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ABSTRACT 
Architectures with software-writable parameters, or configurable 
architectures, enable runtime reconfiguration of computing platforms 
to the applications they execute. Such dynamic tuning can improve 
application performance, as well as energy. However, reconfiguring 
incurs a temporary performance cost. Thus, online algorithms are 
needed that decide when to reconfigure and which configuration to 
choose such that overall performance is optimized.  We introduce the 
adaptive weighted window (AWW) algorithm, and compare with 
several other algorithms, including algorithms previously developed 
by the online algorithm community. We describe experiments 
showing that AWW results are within 4% of the offline optimal on 
average. AWW outperforms the other algorithms, and is robust 
across three datasets and across three categories of application 
sequences too. AWW improves a non-dynamic approach on average 
by 6%, and by up to 30% in low-reconfiguration-time situations.    

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Adaptable architectures, 
heterogeneous systems.  

General Terms: Algorithm, Performance, Design. 

Keywords: Configurable architecture, tuning, FPGAs, cache, 
dynamic optimization, runtime configuration,  online algorithms.   

1. INTRODUCTION  
Configurable architectures enable runtime tuning of computing 
platforms to their running applications. Tuning can substantially 
improve performance or energy.  

Runtime configurable architecture constructs include memory 
hierarchies whose caches may be shut down or have their total size, 
line size, associativity, or replacement policy adjusted, buses that 
may be resegmented or have their widths or protocols adjusted, soft-
core processors on field-programmable gate arrays (FPGAs) that may 
be reinstantiated with different datapaths or any processor that may 
have certain datapath units shut down, processors with adjacent 
FPGA units that may have particular coprocessors loaded, and 
scalable processors whose supply voltage and frequency may be 
varied.  

Tuning a configurable architecture to an application can 
substantially improve performance or energy. For a configurable 
architecture, each distinct application that runs on that architecture 
may run most efficiently with a particular configuration, running 

inefficiently in other configurations. Figure 1 shows execution time 
for three EEMBC embedded benchmark applications running on a 
SimpleScalar MIPS processor with a 2 Kbyte direct-mapped 
instruction cache having three possible line size configurations: 16, 
32, or 64 bytes. An application with much spatial locality (e.g., 
TBLOOK01) is faster with the largest line size, while another 
application (PUWMOD01) is faster with the smallest line size, and a 
third runs fastest using the middle line size. If these three applications 
run on one processor, reconfiguring the cache for the currently-
executing application may yield 40% better performance than using a 
single configuration for all three applications. Figure 2 illustrates 
running a particular application sequence, each instance shown on the 
x-axis with the applications’ first letter, with a fixed 32-byte line size 
versus with a reconfigurable line size. The figure shows how total 
runtime for the latter may be less if reconfiguration time is fast, but 
may actually be more if reconfiguration is slow.  

While some configurable architecture constructs may be 
reconfigured with little runtime reconfiguration overhead, such as 
voltage scalable processors, other constructs require non-negligible 
reconfiguration time. For example, reconfiguring a memory 
hierarchy may involve flushing of dirty cache words. Reinstantiating 
an FPGA soft-core processor may involve time to save the 
processor’s execution context, swap in a new partial FPGA bitstream, 
and restore the processor context.  
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Figure 1: Applications’ best configurations typically differ. 

                               

 

Figure 2: Reconfiguring can lead to lower total execution time, if 
reconfiguration time isn’t too slow. 
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A problem is to determine, as applications arrive for execution, 
when to reconfigure an architecture and to which configuration. 
Reconfiguring incurs performance loss due to reconfiguration time, 
but also performance gains due to tuned application execution. The 
gain must outweigh the loss for benefit. If the schedule of application 
executions is known a priori, and with pre-determined performance 
information for every application in each configuration, a 
straightforward dynamic programming algorithm can determine the 
optimal reconfiguration schedule.  

For many modern embedded systems, however, the schedule of 
application executions is not known a priori, but rather is determined 
by end-user usage patterns. In this case, an algorithm must be used 
that makes reconfiguration decisions with incomplete information 
about the future schedule of application executions.    

In this paper, we cast the reconfiguration problem as an online 
optimization problem, namely, as a metrical task system. The key 
contribution is the Adaptive Weighted Window (AWW) algorithm, 
which obtains better optimization than previous algorithms, and is 
robust across a broad range of possible scenarios of reconfiguration 
time versus application runtimes and of application schedules. We 
define the problem, discuss related work, and describe previous and 
new algorithms including AWW. We describe experiments using the 
algorithms on real and synthetic benchmarks, showing the AWW 
algorithm to usually achieve results closest to optimal. The algorithm 
is also simple to implement. Thus, the AWW algorithm should be 
suitable for dynamic tuning of a wide range of existing and future 
configurable architectures.   

2. ARCHITECTURE RECONFIGURATION 
2.1 Problem Definition 
We define the architecture reconfiguration problem as follows. 
Given are: 

 The application set A = {a1, a2, ..., an} and a set of 
architecture configurations C = {c1, c2, ... cm}.  

 An execution time matrix E of dimension n x m. E(i,j) is the 
execution time of application ai on configuration cj.  

 The reconfiguration time R to change from any configuration 
ck to any other configuration cl.  

Runtime consists of a sequence of application executions S, such as S 
= <a2, a1, a1, a3, a2, a1>, but typically much longer with hundreds 
or thousands of application instances. We define S[k] as the 
application type at position k in the application sequence S; in the 
above sequence, S[1] is a2, S[2] is a1, and S[3] is a1.    

Assumed is that each application has a start and finish and cannot 
be preempted. Iterating applications can be accounted for by 
redefining the application as a single iteration and then scheduling 
repeated executions of the redefined application. 

The problem is to choose a configuration for every application in 
the sequence to minimize total time T, yielding a configuration 
schedule. Every configuration change in that schedule is a 
reconfiguration incurring time R. Total time T is the sum of 
application execution times on the corresponding configuration in the 
schedule, plus the time for all reconfigurations.  

2.2 Limitations  
The above problem definition assumes that each application’s 
execution time on each configuration is known. For some 
architectures, the number of possible architecture configurations 
could be large and thus hard to precompute, though this situation can 
be alleviated by using a configuration subset that reasonably covers 
the configuration space [14]. A priori knowledge also diverges from 
one research avenue in configurable architectures that seeks to make 

the configurations and tuning invisible to the application designer. 
However, dynamically collecting runtime data on applications and 
architectures may help address that problem. A second limitation is 
that applications cannot be preempted, a topic for future work. A 
third limitation is the assumption that application execution times on 
a configuration, and reconfiguration times, are constants. However, 
execution times for an application on a particular configuration may 
vary depending on runtime data. Reconfiguration times may differ 
among pairs of configurations (e.g., adding a datapath unit may be 
costlier than removing one), and further could depend on which 
applications ran earlier (e.g., more cache flushing may be needed 
after some applications than after others). Treating these times as 
constants involves considering worst cases or average cases instead.  
Despite the limitations, the definition is close to many task-based 
problem definitions, and seems suitable for a variety of embedded 
systems. Future work may seek to extend the definition to other 
scenarios.  

2.3 Metrical Task System 
An online problem is one that must be solved given data piece by 
piece, in contrast to offline problems in which all input data is 
available. A metrical task system, defined in [5], is a well-known 
formulation of a class of online problems. The problem involves a 
task system (S,d) for processing sequences of tasks. S is a set system 
states, and d is a cost matrix where d(i, j) is the cost of changing from 
state i to state j, assumed to satisfy the triangle inequality, and 
assumed to have 0s on the diagonal. In a metrical system, state 
transition costs are symmetric, i.e.,    d(i, j) equals d(j, i). The cost of 
processing a task depends on the system state, and thus a task can be 
viewed as a vector T=(T(1), T(2), ..., T(j)), where T(j) is the (possibly 
infinite) cost of processing the task while in state j. A schedule for a 
sequence T1, T2,…, Tk of tasks is a sequence s1, s2,…,sk of states 
where si is the state in which Ti is processed. The cost of a schedule 
is the sum of all task processing costs and the state transition costs 
incurred. An on-line scheduling algorithm is one that chooses si only 
knowing T1T2…Ti. 

The architecture reconfiguration problem (AR) can be mapped to 
the metrical task system problem (MTS). AR’s applications 
correspond to MTS’ tasks, and configurations to states. Each row of 
AR’s execution time matrix corresponds to an MTS T vector. AR’s 
reconfiguration time R can be used to fill in MTS’ cost matrix with 
identical values (with the diagonal 0s), thus satisfying symmetry and 
triangle inequality requirements. AR’s sequence of application 
executions corresponds to MTS’ task sequence, AR’s schedule to 
MTS’ schedule, and AR’s total time to MTS’ cost.  

3. RELATED WORK 
A common configurable architecture parameter involves caches, 
which contribute greatly to system performance and power. Albonesi 
[1] proposed a configurable cache in which ways could be shut down. 
Malik [11] added the ability to configure each way as instruction, 
data, both, or off, for unified caches. Zhang [15] further added the 
ability to concatenate ways into one larger way, and to vary the line 
size. While most previous cache tuning work emphasizes static 
tuning of such caches, Balasubramonian [2] proposed a dynamic 
cache tuning approach involving enlarging or shrinking a 
configurable cache based on cache miss thresholds and program 
phase changes detected by counters, and measuring whether changes 
made improvements. Gordon-Ross [8] developed a dynamic cache 
tuning approach for Zhang’s configurable cache, intermittently 
activating a previously-developed cache tuning search heuristic, with 
activation frequency governed by a feedback control method. Both 
those dynamic approaches differed from the approach in this paper 
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by their not assuming awareness of specific applications executing or 
of application execution times on possible configurations. Their 
advantage versus this paper’s approach is transparency, at the cost of 
less possible optimization.  

Configurable processors have also been proposed. The most 
common involves voltage/frequency scalable processors. Sekar [13] 
extends such platforms by also introducing configurability of data, 
which can be in an on-chip memory or off-chip, and by introducing a 
custom algorithm for dynamically partitioning data and choosing 
voltage/frequency based on the presently active task set.  Kumar [9] 
proposes having multiple diverse binary-compatible cores on a single 
general-purpose processor chip. Applications would be scheduled 
onto a specific core based on the best match as well as on current 
workload, and thus remapping applications upon arrival of a new 
application can be viewed as reconfiguration.  

Configurable bus research includes Lahiri’s [10] in which a 
system components’ communication transactions are monitored, and 
adjustments then made to configurable bus parameters like priorities 
and DMA mode.  

The metrical task system problem has been the focus of much 
online algorithm research since its definition in 1992 [5]. Many such 
works focus on developing K-competitive algorithms – algorithms 
guaranteed not to be worse than a factor K from the offline optimal – 
or extending the problem definition  (e.g., [3][6]).  

4. ALGORITHMS  
We introduce several algorithms for architecture reconfiguration. In 
the complexity analyses, n is the number of application types, and m 
the number of configuration types. Complexity is defined as deciding 
on a configuration for one application instance in S.  

4.1 Offline Optimal 
The offline optimal algorithm is given the complete application 
sequence S. A dynamic programming algorithm can be formed, using 
the following recurrence relation to fill the table of Figure 3: 

)],[(})(min,min{ 11 jkSERLLL k
hjh

k
j

k
j ++= −

≠

−  

k
jL  is the minimal total execution time, up to and including the 

application in position k in S, for choosing configuration j to execute 
that application. In other words, the minimal execution time at 
position k for configuration j is obtained either by using j for the 
previous application (the 1−k

jL  term) or by using a different 

configuration h having the smallest time (the 1−k
hL term) and 

reconfiguring to j (thus incurring time R), whichever is less, plus the 
current application’s time on configuration j (the )],[( jkSE  term). 
Stored with each L, though not shown, is the previous configuration 
(either j or some h) as determined above, so that the algorithm 
records the configuration schedule to obtain the minimal time. The 
time complexity of this offline optimal algorithm is O(m2) for each 

application in the input sequence, or O(Km2) for the entire sequence, 
where K is the total length of the input sequence S.  

4.2 Greedy 
A simple online algorithm always changes to the configuration that is 
best for the current application, ignoring reconfiguration time. Such 
an algorithm is useful primarily for comparison purposes, 
representing a naive value to compare to along with the other extreme 
of the “best case” value of the offline optimal algorithm. The time 
complexity for the Greedy algorithm is O(1).  

4.3 Work Function 
The Work Function algorithm [5], defined for MTS, is similar to the 
offline optimal dynamic programming algorithm, but for an 
application sequence up to and including the current application only. 
The algorithm computes the dynamic programming table of Figure 3 
incrementally as each application is encountered, choosing the 
configuration having the lowest k

jL  execution time for the current k. 

Time complexity is O(m2). 

4.4 Marking Algorithm  
The Marking algorithm [5] was also defined for MTS. It maintains a 
counter for each configuration, and uses phases. At a phase start, 
counters are reset to 0, and a random configuration cj is selected. 
When an application ai runs on configuration cj, the counter for 
configuration cj is incremented by the execution time of ai on cj, 
namely by E(i,j). If the counter for cj reaches some threshold X, the 
configuration is changed to a random configuration whose counter is 
less than X. If no such configuration exists, a new phase is started. 
The intuition of this algorithm is to rotate among configurations 
(since the best is not known), staying longer in configurations that 
execute applications fast and thus don’t have their counters increased 
rapidly. Time complexity is O(m).  

4.5 Window Algorithm 
Online algorithms defined for MTS typically focus on the K-
competitive ratio, which guarantees results no worse than K times the 
offline optimal for theoretically worst case (“adversarial”) input 
sequences. Our goal instead was to perform well for typical, while 
broad, input sequences (as theoretically worst case inputs are rare in 
practice). We thus developed additional algorithms.  

The first algorithm we developed for the architecture 
reconfiguration problem assumes temporal locality, meaning that the 
future will be similar to the recent past. The number of applications s 
considered into the past is called the window size. The Window 
algorithm, shown in Algorithm 1, finds the configuration that would 
have yielded the smallest time for the application sequence appearing 
in the previous s applications in the application sequence, followed 
by the current application.  

    Algorithm 1: Window Algorithm 

       Window (k, s)  returns configuration j  
             s: window size.   k: current position in sequence S 
          for each configuration j 

               ∑
+−=

←
k

skh

k
j jhSET

1
)],[(  

                if ≠j Current configuration then  RTT k
j

k
j +←  

      return   j corresponding to minimum k
jT  obtained   

k
jT  is the time of configuration j to execute the current window’s 

applications. The time complexity of the algorithm is O(m). The 

   Figure 3: Table for dynamic programming algorithm. 
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following relation, )],[()],[(1 jkSEjskSETT k
j

k
j +−−= − , 

keeps complexity low by incrementally computing the next T from 
the previous T, avoiding complexity proportional to s. 

4.6 Two-Way Window (TWW) Algorithm 
A possible improvement to the Window algorithm attempts to more 
accurately predict the future. The Two-Way Window (TWW) 
algorithm maintains an application transition matrix M(y,z). Each 
entry counts the number of times application az has followed ay. 
Given the current application ai, the algorithm determines the most 
probable next application aj by examining the matrix counts. With aj, 
the algorithm determines the most probable ak, and so on, for the 
desired future window size. The algorithm then determines the best 
configuration for the window that includes the past u applications, the 
current application, and the future v (predicted) applications. We set u 
and v to 10. The time complexity of TWW is O(mv), where v is the 
size of the future window.   

4.7 AWW Algorithm 
For the Window algorithm, choosing the best window size is 
challenging. A larger size is more stable, but a smaller size gives 
more weight to the near past, which may be more likely to reflect the 
near future. A hybrid uses a larger window while giving more weight 
to the recent window part. Such weighing can be achieved by 
multiplying application ax’s execution time by zdistance, where z is a 
constant between 0 and 1, and distance is the number of applications 
between ax and the current application. Thus, the further back in time 
that application ax was run, the less influence it has. We call this 
algorithm the Weighted Window algorithm. 

Choosing the best z is hard. If execution times are large relative 
to reconfiguration time, a small z is preferred to give more weight to 
the current application. In other words, small reconfiguration times 
enable frequent reconfigurations. But, if reconfiguration time is large, 
a large z (near 1) is preferred, to resist frequent reconfigurations, 
looking more evenly at the past application sequence, presumably 
predicting the long term future.  

The discussion leads to the idea of defining z as (1-y), where y is 
adapted to the extent to which execution times are greater than the 
reconfiguration time R. We define y as the fraction of 
application/configuration pairings whose execution time exceeds the 
reconfiguration time, namely: 

   for all i (application types) and j (configuration types) 
           y = ( #E(i,j) such that E(i,j)>R) / (i x j) 

Because z is thus adapted to the application execution times and 
reconfiguration time, we refer to this as the adaptive weighted 
window (AWW) algorithm, shown in  Algorithm 2.  

    Algorithm 2: AWW Algorithm 

       AWW (k, s)  returns configuration j 
         s: window size.   k: current position of S 
      y = (#E(i, j) | E(i, j) > R) / (i*j) 

          for each configuration j 

              ∑
+−=

−−⋅←
k

skh

hkk
j yjhSET

1

)1()],[(  

              if ≠j Current configuration then    RTT k
j

k
j +←  

      return    j corresponding to minimum k
jT  seen  

Tj is the time of configuration j to execute the application in the 
window. The time complexity is O(m). The relation: 

)],[()1())1()],[(( 11 jkSEyyjskSETT Sk
j

k
j +−⋅−⋅−−= −−  

enables incremental computation of T from the previous T, to avoid 
complexity proportional to the window size s.    

An alternative approach to adapt z could be to define y as the 
geometric mean of the difference of application execution times and 
the reconfiguration time R (other definitions are possible). 

Computing z based on application execution times and the 
reconfiguration time has the added benefit of adapting to changes if 
those times were dynamically recorded and the E and R items were 
dynamically updated. We did not do such dynamic updates in our 
experiments, but this may be an interesting avenue for future work.  

5. EXPERIMENTS 
We compared the developed algorithms on four data sets 
(applications and configurations), described in upcoming subsections. 
For each data set, to evaluate the algorithms across a spectrum of 
application sequence scenarios, we created a generator capable of 
creating three categories of application sequences: 

 Random: Applications are randomly inserted into the 
sequence. 

 Biased: We defined two percentages A and B, and then 
generated the sequence such that A percent of the 
applications executed B percent of the time. We used A=20% 
and B=80%.    

 Periodic: We defined a length T, and generated a random 
subsequence of length T that then repeats.  We used T=15.   

Each sequence’s length was 1,000. For all experiments, because 
sequences involve some random ordering, we generated 10 
sequences, and report the average.  

We developed a simulator in C++ that reads all problem input 
and an application sequence, and that determines the total application 
execution time that would result from running each algorithm on the 
sequence. The running time of the algorithms themselves is not 
included in that execution time, being negligible for our particular 
application and platform scenarios; for other scenarios, algorithm 
runtimes may be significant, especially for the Work Function 
algorithm whose complexity is quadratic.  

5.1 Cache Tuning 
We obtained data from Gordon-Ross [8] for a dynamically 
configurable cache. The data consisted of application execution times 
for 36 applications on all 18 possible configurations of a configurable 
cache (i.e., 648 data items). The benchmarks were from Powerstone, 
MediaBench and EEMBC. Example cache configurations included a 
2 Kbyte, 16-byte line size, 1-way (direct mapped) cache and an 8 
Kbyte, 64-byte line size, 4-way set-associative cache, and various 
configurations between these extremes. Data was derived through 
exhaustive simulation using SimpleScalar. Rather than choosing one 
cache reconfiguration time, to evaluate the algorithms across a range 
of potential platforms, we considered cache reconfiguration times 
(mainly from cache flushing) from 0.01 ms to 100 ms. Application 
runtimes ranged from 20 ms to 500 ms. Figure 4 summarizes results.  

5.2 FPGA Soft-Core Tuning 
We obtained data from Sheldon [12] for a MicroBlaze configurable 
FPGA soft-core processor.  The data consisted of 15 applications on 
64 configurations, or 900 data points. Benchmarks were from 
Powerstone and EEMBC. Configurations included the base processor 
alone, the base processor plus all optional datapath components 
(floating-point unit, multiplier, barrel shifter, cache, etc.), and various 
configurations in between these extremes. The data was originally 
collected for offline tuning, but could be utilized in a dynamic tuning 
approach on an FPGA supporting runtime partial reconfiguration. To 
evaluate across a range of FPGA platforms, we considered 
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reconfiguration times (due to FPGA bitstream loading and processor 
context store/restore) from 5 ms to 200 ms. Application runtimes 
ranged from 60 ms to 2,000 ms. Figure 5 shows results.  

5.3 Synthetic Datasets 
To further evaluate the algorithms across a range of scenarios, we 
generated a randomized dataset with 5 applications and 10 
configurations, having cost matrix E of {38,58,394,36,69}, 
{91,73,98,72,49}, {18,93,58,37,44},  {83,27,38,55,36}, 
{78,35,84,59,19}, {89,45,28,50,22}, {29,40,95,38,66}, 
{85,16,48,67,34}, {20,49,87,239,60}, {29,59,27,86,90}}. The 
random nature of the data provides a greater challenge to tuning 
algorithms. Figure 6 summarizes results. A second dataset involved 
10 applications on 4 configurations. Results were similar to Figure 6, 
and thus omitted for space reasons.  

5.4 Evaluation 
For all datasets, AWW performed best, within 2% of the offline 
optimal for the real data sets and 6% for the synthetic datasets, or 4% 
overall. AWW performed well across all three application sequence 
categories, with its worst case being 12% from optimal for the 
random (and hence most difficult) sequence category with synthetic 
data (which was also random). TWW sometimes very slightly 

outperformed AWW, but such benefit was outweighed by 
significantly worse TWW results for certain scenarios. The Window 
algorithm, with sizes of 10 or 100, was often close to AWW, but did 
poorly for the biased FPGA soft-core scenarios and for the synthetic 
(more randomized) datasets. The Work Function algorithm was 
usually close to AWW, but did poorly for the synthetic datasets. 
Marking was not competitive, which can be explained by its seeking 
to improve the theoretical worst case. The Greedy algorithm’s 
inferiority was apparent for the larger reconfiguration times, when its 
“always reconfigure” approach hurts the most.  

We recorded the number of reconfigurations incurred by each 
algorithm, summarized for the FPGA soft-core experiments in Figure 
7. Observing the number of reconfigurations provides insight into 
each algorithm’s behavior. AWW tends to match the offline optimal 
algorithm’s number, sometimes only slightly different. Work 
Function often performed many more reconfigurations, while still 
remaining competitive in total execution time in many cases. Greedy 
of course performed the most reconfigurations, reconfiguring every 
time the current application’s best configuration differed from the 
previous application’s best configuration.  

To determine algorithm runtimes, we ran each for a 50,000 
application sequence on a 2 GHz PC. The offline optimal required 
256 ms and Work Function 248 ms. AWW and Window(10) required 

Figure 4: Cache tuning: Resulting execution times (seconds) for the various online algorithms for random (left), biased (center), and periodic (right) 
application sequences, for reconfiguration times ranging from 0.01 ms to 100 ms.   
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4 ms, while Marking and Window(100) required 8 ms. TWW 
required 840 ms. Greedy was near 0 ms. AWW not only 
outperformed the other algorithms, but was faster than all but 
Greedy. AWW required only 4 ms/50,000 = .08 microseconds to 
decide whether to reconfigure for the current application.  

For further comparison, we implemented a non-dynamic 
configuration algorithm that stays in the single configuration having 
the lowest average runtime across all application types. AWW was 
6% better on average, and up to 30% better for small reconfiguration 
times, when frequent reconfiguring can be done with less time 
overhead. For large reconfiguration times, the non-dynamic 
algorithm nearly equaled AWW, slightly better (1%-2%) in some 
cases. Plots are omitted for space reasons.  

6. CONCLUSIONS 
Dynamic tuning will become increasingly important as configurable 
architectures proliferate. An adaptive weighted window (AWW) 
algorithm achieves excellent results for a wide range of scenarios, 
including various application sequence patterns (even the bad case of 
random sequences), and situations of low or high reconfiguration 
times. AWW involves a straightforward implementation, and 
outperforms the well-known Work Function online algorithm, while 
also having the lower time complexity of O(m) rather than O(m2) 
(explainable by our different goal of achieving good results for 
realistic scenarios versus theoretical worst case results). If m, the 
number of possible configurations, is large, subsetting could possibly 
reduce m with minimal performance loss [14]. AWW improves over 
a non-dynamic approach by 6% on average, and up to 30% for small 
reconfiguration times.  

Future work may consider variability in application and 
configuration times, energy costs, preemptable applications, and 
other extensions.  

To facilitate reproduction, comparison, and extension of this 
work, the complete datasets used in this paper are available at 
http://www.cs.ucr.edu/~vahid for an indefinite period of time.  
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Figure 7: Total number of reconfigurations for random (left), biased (center), and periodic (right) application sequences, with reconfiguration times 
ranging from 5 ms to 200 ms, for the FPGA soft-core tuning experiments.    
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