
Dynamic Tuning of Configurable Architectures:
The AWW Online Algorithm

Chen Huang, David Sheldon, and Frank Vahid*
Department of Computer Science and Engineering, University of California, Riverside, USA

*Also with the Center for Embedded Computer Systems, UC Irvine
{chuang/dsheldon/vahid}@cs.ucr.edu

ABSTRACT
Architectures with software-writable parameters, or configurable
architectures, enable runtime reconfiguration of computing platforms
to the applications they execute. Such dynamic tuning can improve
application performance, as well as energy. However, reconfiguring
incurs a temporary performance cost. Thus, online algorithms are
needed that decide when to reconfigure and which configuration to
choose such that overall performance is optimized. We introduce the
adaptive weighted window (AWW) algorithm, and compare with
several other algorithms, including algorithms previously developed
by the online algorithm community. We describe experiments
showing that AWW results are within 4% of the offline optimal on
average. AWW outperforms the other algorithms, and is robust
across three datasets and across three categories of application
sequences too. AWW improves a non-dynamic approach on average
by 6%, and by up to 30% in low-reconfiguration-time situations.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Adaptable architectures,
heterogeneous systems.

General Terms: Algorithm, Performance, Design.

Keywords: Configurable architecture, tuning, FPGAs, cache,
dynamic optimization, runtime configuration, online algorithms.

1. INTRODUCTION
Configurable architectures enable runtime tuning of computing
platforms to their running applications. Tuning can substantially
improve performance or energy.

Runtime configurable architecture constructs include memory
hierarchies whose caches may be shut down or have their total size,
line size, associativity, or replacement policy adjusted, buses that
may be resegmented or have their widths or protocols adjusted, soft-
core processors on field-programmable gate arrays (FPGAs) that may
be reinstantiated with different datapaths or any processor that may
have certain datapath units shut down, processors with adjacent
FPGA units that may have particular coprocessors loaded, and
scalable processors whose supply voltage and frequency may be
varied.

Tuning a configurable architecture to an application can
substantially improve performance or energy. For a configurable
architecture, each distinct application that runs on that architecture
may run most efficiently with a particular configuration, running

inefficiently in other configurations. Figure 1 shows execution time
for three EEMBC embedded benchmark applications running on a
SimpleScalar MIPS processor with a 2 Kbyte direct-mapped
instruction cache having three possible line size configurations: 16,
32, or 64 bytes. An application with much spatial locality (e.g.,
TBLOOK01) is faster with the largest line size, while another
application (PUWMOD01) is faster with the smallest line size, and a
third runs fastest using the middle line size. If these three applications
run on one processor, reconfiguring the cache for the currently-
executing application may yield 40% better performance than using a
single configuration for all three applications. Figure 2 illustrates
running a particular application sequence, each instance shown on the
x-axis with the applications’ first letter, with a fixed 32-byte line size
versus with a reconfigurable line size. The figure shows how total
runtime for the latter may be less if reconfiguration time is fast, but
may actually be more if reconfiguration is slow.

While some configurable architecture constructs may be
reconfigured with little runtime reconfiguration overhead, such as
voltage scalable processors, other constructs require non-negligible
reconfiguration time. For example, reconfiguring a memory
hierarchy may involve flushing of dirty cache words. Reinstantiating
an FPGA soft-core processor may involve time to save the
processor’s execution context, swap in a new partial FPGA bitstream,
and restore the processor context.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

Figure 1: Applications’ best configurations typically differ.

Figure 2: Reconfiguring can lead to lower total execution time, if
reconfiguration time isn’t too slow.

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

16 32 64

Line size (bytes)

Ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(c

yc
le

s) PUWMOD01
RSPEED01
TBLOOK01

0

20

40

60

80

100

P P P T T R R P P P

Application execution instance

Ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(M

cy
cl

es
)

0

200

400

600

800

1000

To
ta

l e
xe

cu
tio

n
tim

e
(M

cy
cl

es
)

With fixed
line (32)
With reconfig.
line
Total with
fixed

Total with fast
reconfig.
Total with
slow reconfig.

97

A problem is to determine, as applications arrive for execution,
when to reconfigure an architecture and to which configuration.
Reconfiguring incurs performance loss due to reconfiguration time,
but also performance gains due to tuned application execution. The
gain must outweigh the loss for benefit. If the schedule of application
executions is known a priori, and with pre-determined performance
information for every application in each configuration, a
straightforward dynamic programming algorithm can determine the
optimal reconfiguration schedule.

For many modern embedded systems, however, the schedule of
application executions is not known a priori, but rather is determined
by end-user usage patterns. In this case, an algorithm must be used
that makes reconfiguration decisions with incomplete information
about the future schedule of application executions.

In this paper, we cast the reconfiguration problem as an online
optimization problem, namely, as a metrical task system. The key
contribution is the Adaptive Weighted Window (AWW) algorithm,
which obtains better optimization than previous algorithms, and is
robust across a broad range of possible scenarios of reconfiguration
time versus application runtimes and of application schedules. We
define the problem, discuss related work, and describe previous and
new algorithms including AWW. We describe experiments using the
algorithms on real and synthetic benchmarks, showing the AWW
algorithm to usually achieve results closest to optimal. The algorithm
is also simple to implement. Thus, the AWW algorithm should be
suitable for dynamic tuning of a wide range of existing and future
configurable architectures.

2. ARCHITECTURE RECONFIGURATION
2.1 Problem Definition
We define the architecture reconfiguration problem as follows.
Given are:

 The application set A = {a1, a2, ..., an} and a set of
architecture configurations C = {c1, c2, ... cm}.

 An execution time matrix E of dimension n x m. E(i,j) is the
execution time of application ai on configuration cj.

 The reconfiguration time R to change from any configuration
ck to any other configuration cl.

Runtime consists of a sequence of application executions S, such as S
= <a2, a1, a1, a3, a2, a1>, but typically much longer with hundreds
or thousands of application instances. We define S[k] as the
application type at position k in the application sequence S; in the
above sequence, S[1] is a2, S[2] is a1, and S[3] is a1.

Assumed is that each application has a start and finish and cannot
be preempted. Iterating applications can be accounted for by
redefining the application as a single iteration and then scheduling
repeated executions of the redefined application.

The problem is to choose a configuration for every application in
the sequence to minimize total time T, yielding a configuration
schedule. Every configuration change in that schedule is a
reconfiguration incurring time R. Total time T is the sum of
application execution times on the corresponding configuration in the
schedule, plus the time for all reconfigurations.

2.2 Limitations
The above problem definition assumes that each application’s
execution time on each configuration is known. For some
architectures, the number of possible architecture configurations
could be large and thus hard to precompute, though this situation can
be alleviated by using a configuration subset that reasonably covers
the configuration space [14]. A priori knowledge also diverges from
one research avenue in configurable architectures that seeks to make

the configurations and tuning invisible to the application designer.
However, dynamically collecting runtime data on applications and
architectures may help address that problem. A second limitation is
that applications cannot be preempted, a topic for future work. A
third limitation is the assumption that application execution times on
a configuration, and reconfiguration times, are constants. However,
execution times for an application on a particular configuration may
vary depending on runtime data. Reconfiguration times may differ
among pairs of configurations (e.g., adding a datapath unit may be
costlier than removing one), and further could depend on which
applications ran earlier (e.g., more cache flushing may be needed
after some applications than after others). Treating these times as
constants involves considering worst cases or average cases instead.
Despite the limitations, the definition is close to many task-based
problem definitions, and seems suitable for a variety of embedded
systems. Future work may seek to extend the definition to other
scenarios.

2.3 Metrical Task System
An online problem is one that must be solved given data piece by
piece, in contrast to offline problems in which all input data is
available. A metrical task system, defined in [5], is a well-known
formulation of a class of online problems. The problem involves a
task system (S,d) for processing sequences of tasks. S is a set system
states, and d is a cost matrix where d(i, j) is the cost of changing from
state i to state j, assumed to satisfy the triangle inequality, and
assumed to have 0s on the diagonal. In a metrical system, state
transition costs are symmetric, i.e., d(i, j) equals d(j, i). The cost of
processing a task depends on the system state, and thus a task can be
viewed as a vector T=(T(1), T(2), ..., T(j)), where T(j) is the (possibly
infinite) cost of processing the task while in state j. A schedule for a
sequence T1, T2,…, Tk of tasks is a sequence s1, s2,…,sk of states
where si is the state in which Ti is processed. The cost of a schedule
is the sum of all task processing costs and the state transition costs
incurred. An on-line scheduling algorithm is one that chooses si only
knowing T1T2…Ti.

The architecture reconfiguration problem (AR) can be mapped to
the metrical task system problem (MTS). AR’s applications
correspond to MTS’ tasks, and configurations to states. Each row of
AR’s execution time matrix corresponds to an MTS T vector. AR’s
reconfiguration time R can be used to fill in MTS’ cost matrix with
identical values (with the diagonal 0s), thus satisfying symmetry and
triangle inequality requirements. AR’s sequence of application
executions corresponds to MTS’ task sequence, AR’s schedule to
MTS’ schedule, and AR’s total time to MTS’ cost.

3. RELATED WORK
A common configurable architecture parameter involves caches,
which contribute greatly to system performance and power. Albonesi
[1] proposed a configurable cache in which ways could be shut down.
Malik [11] added the ability to configure each way as instruction,
data, both, or off, for unified caches. Zhang [15] further added the
ability to concatenate ways into one larger way, and to vary the line
size. While most previous cache tuning work emphasizes static
tuning of such caches, Balasubramonian [2] proposed a dynamic
cache tuning approach involving enlarging or shrinking a
configurable cache based on cache miss thresholds and program
phase changes detected by counters, and measuring whether changes
made improvements. Gordon-Ross [8] developed a dynamic cache
tuning approach for Zhang’s configurable cache, intermittently
activating a previously-developed cache tuning search heuristic, with
activation frequency governed by a feedback control method. Both
those dynamic approaches differed from the approach in this paper

98

by their not assuming awareness of specific applications executing or
of application execution times on possible configurations. Their
advantage versus this paper’s approach is transparency, at the cost of
less possible optimization.

Configurable processors have also been proposed. The most
common involves voltage/frequency scalable processors. Sekar [13]
extends such platforms by also introducing configurability of data,
which can be in an on-chip memory or off-chip, and by introducing a
custom algorithm for dynamically partitioning data and choosing
voltage/frequency based on the presently active task set. Kumar [9]
proposes having multiple diverse binary-compatible cores on a single
general-purpose processor chip. Applications would be scheduled
onto a specific core based on the best match as well as on current
workload, and thus remapping applications upon arrival of a new
application can be viewed as reconfiguration.

Configurable bus research includes Lahiri’s [10] in which a
system components’ communication transactions are monitored, and
adjustments then made to configurable bus parameters like priorities
and DMA mode.

The metrical task system problem has been the focus of much
online algorithm research since its definition in 1992 [5]. Many such
works focus on developing K-competitive algorithms – algorithms
guaranteed not to be worse than a factor K from the offline optimal –
or extending the problem definition (e.g., [3][6]).

4. ALGORITHMS
We introduce several algorithms for architecture reconfiguration. In
the complexity analyses, n is the number of application types, and m
the number of configuration types. Complexity is defined as deciding
on a configuration for one application instance in S.

4.1 Offline Optimal
The offline optimal algorithm is given the complete application
sequence S. A dynamic programming algorithm can be formed, using
the following recurrence relation to fill the table of Figure 3:

)],[(})(min,min{ 11 jkSERLLL k
hjh

k
j

k
j ++= −

≠

−

k
jL is the minimal total execution time, up to and including the

application in position k in S, for choosing configuration j to execute
that application. In other words, the minimal execution time at
position k for configuration j is obtained either by using j for the
previous application (the 1−k

jL term) or by using a different

configuration h having the smallest time (the 1−k
hL term) and

reconfiguring to j (thus incurring time R), whichever is less, plus the
current application’s time on configuration j (the)],[(jkSE term).
Stored with each L, though not shown, is the previous configuration
(either j or some h) as determined above, so that the algorithm
records the configuration schedule to obtain the minimal time. The
time complexity of this offline optimal algorithm is O(m2) for each

application in the input sequence, or O(Km2) for the entire sequence,
where K is the total length of the input sequence S.

4.2 Greedy
A simple online algorithm always changes to the configuration that is
best for the current application, ignoring reconfiguration time. Such
an algorithm is useful primarily for comparison purposes,
representing a naive value to compare to along with the other extreme
of the “best case” value of the offline optimal algorithm. The time
complexity for the Greedy algorithm is O(1).

4.3 Work Function
The Work Function algorithm [5], defined for MTS, is similar to the
offline optimal dynamic programming algorithm, but for an
application sequence up to and including the current application only.
The algorithm computes the dynamic programming table of Figure 3
incrementally as each application is encountered, choosing the
configuration having the lowest k

jL execution time for the current k.

Time complexity is O(m2).

4.4 Marking Algorithm
The Marking algorithm [5] was also defined for MTS. It maintains a
counter for each configuration, and uses phases. At a phase start,
counters are reset to 0, and a random configuration cj is selected.
When an application ai runs on configuration cj, the counter for
configuration cj is incremented by the execution time of ai on cj,
namely by E(i,j). If the counter for cj reaches some threshold X, the
configuration is changed to a random configuration whose counter is
less than X. If no such configuration exists, a new phase is started.
The intuition of this algorithm is to rotate among configurations
(since the best is not known), staying longer in configurations that
execute applications fast and thus don’t have their counters increased
rapidly. Time complexity is O(m).

4.5 Window Algorithm
Online algorithms defined for MTS typically focus on the K-
competitive ratio, which guarantees results no worse than K times the
offline optimal for theoretically worst case (“adversarial”) input
sequences. Our goal instead was to perform well for typical, while
broad, input sequences (as theoretically worst case inputs are rare in
practice). We thus developed additional algorithms.

The first algorithm we developed for the architecture
reconfiguration problem assumes temporal locality, meaning that the
future will be similar to the recent past. The number of applications s
considered into the past is called the window size. The Window
algorithm, shown in Algorithm 1, finds the configuration that would
have yielded the smallest time for the application sequence appearing
in the previous s applications in the application sequence, followed
by the current application.

 Algorithm 1: Window Algorithm

 Window (k, s) returns configuration j
 s: window size. k: current position in sequence S
 for each configuration j

 ∑
+−=

←
k

skh

k
j jhSET

1
)],[(

 if ≠j Current configuration then RTT k
j

k
j +←

 return j corresponding to minimum k
jT obtained

k
jT is the time of configuration j to execute the current window’s

applications. The time complexity of the algorithm is O(m). The

 Figure 3: Table for dynamic programming algorithm.

c1

c2

cm

...

S[1] ... S[2] S[K]

L 1
1 L 2

1 L K
1

L 1
2 L 2

2 L K
2

L 1
m L 2

m L K
m

99

following relation,)],[()],[(1 jkSEjskSETT k
j

k
j +−−= − ,

keeps complexity low by incrementally computing the next T from
the previous T, avoiding complexity proportional to s.

4.6 Two-Way Window (TWW) Algorithm
A possible improvement to the Window algorithm attempts to more
accurately predict the future. The Two-Way Window (TWW)
algorithm maintains an application transition matrix M(y,z). Each
entry counts the number of times application az has followed ay.
Given the current application ai, the algorithm determines the most
probable next application aj by examining the matrix counts. With aj,
the algorithm determines the most probable ak, and so on, for the
desired future window size. The algorithm then determines the best
configuration for the window that includes the past u applications, the
current application, and the future v (predicted) applications. We set u
and v to 10. The time complexity of TWW is O(mv), where v is the
size of the future window.

4.7 AWW Algorithm
For the Window algorithm, choosing the best window size is
challenging. A larger size is more stable, but a smaller size gives
more weight to the near past, which may be more likely to reflect the
near future. A hybrid uses a larger window while giving more weight
to the recent window part. Such weighing can be achieved by
multiplying application ax’s execution time by zdistance, where z is a
constant between 0 and 1, and distance is the number of applications
between ax and the current application. Thus, the further back in time
that application ax was run, the less influence it has. We call this
algorithm the Weighted Window algorithm.

Choosing the best z is hard. If execution times are large relative
to reconfiguration time, a small z is preferred to give more weight to
the current application. In other words, small reconfiguration times
enable frequent reconfigurations. But, if reconfiguration time is large,
a large z (near 1) is preferred, to resist frequent reconfigurations,
looking more evenly at the past application sequence, presumably
predicting the long term future.

The discussion leads to the idea of defining z as (1-y), where y is
adapted to the extent to which execution times are greater than the
reconfiguration time R. We define y as the fraction of
application/configuration pairings whose execution time exceeds the
reconfiguration time, namely:

 for all i (application types) and j (configuration types)
 y = (#E(i,j) such that E(i,j)>R) / (i x j)

Because z is thus adapted to the application execution times and
reconfiguration time, we refer to this as the adaptive weighted
window (AWW) algorithm, shown in Algorithm 2.

 Algorithm 2: AWW Algorithm

 AWW (k, s) returns configuration j
 s: window size. k: current position of S
 y = (#E(i, j) | E(i, j) > R) / (i*j)

 for each configuration j

 ∑
+−=

−−⋅←
k

skh

hkk
j yjhSET

1

)1()],[(

 if ≠j Current configuration then RTT k
j

k
j +←

 return j corresponding to minimum k
jT seen

Tj is the time of configuration j to execute the application in the
window. The time complexity is O(m). The relation:

)],[()1())1()],[((11 jkSEyyjskSETT Sk
j

k
j +−⋅−⋅−−= −−

enables incremental computation of T from the previous T, to avoid
complexity proportional to the window size s.

An alternative approach to adapt z could be to define y as the
geometric mean of the difference of application execution times and
the reconfiguration time R (other definitions are possible).

Computing z based on application execution times and the
reconfiguration time has the added benefit of adapting to changes if
those times were dynamically recorded and the E and R items were
dynamically updated. We did not do such dynamic updates in our
experiments, but this may be an interesting avenue for future work.

5. EXPERIMENTS
We compared the developed algorithms on four data sets
(applications and configurations), described in upcoming subsections.
For each data set, to evaluate the algorithms across a spectrum of
application sequence scenarios, we created a generator capable of
creating three categories of application sequences:

 Random: Applications are randomly inserted into the
sequence.

 Biased: We defined two percentages A and B, and then
generated the sequence such that A percent of the
applications executed B percent of the time. We used A=20%
and B=80%.

 Periodic: We defined a length T, and generated a random
subsequence of length T that then repeats. We used T=15.

Each sequence’s length was 1,000. For all experiments, because
sequences involve some random ordering, we generated 10
sequences, and report the average.

We developed a simulator in C++ that reads all problem input
and an application sequence, and that determines the total application
execution time that would result from running each algorithm on the
sequence. The running time of the algorithms themselves is not
included in that execution time, being negligible for our particular
application and platform scenarios; for other scenarios, algorithm
runtimes may be significant, especially for the Work Function
algorithm whose complexity is quadratic.

5.1 Cache Tuning
We obtained data from Gordon-Ross [8] for a dynamically
configurable cache. The data consisted of application execution times
for 36 applications on all 18 possible configurations of a configurable
cache (i.e., 648 data items). The benchmarks were from Powerstone,
MediaBench and EEMBC. Example cache configurations included a
2 Kbyte, 16-byte line size, 1-way (direct mapped) cache and an 8
Kbyte, 64-byte line size, 4-way set-associative cache, and various
configurations between these extremes. Data was derived through
exhaustive simulation using SimpleScalar. Rather than choosing one
cache reconfiguration time, to evaluate the algorithms across a range
of potential platforms, we considered cache reconfiguration times
(mainly from cache flushing) from 0.01 ms to 100 ms. Application
runtimes ranged from 20 ms to 500 ms. Figure 4 summarizes results.

5.2 FPGA Soft-Core Tuning
We obtained data from Sheldon [12] for a MicroBlaze configurable
FPGA soft-core processor. The data consisted of 15 applications on
64 configurations, or 900 data points. Benchmarks were from
Powerstone and EEMBC. Configurations included the base processor
alone, the base processor plus all optional datapath components
(floating-point unit, multiplier, barrel shifter, cache, etc.), and various
configurations in between these extremes. The data was originally
collected for offline tuning, but could be utilized in a dynamic tuning
approach on an FPGA supporting runtime partial reconfiguration. To
evaluate across a range of FPGA platforms, we considered

100

reconfiguration times (due to FPGA bitstream loading and processor
context store/restore) from 5 ms to 200 ms. Application runtimes
ranged from 60 ms to 2,000 ms. Figure 5 shows results.

5.3 Synthetic Datasets
To further evaluate the algorithms across a range of scenarios, we
generated a randomized dataset with 5 applications and 10
configurations, having cost matrix E of {38,58,394,36,69},
{91,73,98,72,49}, {18,93,58,37,44}, {83,27,38,55,36},
{78,35,84,59,19}, {89,45,28,50,22}, {29,40,95,38,66},
{85,16,48,67,34}, {20,49,87,239,60}, {29,59,27,86,90}}. The
random nature of the data provides a greater challenge to tuning
algorithms. Figure 6 summarizes results. A second dataset involved
10 applications on 4 configurations. Results were similar to Figure 6,
and thus omitted for space reasons.

5.4 Evaluation
For all datasets, AWW performed best, within 2% of the offline
optimal for the real data sets and 6% for the synthetic datasets, or 4%
overall. AWW performed well across all three application sequence
categories, with its worst case being 12% from optimal for the
random (and hence most difficult) sequence category with synthetic
data (which was also random). TWW sometimes very slightly

outperformed AWW, but such benefit was outweighed by
significantly worse TWW results for certain scenarios. The Window
algorithm, with sizes of 10 or 100, was often close to AWW, but did
poorly for the biased FPGA soft-core scenarios and for the synthetic
(more randomized) datasets. The Work Function algorithm was
usually close to AWW, but did poorly for the synthetic datasets.
Marking was not competitive, which can be explained by its seeking
to improve the theoretical worst case. The Greedy algorithm’s
inferiority was apparent for the larger reconfiguration times, when its
“always reconfigure” approach hurts the most.

We recorded the number of reconfigurations incurred by each
algorithm, summarized for the FPGA soft-core experiments in Figure
7. Observing the number of reconfigurations provides insight into
each algorithm’s behavior. AWW tends to match the offline optimal
algorithm’s number, sometimes only slightly different. Work
Function often performed many more reconfigurations, while still
remaining competitive in total execution time in many cases. Greedy
of course performed the most reconfigurations, reconfiguring every
time the current application’s best configuration differed from the
previous application’s best configuration.

To determine algorithm runtimes, we ran each for a 50,000
application sequence on a 2 GHz PC. The offline optimal required
256 ms and Work Function 248 ms. AWW and Window(10) required

Figure 4: Cache tuning: Resulting execution times (seconds) for the various online algorithms for random (left), biased (center), and periodic (right)
application sequences, for reconfiguration times ranging from 0.01 ms to 100 ms.

0

500

1000

1500

2000

2500

0.01ms 0.1ms 1ms 10ms 100ms

OfflineOptimal

Greedy

Workfunction

Marking

window(100)

window(10)

TWW

AWW

0

1000

2000

3000

4000

5000

6000

0.01ms 0.1ms 1ms 10ms 100ms

0

500

1000

1500

2000

2500

3000

0.01ms 0.1ms 1ms 10ms 100ms

Figure 5: FPGA soft-core tuning: Resulting execution times (seconds) for the various online algorithms for random (left), biased (center), and
periodic (right) application sequences, for reconfiguration times ranging from 5 ms to 200 ms.

0
50

100
150
200
250
300
350
400
450

5ms 20ms 50ms 100ms 200ms

OfflineOptimal

Greedy

Workfunction

Marking

Window(100)

Window(10)

TWW

AWW
0

50

100

150

200

250

300

350

400

5ms 20ms 50ms 100ms 200ms

0

50
100

150

200
250

300

350
400

450

5ms 20ms 50ms 100ms 200ms

Figure 6: Synthetic cases: Resulting execution times (cycles) for the various online algorithms for random (left), biased (center), and periodic (right)
application sequences, for reconfiguration times ranging from 5 cycles to 150 cycles. Certain values extend off the chart top.

0

10000

20000

30000

40000

50000

60000

70000

80000

5c 20c 40c 80c 150c

OfflineOptimal

Greedy

Workfunction

Marking

Window(100)

Window(10)

TWW

AWW 0

5000

10000

15000

20000

25000

30000

35000

40000

5c 20c 40c 80c 150c

0

10000

20000

30000

40000

50000

60000

70000

5c 20c 40c 80c 150c

101

4 ms, while Marking and Window(100) required 8 ms. TWW
required 840 ms. Greedy was near 0 ms. AWW not only
outperformed the other algorithms, but was faster than all but
Greedy. AWW required only 4 ms/50,000 = .08 microseconds to
decide whether to reconfigure for the current application.

For further comparison, we implemented a non-dynamic
configuration algorithm that stays in the single configuration having
the lowest average runtime across all application types. AWW was
6% better on average, and up to 30% better for small reconfiguration
times, when frequent reconfiguring can be done with less time
overhead. For large reconfiguration times, the non-dynamic
algorithm nearly equaled AWW, slightly better (1%-2%) in some
cases. Plots are omitted for space reasons.

6. CONCLUSIONS
Dynamic tuning will become increasingly important as configurable
architectures proliferate. An adaptive weighted window (AWW)
algorithm achieves excellent results for a wide range of scenarios,
including various application sequence patterns (even the bad case of
random sequences), and situations of low or high reconfiguration
times. AWW involves a straightforward implementation, and
outperforms the well-known Work Function online algorithm, while
also having the lower time complexity of O(m) rather than O(m2)
(explainable by our different goal of achieving good results for
realistic scenarios versus theoretical worst case results). If m, the
number of possible configurations, is large, subsetting could possibly
reduce m with minimal performance loss [14]. AWW improves over
a non-dynamic approach by 6% on average, and up to 30% for small
reconfiguration times.

Future work may consider variability in application and
configuration times, energy costs, preemptable applications, and
other extensions.

To facilitate reproduction, comparison, and extension of this
work, the complete datasets used in this paper are available at
http://www.cs.ucr.edu/~vahid for an indefinite period of time.

7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CNS-0614957).

REFERENCES
[1] D.H. Albonesi. Selective Cache Ways: On-Demand Cache

Resource Allocation. Journal of Instruction Level. Parallelism,
May 2000.

[2] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S.
Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general-purpose processor. Int. Symp. on
Microarchitecture (MICRO), 2000, pp 245-257.

[3] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-
competitive algorithm for metrical task systems. ACM Symp.
on Theory of Computing, 1997, pp. 711-719.

[4] A. Blum and C. Burch. On-line learning and the metrical task
system problem. Journal of Machine Learning, Vol. 39, No. 1,
April 2000, pp. 35-58.

[5] A. Borodin, N. Linial, and M.E. Saks. An optimal on-line
algorithm for metrical task system. Journal of the ACM
(JACM), Volume 39, Issue 4 (Oct. 1992), pp. 745 – 763.

[6] W.R. Burley and S. Irani. On algorithm design for metrical task
system. Algorithmica, 1997, Vol. 18, pp. 461-485.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to algorithms. MIT Press, 2001.

[8] A. Gordon-Ross and F. Vahid. A self-tuning configurable
cache. Design Automation Conference (DAC), 2007, pp. 234-
237.

[9] R. Kumar, D. Tullsen, N. Jouppi, P. Ranganathan.
Heterogenous chip multiprocessors. IEEE Computer, Nov.
2005, pp. 32-38.

[10] K. Lahiri , A. Raghunathan, G. Lakshminarayana, and S. Dey.
Communication architecture tuners: a methodology for the
design of high-performance communication architectures for
systems-on-chips. ACM/IEEE Design Automation Conf.
(DAC), 2000, pp. 513-518.

[11] A. Malik, B. Moyer and D. Cermak. A low power unified cache
architecture providing power and performance flexibility. Int.
Symp. on Low Power Electronics and Design (ISLPED), June
2000.

[12] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, D.M. Tullsen.
Application-specific customization of parameterized FPGA soft-
core processors. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov. 2006, pp. 261-268.

[13] K. Sekar, K. Lahiri, S. Dey. Dynamic platform management for
configurable platform-based system-on-chips. Int. Conf. on
Computer Aided Design (ICCAD), 2003, pp. 641-648.

[14] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, F. Vahid,
Configurable cache subsetting for fast cache tuning. IEEE/ACM
Design Automation Conference (DAC), July 2006, pp. 695 -
700.

[15] C. Zhang, F. Vahid and W. Najjar. A highly-configurable cache
architecture for embedded systems. International Symposium on
Computer Architecture (ISCA), 2003, pp. 136-146.

Figure 7: Total number of reconfigurations for random (left), biased (center), and periodic (right) application sequences, with reconfiguration times
ranging from 5 ms to 200 ms, for the FPGA soft-core tuning experiments.

0
100
200
300
400

500
600
700
800
900

5ms 20ms 50ms 100ms 200ms

OfflineOptimal

Greedy

Workfunction

Marking

Window(100)

Window(10)

TWW

AWW
0

100

200

300

400

500

600

700

800

5ms 20ms 50ms 100ms 200ms

0

200

400

600

800

1000

1200

5ms 20ms 50ms 100ms 200ms

102

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

