
Intra- and Inter-Processor Hybrid Performance Modeling
for MPSoC Architectures

Frank E. B. Ophelders1 Samarjit Chakraborty2 Henk Corporaal1
1Department of Electrical Engineering, Technische Universiteit Eindhoven

2Department of Computer Science, National University of Singapore
f.e.b.ophelders@student.tue.nl, samarjit@comp.nus.edu.sg, h.corporaal@tue.nl

ABSTRACT
The heterogeneity of modern MPSoC architectures, coupled with
the increasing complexity of the applications mapped onto them
has recently led to a lot of interest in hybrid performance model-
ing techniques. Here, the idea is to apply different modeling and
analysis techniques to different subsystems/components of an ar-
chitecture/application. Such hybrid techniques often turn out to be
more efficient and accurate compared to relying on a single analy-
sis technique for the entire system. However, the challenge asso-
ciated with this approach is to combine the different analysis re-
sults effectively to obtain conservative performance estimates for
the entire system. In this paper we study a hybrid scheme where
certain system components are simulated (e.g. using instruction
set simulators), whereas others are analyzed using a formal tech-
nique called Real-Time Calculus (RTC). The main novelty of our
approach stems from our use of this hybrid technique even for mul-
tiple tasks mapped onto a single processing element. In contrast to
this, previous approaches relied on either full simulation or RTC-
based analysis for an entire architectural component (e.g. a proces-
sor or a bus). The techniques we develop in this paper therefore al-
low for both intra- and inter-processor hybrid performance model-
ing and show how the different analysis results can be combined to
efficiently obtain tight performance estimates for complex MPSoC
architectures. We demonstrate the usefulness of this approach us-
ing an MPEG-2 decoder application that is partitioned and mapped
onto two processing elements connected by FIFO buffers.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and appli-
cation-based systems—Real-time and embedded systems

General Terms
Algorithms, Performance, Design

Keywords
Performance analysis, Simulation, System-on-Chip

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

1. INTRODUCTION
Modern real-time systems are increasingly becoming distributed

and heterogeneous. They consist of multiple processing elements,
hardware accelerators, memory units and communication systems.
Each of these components pose very diverse requirements and tim-
ing constraints. They also support different scheduling and re-
source arbitration policies and often interact with the physical world
(via sensors and as actuators). As a result, timing and performance
analysis of such system is an important and challenging problem.
There have been previous efforts to use multiple languages and

formalisms for specifying such heterogeneous real-time and em-
bedded systems (e.g. see [17]). However, the issue of composing
different analysis techniques has not been sufficiently explored so
far. Recently, there has been some progress on this front. For ex-
ample, [6] outlined a scheme where some of the components of a
system were analyzed using purely simulation-oriented techniques
(based on SystemC models), while the remaining components were
modeled and analyzed using a set of algebraic equations based
on the so called Real-Time Calculus (RTC) [3] formalism. Such
an hybrid approach provides a good tradeoff between the analysis
time involved and the quality (tightness) of the results (e.g. tim-
ing/performance estimates) returned. While formal analysis tech-
niques like RTC involve very short run/analysis times, the estimates
returned by them can be overly optimistic or pessimistic if the com-
ponent being analyzed implements a complex functionality which
is difficult to model accurately. On the other hand, simulation-
based techniques are relatively easy to use and often provide ac-
curate analysis results. However, they usually involve large simu-
lation times and implementation overheads. As a result, using ei-
ther of these two approaches for an entire system can turn out to be
unacceptable for large and complex systems consisting of multiple
heterogeneous components.
The main contribution of [6] was an interface between the results

returned by components which are simulated and those which are
analyzed using RTC. While the RTC-based analysis represents the
arrival patterns of data and event streams in an abstract fashion, the
SystemC-based models require concrete input traces to trigger the
simulation. To compose the two analysis techniques, one must be
able to inter-convert the two models. Deriving abstract representa-
tions of arrival patterns from concrete traces (the SystemC-to-RTC
conversion) is relatively straightforward (e.g., by using standard
event models such as periodic with jitter). However, a transforma-
tion in the other direction, i.e., deriving a small set of representative
traces from an abstract event model (the RTC-to-SystemC conver-
sion) is a challenging problem. A similar approach was presented
in [13], where certain system components were modeled using SDF
graphs [5, 7] with the remaining ones being subjected to classical
real-time schedulability analysis techniques.

91

Figure 1: Modeling an MPSoC architecture.

Contributions of this paper: In this paper we extend the approach
proposed in [6] so that the hybrid analysis technique is not only ap-
plied across different architectural components (e.g. a processor or
a bus) but also across tasks mapped onto a single processing ele-
ment. As a result, some of the tasks mapped onto the same proces-
sor are modeled using RTC, while the executions of the remaining
tasks are simulated. To understand how this is achieved, some de-
tails of the RTC framework are necessary.
Consider a multiprocessor system-on-chip (MPSoC) architec-

ture consisting of multiple processing elements (PEs) connected
by FIFO buffers and communicating through some communication
subsystem (e.g., shared buses). Further, consider an application
that has been partitioned and mapped onto this architecture. An
overview of such an architecture is shown in Figure 1. A data
(e.g., video) stream enters this system and first gets processed at
PE1. This partially processed stream gets written into a buffer,
which is then read by PE2 for further processing. Finally, the fully
processed stream gets written into an output buffer which is read
by a playout device.
The RTC framework was proposed to analyze such setups in

[3], which was further extended in subsequent papers (e.g. see
[4, 15]). The key feature of this framework is that it allows a
very general modeling of event streams and resource availability
beyond the classical event models such as periodic, sporadic, pe-
riodic with jitter, etc. Another important feature — which is par-
ticularly relevant for performance analysis — is that, rather than
recording the precise arrival times of events, RTC uses a count-
based abstraction which specifies upper and lower bounds on the
possible number of events that can arrive (or can get processed)
within any pre-specified time interval length. This count-based
abstraction captures in a very natural way, bursty arrival patterns
of events/data, variable execution demands and irregular resource
availability. RTC-based models use upper and lower bounds on the
number of events that arrive at a component (processing or com-
munication element) to get processed within any time interval of
a specified length. Such bounds are represented as functions (de-
noted by α in Figure 1) and are used to estimate the workload to be
supported by the component. Similar functions are also used to rep-
resent the service offered by the component (denoted by β in Fig-
ure 1). While such functional modeling allows for efficient analy-
sis, the main drawback of this approach is that it can not model
complex task processing or any state-based information. For ex-
ample, a common feature such as “the processor stalls when the
output buffer is full” cannot be modeled easily since the service of-
fered by the processor in this case depends on the state (fill level)
of the buffer.
To get around this problem, [6] proposed to model some of the

PEs using RTC, while the others were simulated. Towards this,
suppose that PE1 in Figure 1 is analyzed using RTC,whereas PE2

is analyzed using simulation (e.g. either based on a SystemCmodel
or an instruction set simulator). For this, the so called arrival curve
α is used to bound the arrival process of the data items at PE1.
The service offered by this PE is captured using a similar bound or

Figure 2: Inter-processor hybrid performance modeling.

service curve β1. Formal definitions of arrival and service curves
are given later in the paper. The arrival curve of the processed
stream – denoted by α′ – is computed from α and β1 and serves as
the input to PE2. Now, since PE2 is simulated, it needs a concrete
input trace (i.e., arrival times of the data items atPE2) to trigger the
simulator. For this, a bound-to-trace converter is used to obtain one
or more representative traces (which conform to α′) that serve as
an input to the simulator for PE2. This is illustrated in Figure 2. A
similar trace-to-bound converter is required when the output from
a simulator feeds a component which is analyzed using RTC.
Note that using the above scheme, an entire architectural com-

ponent is either modeled using RTC or is simulated. In this pa-
per we extend this basic idea one step further to incorporate intra-
processor hybrid performance modeling. Towards this, some of
the tasks on a PE are modeled using RTC, while the execution of
the others is simulated. What is now required is a converter from
the service curve β to one or more processor availability traces, and
vice-versa. In the following sections, we show how such converters
are obtained and how our intra-processor hybrid performance mod-
eling works in conjunction with the inter-processor hybrid model-
ing introduced in [6]. By inter-converting between arrival/service
curves and traces we are able to obtain a good balance between the
accuracy of the performance analysis results and the time taken to
perform such analysis.
Before concluding this section, we would like to point out that

our approach is orthogonal to the previous efforts on full-system
performance analysis, for example, using holistic schedulability
analysis [1, 10, 11, 12, 14]. Although these efforts were also di-
rected towards analyzing systems with multiple resources and schedul-
ing policies, the underlying analysis techniques used for the differ-
ent components were similar and were mostly based on classical
event models. Our goal, on the other hand, is to combine two fun-
damentally different performance models for system-level analysis
of complex MPSoC architectures.

Organization of this paper: In the next section, we briefly out-
line the RTC framework. This is followed by a description of the
converters that are used for the proposed hybrid performance mod-
eling. Finally, a case study is presented in Section 4, followed by a
discussion on possible extensions of this work.

2. REAL-TIME CALCULUS
As mentioned in the previous section, an event or data stream

in RTC is described using upper and lower arrival curves, αu(Δ)
and αl(Δ). These curves provide upper and lower bounds on the
number of events that are seen on the event stream within any time
interval of length Δ. In particular, there are at most αu(Δ) and
at least αl(Δ) events within the time interval [t, t + Δ) for all
time instances t. If R(t) denotes the number of events that arrive
at a resource during the time interval [0, t] then such a stream is
bounded by αu(Δ) and αl(Δ), where

αl(Δ) ≤ R(t + Δ) − R(t) ≤ αu(Δ), ∀t ≥ 0, ∀Δ ≥ 0

92

0

2

4

6

8

Δ

FP
0

2

4

6

8

Δ 0

2

4

6

8

Δ

0

2

4

6

8

Δ
β’(Δ)

β(Δ)

α’(Δ)α(Δ)

PE

Figure 3: An abstract performance model in RTC.

Analogously, a resource is characterized using upper and lower
service curves, βu(Δ) and βl(Δ), which provide upper and lower
bounds on the available resource in any time interval of length Δ.
The unit of resource depends on the nature of the resource, e.g.,
processing cycles (computation) or bytes (communication), which
can be transformed to the same unit as the arrival curves (number of
events). The processing semantics of a processing/communication
component (e.g. a processor or a bus) can be captured using an RTC
component as shown on Figure 3. Here, an arrival curve α(Δ) en-
ters a processing element and is processed using the service curve
β(Δ). The output is an arrival curve α′(Δ) (which denotes the ar-
rival pattern of the processed events) and the remaining resource is
expressed as the service curve β′(Δ). Internally, the RTC compo-
nent is specified by a set of functions, that relate the incoming ar-
rival and service curves to the outgoing arrival and service curves.
These functions are dependent on the processing semantics of the
component (see e.g. [3]). Similar representations exist for resource
scheduling disciplines such as EDF, TDMA, and GPS, when mul-
tiple streams or tasks are being processed by the component. The
outgoing arrival curves might serve as input to another component,
denoting further processing of the event stream (as shown in Fig-
ure 1). Similarly, the outgoing service curve represents the service
that is available to other tasks running on the same component.
Various performance properties can be computed analytically us-
ing this performance model such as end-to-end delays and buffer
requirements. These methods have been implemented as a toolbox
which is based on Matlab and Java (see [16]).

3. DESIGNING CONVERTERS
In this section we will describe methods to design converters be-

tween bounds specified by arrival and service curves (i.e., α and
β) and concrete traces of event/data and processor availability. As
described in Section 1, such converters will then enable us to de-
sign hybrid performance models. For combining RTC-based per-
formance models with simulation-oriented models, [6] proposed
the following converters.

• Trace-to-Bound event-based converter, as shown in Figure 4(a).
Such a converter converts concrete traces of event/data streams
– that were obtained from a simulation – into bounds repre-
sented by an arrival curve α.

• Bound-to-Trace event-based converter, as shown in Figure 4(b).
Such a converter is used to generate one or more representa-
tive event/data traces from a bound specified by an arrival
curve α. Typically such an α would be obtained from an
RTC-based analysis and the generated trace would be used
to trigger a simulator.

(a) Trace to Bound (b) Bound to Trace
Figure 4: Event-based converters.

3.1 Event-based converters
The conversion from simulation traces (event streams) to event

models specified by arrival curves is clearly simpler than a con-
version in the other direction. After simulating a component, the
output event traces can be used to derive R(t). As in Section 2,
R(t) denotes the number of output events seen over the time inter-
val [0, t], and uniquely represents an event trace. Given R(t), we
can now compute the functions αu(Δ) and αl(Δ) as follows.

αu(Δ) = max
t≥0

{R(t + Δ) − R(t)} (1)

αl(Δ) = min
t≥0

{R(t + Δ) − R(t)} (2)

Given anyΔ, αu and αl may be computed by sliding a window of
lengthΔ over the trace R(t) and recording the maximum and min-
imum number of data/events seen within this window. However,
since the number of events in the traces we used were fewer than
the number of time interval lengths Δ over which we computed
αu and αl – for the sake of computational efficiency – we applied
the “sliding window” procedure to instead compute αl−1

(k) and
αu−1(k) (i.e., the inverse of αu and αl). Here, the window length
k represented the number of data items or events in the trace and
the functions αl−1

(k) and αu−1(k) denote the maximum and min-
imum time interval lengths respectively that can contain k events.
The functions αu and αl can then be computed from αu−1 and
αl−1 in a straightforward manner.
The event-based Bound-to-Trace converter is more complicated.

Such a converter generates a trace of time stamps at which events
arrive. This generated trace should not violate the upper or the
lower arrival curve. Further, it should represent the worst-case sce-
nario (e.g., a bursty arrival pattern) since the RTC framework is
used for deterministic worst-case analysis. Towards this, the main
idea proposed in [6] is to use an adapted “ON/OFF” traffic source
(see [2] for more details on such traffic sources). Such a generator
works as follows – if the generator is in the ON state, events are
generated as soon as allowed by the upper arrival curve. Similarly,
if the generator is in the OFF state events are only generated if the
lower arrival curve would be violated otherwise. The generation
algorithm consists of the following steps.

1. Determine time stamp T at which to switch state;

2. Generate events in the current state while time t < T ;

3. Switch state and go to step 1;

The time distribution between the ON and OFF states is determined
using a Weibull distribution [9], which results in the desired “frac-
tal” behavior that is used in several traffic generators (see [2, 8]).
The Weibull cumulative distribution function of a random variable
X is given by:

P{X ≤ x} = 1 − e−(x/B)A ,∀x ≥ 0 (3)

It has two parameters A ≥ 0 and B ≥ 0. The parameter A is
known as the shape parameter, while B is called the scale para-
meter. Random switch times can be generated by Eqn. (4), which
results from Eqn. (3) by inverse transform sampling. Eqn. (4) uses a
random number u from a uniform distribution in the interval (0,1].

93

Then the random number x (representing the switch time) is given
by:

x = B(−ln(u))(1/A) (4)

Traces generated by this ON/OFF traffic source exhibit a worst-
case bursty behavior since events are generated as soon as allowed
by the upper bound αu in the ON state. This generation scheme
also guarantees that the resulting trace never violates the given up-
per (αu) or lower (αl) bounds.
A set of generated traces using the above scheme is shown in

Figure 10. The trace R1(t) was generated using A = 1000 and
B = 10000; the trace R2(t) was generated with A = 1 and B =
1 × 108; and trace R3(t) was obtained using the same parameters
as in R2(t). The difference between the latter two traces is caused
by the start state – our traffic generator randomly chooses whether
to start in the ON or the OFF state. Using different parameters it
is possible to generate different traces. Note that trace R1(t) was
generated using shorter ON/OFF periods – as a result the trace is
bursty and closely follows the upper bound αu. The distribution
for R2(t) and R3(t) yields longer ON/OFF periods and as a result
these traces turn out to be different from R1(t).

3.2 Resource-based converters
In this section we further extend the hybrid performance model-

ing scheme by introducing Resource-based converters. Such con-
verters are used to inter-convert bounds given by βu or βl and
processor availability traces (i.e., idle cycle traces of a processor
or communication resource).
Recall from Section 2 that the service availability of a resource

is given by the service curves βu(Δ) and βl(Δ). For now, let
us assume that βu and βl denote upper and lower bounds on the
number of processor (or bus) cycles provided by a resource (and not
the number of data or events processed by it). Let C(t) denote the
number of processor cycles available over the time interval [0, t].
Then, as in the case of arrival curves, the service curves βu and βl

can be computed from C(t) as follows.

βu(Δ) = max
t≥0

{C(t + Δ) − C(t)} (5)

βl(Δ) = min
t≥0

{C(t + Δ) − C(t)} (6)

For any resource, an idle cycle trace is a trace of intervals [si, fi],
i = 0, 1, . . ., where the resource is available between time intervals
si and fi for task processing. Procedures for using an idle cycle
trace can easily be incorporated within a cycle-accurate simulator
(e.g, one based on SimpleScalar or SystemC) by instructing the
simulator only to increase its cycle count within the specified idle
cycle intervals. We have used a SystemC-based simulator which
computes an output event stream and output idle cycle trace, given
a specified input. The input consists of (i) a set of tasks, (ii) the
execution requirement for each task, (iii) the arrival time stamps
of events or the triggering pattern of each task, (iv) the schedul-
ing policy according to which the tasks are scheduled, and (v) an
idle cycle trace denoting the availability of the resource. Note that
the processing time of different events by a task might be different.
Hence, the input execution requirement of a task, to the simulator,
consists of a trace of processor cycle requirements (i.e. number of
cycles) for each event to be processed by the task. The simulator
reads the above input and processes events only during the idle cy-
cles specified by the input idle cycle trace. As soon as an event
is processed, it is written to the output event stream. When the
processor is idle, it adds idle cycles to the output idle cycle trace.
The above-mentioned simulator is used in conjunction with the

following converters.

(a) Trace to Bound (b) Bound to Trace
Figure 5: Resource-based converters.

Figure 6: MPEG-2 decoder mapped onto an MPSoC architecture.

• Trace-to-Bound resource-based converter, as shown in Fig-
ure 5(a). It converts an idle cycle trace resulting from our
simulator into service curves βu and βl for RTC-based analy-
sis.

• Bound-to-Trace resource-based converter, as shown in Fig-
ure 5(b). It converts βu and βl obtained from an RTC-based
analysis into idle cycle traces that serve as an input to our
simulator.

As with the event-based Trace-to-Bound converter, converting
idle cycle traces into service curves for RTC-based analysis is much
simpler than the conversion in the reverse direction. Assume that
two tasks T1 and T2 are executing on a single processing element;
T1 has a higher priority than T2 and there are no tasks with prior-
ity levels in between. Further, assume that the execution of T1 is
simulated (using the SystemC simulator we described above) and
T2 is analyzed using RTC. Clearly, the remaining processor cycles
after processing T1 will be available to T2. Based on the idle cy-
cle trace of the processing element after processing T1 (generated
by our simulator), we can construct the function C(t), which rep-
resents the number of cycles available over the time interval [0, t].
From C(t), we can compute βu and βl using Eqns. (5) and (6).
As in the case of event-based converters, generating idle cycle

traces from service curves is more difficult. Here, we again used
a technique similar to the Weibull distribution-based ON/OFF traf-
fic generator. From βu and βl, we generate one or more functions
C(t) using different values of the parameters in the Weibull distri-
bution. From each such C(t) it is now straightforward to generate
an idle cycle trace, since C(t) represents a concrete availability
pattern of a resource.

4. ILLUSTRATIVE CASE STUDY
In this section, we demonstrate the usefulness of our proposed

hybrid approach. Towards this, we will use an MPSoC architecture
onto which an MPEG-2 decoder has been partitioned and mapped.
As shown in Figure 6, PE1 is used to run two tasks (VLD and IQ)
and PE2 also runs two tasks (IDCT and MC). First, we demon-
strate that the bounds resulting from our hybrid approach are tighter
than those obtained using RTC. More importantly, the resulting
bounds do not violate the bounds returned by RTC. Second, we
show that the maximum buffer fill-level estimates obtained from
our hybrid approach are also significantly tighter than those ob-
tained using RTC (which being a worst-case analysis framework,
always returns conservative estimates).
Figure 7 illustrates the design flow in our case study. From Fig-

ures 6 and 7, it may be noted thatPE1 is always simulated, whereas
PE2 is subjected to both RTC-based analysis and our proposed hy-
brid analysis technique. Finally, the results obtained from these two

94

Figure 7: Design flow in our case study.

schemes are compared. In our hybrid modeling, the IDCT task on
PE2 is modeled using RTC and the MC task is simulated (see Fig-
ure 7).
Using an event-based Trace-to-Bound converter, the timing prop-

erties of the output from PE1 (which is a stream of partially de-
coded macroblocks) – that is obtained from simulation – is repre-
sented using αin. The RTC framework now uses this αin and βin

(service offered by PE2) to compute αIDCT,RTC and βIDCT,RTC .
αIDCT,RTC denotes bounds on the arrival process of the output
stream after being processed by the IDCT task, and βIDCT,RTC

denotes bounds on the remaining service from PE2 after process-
ing the IDCT task. Note that we have so far assumed α to be rep-
resented in terms of number of events, whereas β is represented in
terms of number of cycles. These two bounds may be reconciled
by using the number of processor cycles required to process each
event. The details on how this can be done may be found in [15].
Now, the task MC is (i) modeled using RTC with αIDCT,RTC

and βIDCT,RTC as inputs, and (ii) simulated using multiple con-
crete traces generated from αIDCT,RTC and βIDCT,RTC using
event-based and resource-based converters. In case (ii) the output
traces from the simulator are converted back to arrival and service
curve bounds, which are then compared with the output bounds ob-
tained from case (i). The resulting bounds in case (i) are denoted
by αMC,RTC and βMC,RTC , and those in case (ii) by αMC,hybrid

and βMC,hybrid.
For our experiments, we usedMPEG-2 video clips with 1.5Mbps

bitrate and 352 × 420 pixels resolution. Our analysis was done at
the macroblock granularity, i.e., we assumed the video stream to
be made up of a stream of macroblocks which trigger the different
decoder tasks. Finally, the video clips were played out at the rate of
14 fps and both PE1 and PE2 were MIPS-like processors running
at 100MHz (both the processors were moderately loaded from the
MPEG-2 decoder tasks).
Figure 8 shows βIDCT,RTC , along with three different idle cycle

traces (C1 C2 and C3) obtained using a resource-based Bound-to-
Trace converter. Figure 9 shows bounds on the remaining service
from PE2 after processing both IDCT and MC. Here, βMC,RTC

denotes the bounds resulting from RTC, and βMC,hybrid denotes
those obtained using our hybrid approach. It may be noted that the
latter bounds are “enclosed” by the former, thereby indicating that

0 0.5 1 1.5 2 2.5
x 104

0

0.5

1

1.5

2

2.5x 104

Analysis interval (1000 cycles)

se
rv

ic
e

av
ai

la
bl

e
(1

00
0

cy
cl

es
)

βu
IDCT,RTC

βl
IDCT,RTC

C3(t)
C2(t)

C1(t)

Figure 8: Service availability for MC (βIDCT,RTC), along with three
idle cycle traces (C1, C2, C3).

0 0.5 1 1.5 2 2.5 3
x 104

0

0.5

1

1.5

2

2.5x 104

Analysis interval (1000 cycles)

se
rv

ic
e

av
ai

la
bl

e
(1

00
0

cy
cl

es
)

βu
MC,hybrid

βu
MC,RTC

βl
MC,RTC

βl
MC,hybrid

Csim(t)

Figure 9: Bounds on the remaining service after processing both
IDCT and MC.

our hybrid scheme yields much tighter bounds compared to those
obtained by RTC alone. However, it should be noted that since
our hybrid scheme has simulation in the design loop, the resulting
bounds are not guaranteed to represent the best/worst case scenario.
However, for application domains like multimedia processing these
bounds might be more meaningful than the conservative bounds re-
turned by a pure RTC-based analysis. Csim in Figure 9 shows one
idle cycle trace that was obtained as an output from the simulator.
Figure 10 shows three different concrete traces R1, R2 and R3,

that were generated from αIDCT,RTC by the event-based Bound-
to-Trace converter. A number of traces like these were used to
trigger the simulator modeling the processing of the task MC. The
output of the simulator, which were traces of fully decoded mac-
roblocks, were then used to compute αMC,hybrid. The correspond-
ing bounds, obtained purely using RTC, are denoted by αMC,RTC .
Figure 11 shows that the bounds given by αMC,hybrid are com-
pletely enclosed by those from αMC,RTC , thereby once again show-
ing that the RTC-based bounds are more conservative than those
we obtain using our hybrid approach. Note that the bounds ob-
tained by the hybrid approach do not violate those obtained from
RTC, thereby establishing the correctness of the approach. Fig-
ure 11 also shows a typical output trace that was obtained from our
SystemC-based simulator.
Finally, Table 1 shows the estimated maximum fill levels of the

playout buffer that sits between the MPSoC architecture shown in
Figure 6 and the playout device. The decoded video is written out

95

0 1000 2000 3000 4000 50000

0.5

1

1.5

2

2.5

3x 104

Analysis interval (ms)

m

ac
ro

bl
oc

ks

R1(t)

R2(t)

R3(t)

αu
IDCT, RTC

αl
IDCT, RTC

Figure 10: αIDCT,RTC bounds the number of macroblocks ar-
riving at the task MC.

Analysis Max. buffer fill level (in macroblocks)
Hybrid 1 924
Hybrid 2 945
RTC 7408

Simulation 585

Table 1: Estimated maximum buffer fill levels.

into this buffer, which is read out by the playout device (display).
This buffer is not shown in Figure 6. “Hybrid 1” and “Hybrid 2” in
Table 1 refer to two hybrid analysis cases with different trace gen-
erators. “RTC” refers to the estimate obtained using a pure RTC-
based analysis, and “Simulation” refers to the maximum buffer fill
level recorded with a single video clip when the full system is simu-
lated. It is easy to see that the results obtained using “Hybrid 1” and
“Hybrid 2” are much closer to those obtained using simulation, but
the analysis time involved was much shorter. The pure RTC-based
analysis – although provides guaranteed worst-case estimates – is
much more conservative.
From the above results, it is easy to see that our proposed hy-

brid performance modeling approach provides a very competitive
alternative to full system simulation. A purely simulation-oriented
analysis requires significantly higher simulation times. The hybrid
approach on the other hand involves lower analysis times – because
certain system components are now mathematically analyzed using
RTC – but provides results which are relatively close to those ob-
tained from simulation. However, it should once again be noted
that unlike the results obtained through RTC, those obtained using
our hybrid approach do not come with any provable guarantees. We
believe that for application domains such as multimedia processing
– where simulation-oriented approaches are widely practised today
– this lack of provable guarantees is acceptable.

5. CONCLUDING REMARKS
In this paper we have proposed a hybrid performance model-

ing scheme for MPSoC architectures. Using this scheme some of
the system components are mathematically analyzed using the RTC
framework, while the others are simulated. In contrast to previous
approaches, our scheme also allows this hybrid scheme to be ap-
plied to different tasks mapped onto the same processing element.
This hybrid scheme is a viable alternative to performance analy-
sis through full system simulation. It cuts down simulation time
significantly, but provides results which are close to those obtained
using pure simulation.

0 1000 2000 3000 4000 50000

0.5

1

1.5

2

2.5

3

3.5x 104

Analysis interval (ms)

m
ac

ro
bl

oc
ks

αu
MC,RTC

αl
MC,RTC

αu
MC,hybrid

αl
MC,hybrid

simulation
trace

Figure 11: Bounds on the arrival process of the fully decoded video
stream (αMC).

Our intra-processor hybrid modeling scheme was shown to work
when the different tasks on a processing element are scheduled ac-
cording to a fixed-priority scheduling policy. It is currently not
clear how to extend this to other scheduling policies like EDF. Fur-
ther work needs to be done to generalize this scheme to cover a
wider variety of scheduling policies.

Acknowledgements: We thank Lei Ju for many helpful discus-
sions and for providing us the results of his preliminary study on
this problem.

6. REFERENCES
[1] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-vincentelli. Scheduling

for embedded real-time systems. IEEE Design & Test of Computers,
15(1):71–82, 1998.

[2] P. Barford and M. Crovella. Generating representative web workloads for
network and server performance evaluation. SIGMETRICS Perform. Eval. Rev.,
26(1):151–160, 1998.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. In DATE, 2003.

[4] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler.
Interface-based rate analysis of embedded systems. In RTSS, 2006.

[5] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen,
M. Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput analysis of
synchronous data flow graphs. In ACSD, 2006.

[6] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and formal
methods for system-level performance analysis. In DATE, 2006.

[7] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[8] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar
nature of ethernet traffic. SIGCOMM Comput. Commun. Rev., 23(4):183–193,
1993.

[9] D. N. Prabhakar Murthy, M. Xie, and R. Jiang.Weibull Models. Wiley Series in
Probability and Statistics, 2003.

[10] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems. In CODES, 2002.

[11] K. Richter and R. Ernst. Event model interfaces for heterogeneous system
analysis. In DATE, 2002.

[12] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance
verification. IEEE Computer, 36(4):60–67, 2003.

[13] S. Schliecker, S. Stein, and R. Ernst. Performance analysis of complex systems
by integration of dataflow graphs and compositional performance analysis. In
DATE, 2007.

[14] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard
real-time systems.Microprocessing and Microprogramming, 40(2-3), 1994.

[15] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization of
event streams in analysis of hard real-time applications. Real-Time Systems,
29(2-3):205–225, 2005.

[16] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[17] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI: a system
model for heterogeneously specified embedded systems. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 10(4):379 – 389, 2002.

96

