMC 
friendly”, and use it on-the-fly to simplify the BMC problem 
instances. Such techniques overcome the inherent limitations of 
Boolean-level BMC, while allowing integration of state-of-the-
art techniques  for BMC. In our controlled experiments we 
found signficant performance improvements achievable by the 
proposed techniques. 
 
1. Introduction 
To cope with the increasing design complexity and demand to 
reduce design cycle time, the focus has shifted towards 
supporting high-level design abstraction, synthesis and 
verification methodologies. At the Boolean-level of design 
representation, SAT-based Bounded Model Checking (BMC) 
[1-4] due to several advancements — improved DPLL-style 
SAT solvers [5], on-the-fly circuit simplification [6, 7],  and 
SAT-based incremental learning [3, 7, 8] — has been gaining 
wide acceptance as a scalable verification solution compared to 
BDD-based symbolic model checking [9].  With advent of 
sophisticated SMT solvers [10-15] built over DPLL-style SAT 
solvers, SMT-based BMC [16, 17] is also gaining popularity.  
Unfortunately, we do not see a similar level of maturity and 
advancements in verification efforts at higher levels of 
abstraction. This is mainly due to higher theoretical complexity, 
and a wide engineering gap between theoretical and practical 
solutions at the higher levels.  To reduce this gap, we propose a 
framework to efficiently perform high-level BMC using SMT 
(Satisfiability Modulo Theory) solvers that overcome the 
inherent limitations of SAT-based Boolean-level BMC, while 
allowing integration of state-of-the-art techniques adopted for 
Boolean-level BMC. In this framework, we apply three novel 
techniques to accelerate high-level BMC (as shown in Figure 1): 
• efficient extraction of high-level information,  
• its use to obtain a “BMC friendly” verification model 

through model transformations, and  
• its on-the-fly application during BMC to simplify BMC 

problem instances. 
  
1.1. Bounded Model Checking 
BMC is a model checking technique where falsification of a 
given LTL property is checked for a given sequential depth, or 
bound [1, 2]. Typically, it involves three steps:  
• The design with the property f is unrolled for k (bounded) 

number of time frames. 
• The BMC problem is translated into a propositional 

formula ϕ such that ϕ is satisfiable iff the property f has 
counter-example of depth (less than or) equal to k. 

• A SAT-solver is used for the satisfiability check. 
 
1.2. Boolean-level BMC and its Limitations 
In Boolean-level BMC, the translated formula is expressed in 
propositional logic and a Boolean SAT solver is used for 
checking satisfiability of the problem. Several state-of-the-art 
techniques [18] exist for Boolean BMC that have led to its 
emergence as a mature technology, widely adopted by the 
industry. However, there are several limitations of a 
propositional translation and use of a Boolean SAT Solver. 
Some of these are as follows: 
• A propositional translation in the presence of large data-

paths leads to a large formula; which is normally 
detrimental to a SAT-solver due to increased search space.   

• Data-path sizes need to be known explicitly a priori, before 
unrolling of the transition relation. For unbounded data-
path, additional range-analysis of the program/design is 
required to obtain conservative but finite data-path sizes. 

• High-level information is lost during Boolean translation 
and therefore, needs to be re-discovered by the Boolean 
SAT solver often with a substantial performance penalty.   

 
1.3. High-level BMC 
High-level BMC overcomes the above limitations of a Boolean-
level SAT-based BMC; wherein, a BMC problem is translated 
typically into a quantifier-free formula in a decidable subset of 
first order logic, instead of translating it into a propositional 
formula; the first order logic formula is then solved by a high-
level solver, such as an SMT solver.  

In [12], an expressive logic called CLU (counter arithmetic 
logic with lambda-expressions and uninterpreted functions) is 
used to model systems. The decision procedure is based on a 
hybrid procedure using either a small model instantiation with 
conservative ranges or a predicate-based encoding. It generates 
an equi-satisfiable Boolean formula, which is then checked 
using a Boolean SAT solver.  In [16, 17], the expressive logic 
used is linear arithmetic (addition and multiplication by 
constants), arrays, records, lists, bit-vectors; where SMT solvers 
are used to check the satisfiability. Note that these previous 
approaches [12, 16, 17] overcome part of the limitations of a 
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Boolean-level SAT-based BMC as discussed above, but lose 
some or all of the features that state-of-the-art Boolean-level 
BMC approaches provide.  
 
Outline In Section 2 we give an overview of our contributions, 
in Section 3 we give relevant background on EFSM and flow 
graphs; in Section 4 we discuss our approach in detail; in 
Section 5 and 6 we discuss our experiments; and in Section 7 we 
conclude with summarizing remarks. 
 
2. Our Contributions 
We propose several methods to efficiently perform high-level 
BMC using an SMT solver that not only overcome the inherent 
limitations of SAT-based BMC but also allow integration of 
state-of-the-art innovations [18] adopted for the latter. Our high-
level problem description uses a decidable quantifier-free 
fragment of first-order logic, including Presburger arithmetic, 
uninterpreted functions/predicates, arrays. Specifically, in our 
high-level BMC framework: 
1. We use expression simplification to reduce the size of the 

unrolled formula not only within a time-frame, but across 
time-frames also. 

2. We efficiently extract high-level information such as 
control-flow of the program/design. 

3. We use the high-level information to simplify and reduce 
the unrolled formula size. 

4. We provide on-the-fly relevant high-level information at 
each unrolling to the high-level solver, thereby not unduly 
overburdening the solver. 

5. We use incremental learning, i.e, reuse of previously learnt 
lemmas from overlapping BMC instances to improve SMT 
solver performance.  

6. We transform the model (preserving LTL\X property) 
using COI reduction, Collapsing, and  Balancing Paths and 
Loops, so as to improve the scope of learning and 
simplification based on high-level information.  

  
3. Preliminaries 
 
3.1. Extended Finite State Machine (EFSM) Model 
Our method extracts high-level information from an Extended 
Finite State Machine (EFSM) model of a sequential 
program/design, with a partitioning of control and datapath. An 
EFSM has finite logical (control) states and conditionals 
(guards) on the transitions between the control states. The 
guards are functions of control states, data-path and input 
variables. Formally, an EFSM model is a 6-tuple <s0,S,I,O,D,T> 
where, s0 is an initial state, S is a set of control states (or blocks), 
I is a set of inputs, O is a set of outputs, D is a set of  state 
(datapath) variables, T=(TE, TU) is a transition relation, with TE 
being an enabling transition relation, TE: S×D×I→ S, and TU 

being an update transition relation, TU : S×D×I→ D×O. 
An ordered pair <s,x> ∈ S× D is called a configuration of 

M. A transition from a configuration <s,x> to <t,y> under an 
input i, with possible output o comprises of two transitions: a) 
an enabling transition, represented as ((s,x,i),(t))∈TE, and b) an 
update transition, represented as ((s,x,i),(y,o))∈TU. For a given 
enabling transition s→ t, we define an enabling function f such 
that f(x,i)=1 iff ((s,x,i),(t))∈TE and we label the transition as 
s→f(x,i) t. For ease of description, we consider deterministic 
EFSMs where for any two transitions from a state s,  i.e. s→f(x,i) 
t1 and  s→g(x,i) t2, f(x,i) ∧ g(x,i) = FALSE. We define to(s) = {t | 

s→f(x,i) t } as a set of outgoing control states of s. Similarly, we 
define from(t) = {s | (s,t)∈TE} as a set of incoming control states 
of t. We define a NOP state as a control state with no update 
transition and a single outgoing enabling transition. A NOP state 
with n incoming transitions can be replaced with n NOP states, 
each with a single incoming and a single outgoing transition, 
without changing incoming or outgoing states. In our discussion, 
a NOP state will have only a single incoming/outgoing 
transition. We define a SINK state as a control state with no 
update transition relation and no outgoing transition. We define 
a transition or state as contributing with respect to a variable if it 
can affect the variable; otherwise, such a transition or state is 
called non-contributing. 
 
Example 1: We illustrate EFSM model M of a FIFO example 
(implemented using a RAM) using a State Transition Graph 
(STG) as shown in Figure 2(a) where S={S0,…,S11}, I={ren, 
wen, fifo_in}, O={fifo_out, is_full, is_empty},  D={rptr, wptr, 
is_full, is_empty, RAM[10]}. The enabling functions are shown 
in italics and update transitions are shown in non-italics in the 
Figure 2(a). For example, the transition S2→T23S3 has enabling 
function T23=(rptr==wptr-1)||(rptr=0 && wptr==9)) and 
update transition {RAM[rptr]=in; is_empty=0}. 
 
3.2. Flow Graphs 
A flow graph G(V,E,r) is a directed graph with an entry node r. 
A path from u to v, denoted as p(u,v), is a sequence of nodes 
u=s1,...,sk=v such that (si,si+1)∈E for 1≤ i<k. We denote Path(u,v) 
as a set of paths between u and v. Length of a path p∈ Path(u,v) 
is the number of edges in the sequence. For px,py∈Path(u,v), 
px≠py if the sequence of states in px is different from py; such 
paths are called re-converging paths. A concatenation of paths 
p(t,u) and p(u,v), denoted as p(t,v)=p(t,u)⊕ p(u,v), represents a 
path from t to v that goes through u. A node n is said to 
dominate node m, denoted as dom(m) if every path from r to m 
goes through n. The node r dominates every other node in the 
graph. A Strongly Connected Component, SCC (Vi,Ei) is a 
subgraph of G such that for all u,v∈Vi, there exists a path 
u=s1,...,sk=v such that (sj,sj+1)∈Ei for 1≤j<k. SCC (Vi,Ei,ri) is a 
loop with entry ri if ri dominates all the nodes in Vi.  An edge 
(u,v) is called a back-edge if v dominates u; otherwise it is called 
a forward-edge. Given a back-edge (u,v), a natural loop of the 
edge is defined as the set of nodes  (including u) that can reach u 
without going through v. For a given G(V,E,r), and any pair of 
natural loops, L1= (V1,E1,r1) and L2= (V2,E2,r2) one of the 
following cases holds: 1) they are disjoint i.e., V1∩V2=∅, 2) they 
are disjoint but have the  same entry node i.e. V1∩V2={r1}={r2}, 
or 3) one is completely nested in the other, i.e. V1⊆V2 or V2⊆V1. 
A sink node is a node with no outgoing edge. 

A flow graph G(V,E,r) is reducible [19] if and only if E can 
be partitioned into disjoints sets front-edge set Ef

 and back-edge 
set Eb such that Gd(V,Ef,r) forms a direct-acyclic graph (DAG) 
where each v∈V can be reached from the entry node r. The 
reducible graph has the property that there is no jump into the 
middle of the loops from outside and there is only one entry 
node per loop. Most flow graphs that occur frequently fall into 
the class of reducible flow graphs. Use of structured control 
flow statements such as if-then-else, while-do, continue and 
break produces programs whose flow graphs are always 
reducible. Unstructured programs due to the use of goto can 
cause irreducibility of the graphs. Thus focusing on a reducible 

795



  

graph is not a significant restriction of our algorithms and 
techniques, and indeed accords with practical guidelines.  

For a given EFSM <s0,S,I,O,D,T>, let G=(V,E,r) be a flow 
graph with start vertex r, such that V=S, E={(s,t)|  s→t }, and r 
= s0. The sets to(s) and from(s) represent the set of outgoing 
nodes and incoming nodes of a node s, respectively. A 
reachability analysis on a flow graph corresponds to control 
state reachability analysis of the corresponding EFSM. 

 
4. Our Approach: High-level BMC 
We present the flow of our approach for high-level BMC as 
shown  in Figure 1. Given an EFSM Model M (discussed in 3.1) 
and a property P, we perform a series of novel property 
preserving transformations (Sections 4.3 and 4.6). After that we 
perform control state reachability on the transformed model 
(Section 4.4). Using the reachability information, we generate 
novel simplification constraints on-the-fly at each unroll depth k 
(Section 4.5). These simplification constraints are used by the 
expression simplifier (Section 4.1) during unrolling to reduce 
the formula. These constraints are also used to improve the 
search on the translated problem. We also propose an 
incremental learning technique (Section 4.2) i.e., re-use of 
theory lemmas in high-level BMC framework. We present 
various innovations in the order of ease of explanation. 

 
Fig. 1: Accelerated High-level BMC 

4.1. Expression Simplifier  
High-level expressions in our framework include Boolean 
expressions bool-expr and term expressions term-expr. Boolean 
expressions are used to express Boolean values true or false, 
Boolean variables (bool-var), propositional connectives (∨,∧,¬) 
relational operators (<,>,≥,≤,==) between term expressions, and 
uninterpreted predicates (UP). Term expressions are used to 
express integer values (integer-const) and real values (real-
const), integer variables (integer-var) and real variables (real-
vars), linear arithmetic with addition (+) and multiplication (*) 
with integet-const and real-const,  uninterpreted funtions (UF), 
if-then-else (ITE), read and write to model memories. To model 
behaviour of a sequential system, we also have a next operator to 
express the next state behavior of the state variables.  

Our high-level design description is represented in a semi-
canonical form using an expression simplifier. The simplifier re-
writes expressions using local and recursive transformations in 
order to remove structural and multi-level functionally 
redundant expressions, similar to simplifications proposed for 
Boolean logic [6, 20] and also for first order logic [21].. Our 
expression simplifier has a “compose” operator [7], that can be 

applied to unroll a high-level transition relation and obtain on-
the-fly expression simplification; thereby achieving 
simplification not only within each time frame but also across 
time frames during unrolling of the transition relation in BMC. 
 
4.2. Incremental Learning in High-level BMC 
Learning from overlapping instances of propositional formulas 
has been proposed previously [3, 7, 8] and found to be useful in 
Boolean SAT-based BMC [3, 4, 22]. We use incremental 
learning of theory lemmas across time-frames, and found this 
technique to be equally beneficial in the context of high-level 
BMC. 
 
4.3. Property-based EFSM Reduction 
We perform slicing on EFSM [23] with respect to variables of 
interest as defined by the property and obtain contributing and 
non-contributing states and transitions. Slicing away behaviors 
(and the elements) unrelated to the specific properties can 
significantly reduce the model size and thereby, improve the 
verification efforts. We describe two such techniques in the 
following: cone-of-influence (COI)  reduction and collapsing. 
 
4.3.1. COI reduction  
• We remove all non-contributing states and their outgoing 

transitions.  
• Any non-contributing transition s→f(x,i)t where s is a 

contributing state, is replaced by a transition s→f(x,i)SINK. 
• If we are concerned with reachability of a state s∈S from a 

start state s0, we remove the outgoing transition from s 
since it is non-contributing for the shortest counter-example 
or proof. For example, the self-loop transition S1→S1 (not 
shown in Figure 2(a)) is non-contributing and hence is 
replaced by S1→SINK as shown in Figure 2(a). 

 
4.3.2. Collapsing 
We define a collapsing condition as that when all states in to(s) 
are NOP and none of them directly appears in a reachability 
check. Under such a condition, we collapse all the NOP states 
and merge them with s. In other words, ∀ t∈to(s) (with t being 
NOP), we remove the transitions s→f(x,i) t and t→TRUE q and add 
a new transition  s→f(x,i) q.  
 
4.4. Extraction: Control State Reachability (CSR) 
We now discuss extraction of high-level control-flow 
information of the design/program which is subsequently used  
to simplify the unrolled formula (discussed in the next section).  
 Starting from the initial state S0, we compute control state 
reachability (CSR) using a breadth first search (BFS). A control 
state Si is one-step reachable from Sj if and only if there exists an 
enabling transition between them. At a given sequential depth d, 
let R(d) represent the set of control states that can be reached 
statically in one step from the states in R(d-1) with R(0)={S0}. 
Note that we are not computing the fixed-point diameter. For 
some d, if R(d-1)≠R(d)=R(d+1), we say the CSR saturates at 
depth d and stop; otherwise we compute R(d) and |R(d)| (i.e., 
size of  R(d)) up to the BMC bound. Note, CSR information is 
static information without considering the enabling functions, 
i.e., if a control state is not reachable from the initial state in 
CSR, it is definitely not reachable in the model; however, the 
other way is not true in general. Applying CSR on the FIFO 
example 1, we obtain the set R(d) as shown in Table 1(a). Note, 
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the saturation depth is 15, |R(15)|=|R(16)|=11 where 
R(15)={S1,S2,…,S11}. 
   
4.5. On-the-Fly Simplification and Learning 
For n control states S1…Sn, we introduce n Boolean variables 
BS1…BSn. Let the Boolean variable Br = TRUE iff configuration 
of M is (r,x) for some x∈V. Equivalently, Br corresponds to a 
predicate on the control state variable, called the PC (Program 
Counter), i.e., Br ≡ (PC==r). Let Br

d denote the Boolean 
variable Br at depth d during BMC unrolling.  

At any unrolling depth d of high-level BMC, we apply the 
following on-the-fly structural and clausal (learning-based) 
simplification on the corresponding formula. Note, these 
simplifications are effective for small |R(d)|. We use a procedure 
Simplify (BoolExpr e, Boolean v) which constraints a Boolean 
expression e to a Boolean value v, and also reduces the 
expressions that use e. Later, we illustrate this with an example.  

 
1. Unreachable Block Constraint (UBC) 

∀r∉R(d)  Simplify(Br
d,0) 

Since the state r is not reachable at depth d, the predicate Br will 
evaluate to FALSE at depth d. Therefore, simplifying the 
formula by propagating Br=0 at depth d preserves the behavior 
of the design. 

 
2.  Reachable Block Constraint (RBC) 

Simplify(∨r∈ R(d) Br
d,1) 

At any depth d, at least one state in R(d) is reachable. 
 
3.  Mutual Exclusion Constraint (MEC) 

∀r,t∈R(d), r≠t Simplify((Br
d ⇒ ¬Bt

d
,),1) 

At any depth d, at most one state in R(d) is the current state.  
 
4.  Forward Reachable Block Constraint (FRBC) 

∀r∈R(d) Simplify((Br
d

 ⇒ ∨s∈ to(r) Bs
d+1),1) 

At any depth d, if current state is r i.e. Br
d=TRUE, then the next 

state must be among the to(r) set. 
 
5.  Backward Reachable Block Constraint (BRBC) 

∀r∈R(d)  Simplify((Br
d

 ⇒ ∨s∈from(r) Bs
d-1),1) 

At any depth d>0, if current state is r i.e. Br
d=TRUE, then the 

previous state at depth d-1, must be among the from(r) set. 
 
6.   Block-Specific Invariant (BSI) 

∀r∈R(d)  Simplify((Br
d

 ⇒ Cr
d),1) 

At any depth d, a given invariant Cr for a given state r is valid 
only if r is the current state at depth d.  
 
Note, previous approaches [24] add some of these constraints in 
the transition relation so as to include them in the formula at 
every unrolling. In contrast, our approach adds only the relevant 
constraints at each unrolling, thereby reducing the overall 
formula size. Thus, ideally we would like a smaller set R(d) to 
increase the effectiveness of our simplification. Later, we 
discuss how we transform EFSM model to reduce the set R(d). 
 
Example 1(Contd): We illustrate simplification constraints at 
depth, d=4. In particular, we consider the effect of 
simplification on the unrolled expression for variable is_full.  
The transition relation for the state variable is_full is as follows: 

 next(is_full) = (BS0 || BS7)? 0 : (BS3) ? 1 : is_full; 

The high-level expression for the unrolled variable, 
corresponding to next(is_full) at depth 5, would be:  

 is_full5  = (BS0
4 || BS7

4)? 0 : (BS3
4) ? 1 : is_full4; 

For lack of space, we explain only the Unreachable Block 
Constraint. Note, at d=4, only S4, S5, S6, S9, S10, and S11 are 
reachable (Table 1(a)). Therefore, we do the following: 

∀r∈ {S0,S1,S2,S3,S7,S8}  Simplify(Br
4,0) 

Using the above simplification, the expression for is_full5 gets 
mapped to an existing variable is_full4, thereby, reducing the 
additional logic, i.e., is_full5 = is_full4. 

  
4.6 EFSM Transformation: Balancing Re-convergence 
Efficiency of on-the-fly simplification depends on the size of the 
set R(d), i.e., |R(d)|. A larger |R(d)| reduces the scope of 
simplification at depth d and hence, the performance of high-
level BMC.  Re-converging paths of different lengths inside 
loops is one of the reasons for the saturation of reachability and 
inclusion of all looping control states in the set R.  To improve 
the performance of high-level BMC further, we adopt a strategy 
called “Balancing Re-convergence” that transforms the original 
model into a “BMC friendly” model but preserves the validity of 
the model with respect to the property expressed in LTL\X 
(Linear Temporal Logic without the neXt-time operator). 
 
4.6.1. Our Strategy: Intuition 
For balancing re-convergence and reducing the set R(d) and 
thereby, improving the scope of simplification of high-level 
BMC, we transform an EFSM by inserting NOP states such that 
lengths of the re-convergence paths are the same and control 
state reachability does not saturate. Reduction in R(d), in 
general, improves the scope of on-the-fly simplifications.  Note 
that the additional NOP states have little effect on simplification, 
although they increase the total number of control states and 
transitions, and possibly the search depth. As NOP states do not 
add complexity to the transition relations of  any state variables 
except the program variables encoding the control states, the 
Unreachable Block Constraint simplification at  depth d is 
practically unaffected by inclusion of such states in R(d). Also, 
the Forward and Backward Block Constraint simplification are 
not affected, as these additional transitions are single outgoing 
transition (and hence always enabled) from NOP states. We 
define R-(d) = {s | s ∈ R(d) and s is not a NOP state}. We use 
maxd |R(d)| and maxd |R-(d)| to measure the effectiveness of our 
strategy in improving the scope of simplification of high-level 
BMC. Note that the above transformation preserves LTL\X 
properties, as NOP states can only increase the length of traces 
but not the eventuality and global behavior. As the state of data 
variables do not change  in NOP state, the validity of atomic 
propositions is not affected. 
 
Example 1 (Contd): For the EFSM model shown in the Figure 
2(a), paths S2→S3→S4 and S2→S4 are re-converging with 
different lengths. For balancing, we insert a NOP state S2a such 
that transition S2→~T23S4 is replaced by S2→~T23S2a→TRUES4. 
Similarly, as paths S7→S8→S9 and S7→S9 are re-converging 
with different lengths, we insert another NOP state S7a and 
replace the transition S7→~T78S9 by S7→~T78S7a→TRUES9. The 
modified EFSM model M’ is shown in the Figure 2(b). CSR on 
M’ is shown in Table 1(b). Note that at depth maxd R-(d) = 4. 
Also, CSR on M’ does not saturate.  
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Fig. 2: STG of EFSM a) original M  b) transformed M’ 

Table 1[a-b]: Control State Reachability on EFSM a) M  b) M’ 
 

(a) Model M (b) Model M’ 
d R(d) |R(d)| d  R(d) |R(d)| |R-(d)|
0 S0 1 0 S0 1 1 
1 S1 1 1 S1 1 1 
2 S2, S7 2 2 S2, S7 2 2 
3 S3, S4, S8, S9 4 3 S3, S2a, S8, S7a 4 2 
4 S4, S5, S6, S9, S10,S11 6 4 S4, S9 2 2 
5 S5, S6,S10, S11, S1 5 5 S5, S6, S10, S11 4 4 
.. …..  6 S1 1 1 

15 Saturates with 11 states i Repeats, R(i)=R(i%5) 
 
Algorithm: Given a reducible flow graph G, we present an 
O(E) algorithm  in Sections 4.6.2 and 4.6.3,  that identify the 
edges corresponding to the transitions in TE where inserting 
certain number of NOP states will balance the re-convergence 
paths, including those arising due to loops. 
 
4.6.2. Balancing Re-convergence without Loops 
Consider the DAG, G(V,Ef,r) corresponding to the reducible 
flow graph G(V,E,r) with an entry node r and front-edge set Ef.. 
Let w(e) denote the weight of the edge, e=(a,b)∈Ef. As we later 
see, the weight of the edge (a,b) corresponds to one more than 
the number of NOP states that need to be inserted between 
nodes a and b. We define weight for a path p=<s1,…,sk>, 
denoted as w(p) = Σ1≤i<k w(ei) where ei =(si,si+1)∈Ef. We now 
define our problem as follows:  
Problem 1: For a given DAG G(V,Ef,r) find a weight function, 
w:Ef→Z such that ∀px,py∈P(u,v) w(px)=w(py), where u,v∈V.  
 Note, if we are able to find a feasible w, then the number of 
NOP states introduced for an edge, e=(a,b)∈Ef will be equal to 
w(e)-1. We say that the set P(u,v) is balanced when all the paths 
from u to v have equal weights, i.e., ∀px,py∈P(u,v), w(px)=w(py). 

Let W(u) denote the weight of the paths in the balanced set 
P(r,u). We define W(r)=0. 
Lemma 1: If P(r,v)  is balanced and P(u,v)≠∅, then P(u,v) is 
balanced.  
Proof: We prove by contradiction. Let p1(r,u)∈P(r,u). Assume 
P(u,v) is not balanced, i.e., there exists at least two paths 
p1(u,v)∈P(u,v)  and p2(u,v)∈P(u,v) such that w(p1)≠w(p2). Let 
p0(r,u)∈P(r,u). The weight of the concatenated path p0⊕ p1 is 
w(p0)+w(p1) and that of p0⊕ p2 is w(p0)+w(p2). Since 
w(p1)≠w(p2), the weight of the concatenated paths are different. 
However, since p0⊕ p1, p0⊕ p2∈ P(r,v) and P(r,v) is balanced, 
we get a contradiction. Thus, P(u,v) is also balanced. 
 Using Lemma 1, we re-formulate the problem as follows:  
Problem 1’ (stated differently): Given a DAG G(V,Ef,r), find a 
weight function, w:Ef→Z and W:V→Z such that P(r,v) is 
balanced i.e., w(px)=w(py)=W(v), ∀px,py∈P(r,v) 
Solution: If P(r,u) is balanced ∀u∈from(v), i.e., W(u) is 
computed, we can balance P(r,v) recursively as follows. 
• ∀u∈from(v) w(u,v) = t-W(u), where  t = (maxu∈from(v) W(u))+1 
• Set W(v)=t as for any path p(r,v) through u will have 

weight W(u)+w(u,v)=W(u)+t-W(u)=t.  
 We start with an initial set of nodes S which are sink nodes in 

G(V,Ef,r). Then, we recursively apply the above steps in the 
procedure BalancePath, as shown in Figure 3. Termination is 
guaranteed as the recursive sub-procedure BalanceAux is 
invoked only once per node. The correctness of the algorithm is 
also shown easily by an inductive argument. 
 

1. Input: G(V,Ef,r) 
2. Output: w:E->Z, W:V->Z 
3. Procedure: BalancePath 
4. S = {v | v is a sink node} 

5. W(r) = 0; ∀v∈V,v≠r W(v)=∞;  
6. ∀v∈S, BalanceAux(v); 

 
7. Input: v 
8. Output: W(v) 
9. Proecedure: BalanceAux 

10. ∀u∈from(v) 
11.  if (W(u)==∞) BalanceAux(u); 
12. W(v) = Max u∈from(v)(W(u))+1; 

13. ∀u∈from(v), w(u,v)=W(v)-W(u); 

Fig. 3:  Pseudo-code of BalancePath 

Collapsing NOP states 
As discussed earlier, we insert NOP states corresponding to the 
edge weights obtained after running the procedure BalancePath. 
For edge e=(u,v), we insert  (w(e)-1) NOP states. It is easy to 
see that the algorithm BalancePath adds a minimum number of 
NOP states for balancing paths. However, the inserted NOP 
states together with NOP states in the original EFSM can 
generate a collapsing condition (discussed in Section 4.3.2). In 
that case, we collapse the NOP states as discussed earlier. We 
re-run BalancePath as the lengths of the re-converging paths 
might have changed due to collapsing. Note, we can integrate 
collapsing with the procedure BalancePath to avoid re-running. 
 
4.6.3. Balancing Re-convergence with Loops 
Since the flow graph G(V,E,r) is reducible, we know that every 
loop Li=G(Vi,Ei,ri) is a natural loop corresponding to backedge 
set (bi,ri)∈Eb

, and has a single entry node ri. Presence of back-
edges in loops and their relative skews cause re-convergence 
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paths of different lengths; which in turn, can also lead to 
saturation during control reachability analysis. We say a loop Li 
is saturated at depth s when ∀v∈Vi, v∈R(t) for t≥s. Given 
balanced Path(ri,bi) for each loop Li, we define forward loop 
length, Ci for loop Li  as follows: 
 Ci  = W(bi)-W(ri)  
where W:V→Z is the weight function we obtain for each node in 
G(V,Ef,r) using the BalancePath algorithm, shown  in Figure 3.  
Observe that the entry node ri of loop Li re-appears in control 
reachability after Ni = Ci+w(bi,ri) steps i.e. ri ∈ R(di+niNi) where 
di, ni ∈Z . We call Ni the loop period of Li. If there is only one 
loop, it is easy to see that di = W(ri). However, in presence of 
multiple loops, we also have to account for the paths from other 
loops to loop Li. In particular, if there is a path from entry node 
rj of some loop Lj to ri, then entry ri also re-appears after Nj.  We 
define loop clusters LC as sets of disjoint entry nodes such that 
for any two clusters LCx and LCy,∀s∈LCx, ∀t∈LCy, 
P(s,t)=P(t,s)=Φ. Note, a loop in a cluster does not affect the 
loop in another cluster as far as reachability is concerned. In the 
following problem statement, we discuss how to prevent loop 
saturation using suitable transformations.  
 
Problem 2: Given a reducible flow graph G(V,E,r) with 
E=Ef∪Eb, find w:Eb→Z  and Ni so that loop Li is not saturated. 
Solution: We define a set from(i)={j| rj=ri or Path(rj,ri)≠Φ}. 
Thus, di = W(ri)+Σj∈from(i)njNj where nj ∈Z. Define, Di = mink∈ 

from(i)∪{i}Nk. It is easy to see that a loop Li gets saturated at depth 
t+Di during reachability if ri ∈ R(t+k) ∀k, 0≤k<Di. This is 
captured by the following integer linear equations in terms of s 
and nj’s  for given Nj’s, Ni and W(ri). 

W(ri)+Σ j∈from(i)njNj +  niNi = s 
W(ri)+Σj∈from(i)njNj +  niNi = s+1 
… 
W(ri)+Σj∈from(i)njNj +  niNi = s+Di-1 

To prevent saturation of loop Li, we need to find Nj’s and Ni such 
that there is no feasible solution to the above equations. One 
strategy is to choose a weight function w:Eb→Z  such that the 
loop lengths match i.e.,  Ni=Nj ∀j∈from(i). (It is easy to verify 
the infeasibility for this solution assuming that each loop has at 
least two nodes, i.e., Ni ≥ 2.) 

We consider one loop cluster at a time. We define 
maximum loop period over all loops in the cluster (i.e. whose 
entry nodes are in the cluster), N = (Maxi Ci) + 1. We assign a 
weight to each back-edge (bi,ri)  as follows: 

w(bi,ri) = N-Ci 
For each loop Li in the cluster, the entry node ri ∈ R(W(ri)+nN) 
where n ∈Z. Thus, the upper bound on |R(d)| for G(V,E,r) at any 
depth d>>1, |R(d)| ≤ Σi maxt |Ri(t)|, where Ri(t) is the control 
reachability set (including NOP states) on loop Li at a depth t. 
Similarly, the upper bound on |R-(d)| for G(V,E,r) at any depth 
d>>1, is |R-(d)| ≤ Σi maxt |Ri

-(t)|, where Ri
-(t) is the control 

reachability set (of only non-NOP states) on loop Li at a depth t.  
 Example 2: We illustrate our algorithm for balancing flow 
graph using an example shown in Figure 4(a). Let vi represent 
the node with index i (shown inside the circle). Note, the flow 
graph G(V,E,v1) has three natural loops L1, L2 and L3 

corresponding to the back-edges (v6,v3), (v7,v1), and (v8,v3) 
respectively. The corresponding entry nodes for the loops are v3, 

v1, and v3 respectively. Note, they all form a cluster. The DAG 
G(V,Ef,v1) corresponding to the front-edge set, Ef=E-{(v6,v3), 
(v7,v1), (v8,v3)} is shown in Figure 4(b). After executing 

BalancePath algorithm, we obtain edge weights, also shown in 
Figure 4(b), that balance all re-convergence paths in Ef. Note 
that the edge with no weight shown has an implicit weight of 1.  
Also, shown are the W values of each node. For instance, 
W(v6)=5 denotes that all the paths in the set P(v1,v6) have 
weights equal to 5. Next, we compute the forward loop length of 
each loop and the weights of the back-edges. The forward loop 
length of loop with back-edge (v6,v3) is W(v6)-W(v3) = 3; 
similarly, with back-edge (v7,v1) is 6, and with back-edge (v8,v3) 
is 5. Thus, value of N, as defined, is 7. The weight of the back-
edges (v6,v3), (v7,v1) and (v8,v3) are 4, 1, and 2 respectively as 
shown in Figure 4(c). For each edge with weight w, we insert w-
1 nodes corresponding to NOP states as shown as un-shaded 
circles in the modified flow graph in Figure 4(d).  

Reachability on the original flow graph G(V,E,v1) in Figure 
4(a) saturates at depth 6 with 8 nodes. The reachability on the 
balanced flow graph in Figure 4(d) does not saturate.  Instead, 
the set of reachable nodes R(d) at depth d shows a periodic 
behavior with period, N=7. If we do reachability separately on 
each loop of the modified flow graph in Figure 4(d), we obtain 
maxt |R1(t)|=2, maxt|R2(t)|=2, and maxt|R3(t)|=2. Thus, the 
upper bound on |R(t)| is 6. Similarly, maxt |R-

1(t)|=1, maxt|R-

2(t)|=1 and maxt|R-
3(t)|=1 and upper bound on |R-(t)| is 3. In this 

case, maxt|R(t)| = 4 and maxt|R-(t)|  = 2. Clearly, the scope of 
simplification during BMC is significantly improved. 

 

 
Fig. 4: Execution steps of Balancing Re-convergence on an example: a) 
Reducible Flow graph G(V,E,v1) where i represents the node vi, b) DAG 
G(V,Ef,v1) with edge weights (=1 if not shown) after executing 
BalancePath procedure,  c) weights on the back-edges after balancing 
loops, d) final balanced flow graph after inserting n-1 NOP states for 
edge with weight n. 
 
5. Experiments  
We experimented on a public benchmark bc-1.06, a C program 
for an arbitrary precision calculator language with interactive 
execution of statements. This has a known array bound access 
bug (checked as an error-label reachability property). Using our 
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program verification tool F-soft [24], we first generated an 
EFSM model M with 36 control states and 24 state variables. 
The data path elements include 10 adders, 106 if-then-else, 52 
constant multipliers, 11 inequalities, and 49 equalities. The 
corresponding flow graph has two loops, with 4 and 8 nodes 
(control states) respectively. We also used statically generated 
invariants [25] to provide block specific invariants.  

We performed controlled experiments to evaluate the role 
of various accelerators discussed in improving the performance 
of high-level BMC. We used our difference logic solver SLICE 
[14] in the backend. We modified the solver to support 
incremental learning across time-frames. We translated 
conservatively each BMC problem instance into a difference 
logic problem. (A precise translation would have been to a 
UTVPI − Unit Two Variables Per Inequality − problem.) For 
understanding the effectiveness of our methods, a conservative 
translation suffices as long as we do not get false negatives 
(which was not an issue for this example).  

We conducted our experiments on a workstation with dual 
Intel 2.8 GHz Xeon Processors with 4GB physical memory 
running Red Hat Linux 7.2, using a 500s time limit for each 
high-level BMC run. We present the results in Table 2. We 
experimented on three EFSM models M, M’ and M’’. Model M 
is the original model without any proposed transformations. 
Model M’ is the model obtained from M using the procedure 
described in Section 4.6.2 (Balancing re-convergence without 
loops and Collapsing NOP states). Model M’’ is obtained from 
M’ using the procedure described in Section 4.6.3 (Balancing 
re-convergence with loops).  Column 1 shows the loop sizes in 
each of the models for loops L1 and L2; the number of control 
states (including inserted NOP states); the results of control 
reachability on each of the models i.e., either saturation depth or 
max loop period N; maximum size of the reachable set of 
control states overall all depth Rmax=maxdR(d); and maximum 
size of the reachable set of non-NOP control states overall 
depth, R-

max=maxdR
-(d). Column 2 presents various learning and 

simplification strategies denoted as follows: A for Expression 
Simplification (ES), B for Incremental Learning (IL) combined 
with A, C for Unreachable Block Constraint (UBC) combined 
with B, D for Reachable Block Constraint (RBC) combined with 
C, E for Forward Reachable Block Constraint (FRBC) 
combined with D, F for Backward Reachable Block Constraint 
(BRBC) combined with E, and G for Block Specific Invariants 
(BSI) combined with F. Column 3 shows number of calls (#HS) 
made to the high-level solver when the expression simplifier 
cannot reduce the problem to a tautology. Column 4 shows the 
depth D reached by high-level BMC under a given time limit 
(‘*’ denote time-out). Column 5 shows the time taken (in 
seconds) to find the witness; TO denotes that time-out occurred. 
Column 6 shows whether a witness was found in the given time 
limit; if so, the witness length is equal to D.   
 
5.1. Discussion of results 
Note that fewer calls (#HS) made to the SMT solver directly 
translates into performance improvement, as the expression 
simplifier structurally solves the remaining D-#HS SMT 
problems more efficiently. We discuss the effect of various 
learning scheme in improving the structural simplifications.  
CSR on Model M saturates at depth 13 with 36 control states. 
Although Unreachable Block Constraint (UBC) allows deeper 
search with fewer solver calls, the simplification scope is very 
limited due to a large set R(d). This also prevents other 
simplification strategies from being useful. As shown in Column 

6, none of the strategies is able to find the witness in the given 
time limit. When we apply the procedure BalancePath with the 
procedure collapsing of NOP states on Model M, we obtain a 
model with M’ with 34 control states with reduced loop size |L2|. 
CSR on M’ does not saturate, and has maxdR(d)=4 and maxdR-

(d)=3. This increases the scope of simplification significantly. 
As shown in Column 6, all simplification strategies C-G are able 
to find the witness in the given time limit. Except for FRBC, all 
simplification strategies seem useful in reducing the search time; 
though only UBC can reduce the number of calls to the high-
level solver as shown in Column 3. Block Specific Invariants 
added on-the-fly are also found to be useful. Note, although 
strategy B with only incremental learning does not find the 
witness, it still helps to search deeper compared to strategy A. 

Table 2: Comparison of high-level BMC accelerators 

 
By applying our loop balancing procedure on the model M’, we 
obtain a model M’’ with matching loop lengths of 6 and total 
number of control states of 36. We added two NOP-states in the 
back-edge of loop L1 to get a loop length of 6. Control 
reachability on M’’ has maxdR(d)=3 and maxdR-(d)=2, further 
increasing the scope of simplification as indicated by a 
decreased number of calls to the high-level solver. This is 
indicated by the reduced solve time (=19s) using strategy F, 
although there is a small performance degradation with strategy 
G. Not surprisingly, the witness length has gone up to 205.  
Overall, we see progressive and cumulative improvements with 
various learning techniques and strategies.  
 
5.2. Comparison with Boolean-level BMC 
To compare with Boolean-level BMC, we used our state-of-the-
art Boolean-level BMC framework DiVer [4] on a Boolean 
translation of the model M (with 654 latches, 6K gates) to 
witness the bug, and used an identical experimental setup as 
discussed. Note, like in [24], we add high-level information such 
as mutual exclusion constraint and backward reachable block 
constraints in the transition relation beforehand. Thus, all these 
constraints get included in every unrolled BMC instance 
automatically, unlike the proposed approach here, where only 
the relevant constraints are added to a BMC instance. The 
Boolean-level BMC is able to find a witness at depth 143 in 
723s. Not surprisingly, the number of instances solved by 
structural simplification is merely 15, while 128 calls are made 

Model Strategy #HS D sec W?

A: ES 16 17* TO N 
B: A+  IL 26 27* TO N 

C:B + UBC 41 64* TO N 
D:C + RBC 26 49* TO N 
E:D+FRBC 26 49* TO N 
F:E+BRBC 28 51* TO N 

Original M 
|L1|= 4, |L2|=8, #ctrl state=36 

Rmax=36, R-
max=33 

Saturation at d=13 
 
 

G: F + BSI 28 51* TO N 
B 28 29* TO N 
C 62 143 426 Y 
D 62 143 159 Y 
E 62 143 159 Y 
F 62 143 120 Y 

M’: M+Balanced Non-Loop 
paths + collapsed NOP states
|L1|= 4, |L2|=6, #ctrl state=34 

 
Rmax=4, R-

max=3,  
Max loop period, N=6 G 62 143 65 Y 

F 32 205 19 Y M’’:M’+Loop Balanced 
|L1|= 6, |L2|=6, #ctrl state=36 

Rmax=3, R-
max(d)=2, N=6 G 32 205 22 Y 
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to the SAT-solver. Thus, a reduced scope of simplification can 
greatly affect the performance of BMC, further supporting the 
case for synthesizing “BMC friendly” models [26]. 
 
6. Experiments on Industry Software 
We also experimented on industry software written in “C” with 
about 17K lines of code. We first generated an EFSM model M 
with 259 control states and 149 state (term) variables. The data 
path elements include 45 adders, 987 if-then-else, 394 constant 
multipliers, 53 inequalities, 501 equalities and 36 un-interpreted 
functions. The corresponding flow graph has 12 natural loops. 
We consider reachability properties P1-P6 corresponding to six 
control states. CSR on M saturates at depth 84. After 
transforming M using path and loop balancing algorithms, we 
obtain a model M’’ with 439 control states and max loop period 
N=4. Using a similar experimental setup (discussed earlier), we 
ran high-level BMC (HBMC) for 500s on each of P1-P6 on: (I) 
Model M with strategy A (using only expression simplification), 
(II) Model M using strategy F (all simplifications), and (III) 
transformed Model M” using F. We present our results in Table 
3. Column 1 gives the property checked; Column 2-4 give BMC 
depth reached (* denotes depth at time out, TO), time taken (in 
sec) and whether witness was found (Y/N) respectively for 
combination (I). Similarly, Columns 5-7 and 8-10 present 
information for combinations (II) and (III) respectively. The 
results clearly show that combination (III) is superior to (II) and 
(I), with significant improvement in the performance, though at 
increased witness depth. 
 

Table 3: Evaluating high-level BMC on industry software 

 
7. Conclusions and Future Work 
The current trend of designing at higher levels of abstraction 
using high-level languages and specifications has challenged the 
verification community to lift the maturity and advancements of 
BMC from the Boolean-level to the higher levels. Although 
high-level BMC overcomes several inherent limitations of 
Boolean-level BMC, higher theoretical complexity of the 
associated logics and decision procedures makes the approach 
even more challenging. We provide an engineering framework 
for high-level BMC with several state-of-the-art innovations 
based on extraction and efficient use of high-level information 
to improve the performance and scalability. This framework also 
allows easy integrations of the state-of-the-art techniques 
available for Boolean-level BMC. We believe that our proposed 
framework is a step towards reducing the gap between theory 
and practice of such techniques.    
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I: Strategy A on M II: Strategy F on M III: Strategy F on M’’P 
D sec W? D sec W? D sec W?

P1 9* TO N 38* TO N 41 <1 Y
P2 9* TO N 41* TO N 44 <1 Y
P3 9* TO N 43* TO N 92 156 Y
P4 9* TO N 30 188 Y 94 151 Y
P5 9* TO N 21 6 Y 60 4 Y
P6 9* TO N 31 164 Y 70 22 Y
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