
 

Online Adaptive Utilization Control for Real-Time 
Embedded Multiprocessor Systems  

Jianguo Yao and Xue Liu 

School of Computer Science,  
McGill University, 

Montreal, QC H3A2A7, CANADA 
(jianguo,xueliu)@cs.mcgill.ca

Mingxuan Yuan, Zonghua Gu 
Department of Computer Science and Engineering 
Hong Kong University of Science and Technology, 

P.R.CHINA  
(csyuan, zgu)@cse.ust.hk 

 
 

ABSTRACT 
To provide Quality of Service (QoS) guarantees in open and 
unpredictable environments, the utilization control problem is 
defined to keep the processor utilization at the schedulable 
utilization bound, even in the face of unpredictable and/or varying 
task execution times. To handle the end-to-end task model where 
each task is comprised of a chain of subtasks distributed on 
multiprocessors, researchers have used Model Predictive Control 
(MPC) to address the Multiple-Input, Multiple-Output (MIMO) 
control problem. Although MPC can handle a limited range of 
model uncertainties due to execution time estimation errors, the 
system may suffer performance deterioration or even become 
unstable if the actual task execution times are much larger than 
their estimated values. In this paper, we present an online adaptive 
optimal control approach using Recursive Least Squares (RLS) 
based model estimator plus Linear Quadratic (LQ) optimal 
controller. We use simulation experiments to demonstrate the 
effectiveness of our controller compared with the MPC-based 
controller. 

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance of Systems 
--- Performance attributes 

General Terms 
Management, Performance. 

Keywords 
Feedback control, multiprocessors, real-time scheduling. 
 

1. INTRODUCTION AND RELATED 
WORK 

Traditional hard real-time systems execute in a closed environment 
and rely on worst-case analysis to make offline guarantees, i.e., by 
scheduling real-time tasks based on conservative estimations of the 
worst-case execution time of each task on a given hardware 
platform [1], [2] . But in recent years, there is a growing collection 
of real-time embedded systems that execute in an open and 
unpredictable environment yet still must make performance 

guarantees, where task execution time may suffer large 
uncertainties due to input parameter variations or unpredictable 
environment. A key challenge is to provide real-time guarantees 
even though the workload cannot be accurately characterized a 
priori. The traditional approach of worst-case analysis for making 
real-time guarantees may cause under-utilization and wasted 
resources, since a task’s WCET is often much bigger than its 
average execution time. We need more dynamic and adaptive 
scheduling algorithms that can adjust scheduling parameters 
according to runtime variations of task execution time while still 
making real-time guarantees. Feedback control is an effective 
technique to tackle these challenges [3], [4], [5].  

To guarantee that the system is schedulable, that is, no deadline 
miss occurs, it is sufficient to keep each processor’s utilization to 
be under the schedulable utilization bound. For example, if the 
scheduling algorithm is rate monotonic scheduling, where each task 
is assigned a fixed priority and a task with higher execution rate is 
assigned a higher priority, then the system is schedulable if the 
processor utilization does not exceed 1/(2 1)mm − , where m is the 
number of tasks on the same processor [6]. (This is often called the 
Liu and Layland bound.) If the scheduling algorithm is Earliest 
Deadline First (EDF), then the schedulable utilization bound is 1. 
Recently, researchers have applied feedback control techniques to 
keep processor utilization to be under the schedulable utilization 
bound through dynamic resource allocation in response to workload 
variations, in order to achieve high processor utilization while still 
meeting real-time constraints.  

Lin et al applied feedback control techniques to real-time 
scheduling in the face of uncertain workloads in [4]. Goel et al 
proposed a feedback-based scheduling approach to meet real-time 
requirement [3]. Stankovic et al [5] applied feedback control to 
distributed real-time systems. Lu et al [7] presented a survey of 
feedback control techniques to ensure real-time guarantee under 
unknown execution time. Yong etl al [8] used a distributed 
utilization feedback controller to handle system dynamics caused 
by load balancing for large-scale server clusters. Recent work on 
utilization control based on Model Predictive Control (MPC) was 
capable of handling execution time variations within a certain range 
[9], [10], [11]. Chen etl al [12] presented a Multi-Parametric Rate 
Adaptation (MPRA) algorithm for discrete rate adaptation in 
distributed real-time systems with end-to-end tasks, where an 
adjustment tree is computed offline using mp-MILP 
(Multi-Parametric 0-1 Mixed Integer Linear Programming). When 
system variation happens at runtime, the controller searches this 
tree based on the variation to make online adjustments. All the 
above approaches based on feedback control require having an 
accurate model of the real-time system, which may be difficult to 
obtain for realistic systems. 
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Some authors have designed centralized or decentralized 
MPC-based controllers to solve the processor utilization control 
problem [9], [10], [11] based on approximate models of the 
underlying systems and the tasks running on top of them. It was 
shown [9] that these approaches can perform well within a limited  
range of model uncertainties in terms of execution time estimation 
errors and/or variations. However, the system may suffer 
performance degradation or even become unstable if the task 
execution times are underestimated by a significant degree, i.e., the 
actual task execution times are much larger than their estimated 
values. (On the other hand, overestimation of task execution times 
may cause slow convergence to the set point, but will not cause 
instability.) In this paper, we present a CPU utilization control 
technique using Recursive Least Squares (RLS) based model 
estimator and Linear Quadratic (LQ) optimal controller [17], which 
is a self-tuning adaptive control algorithm without any need for 
prior knowledge of the system model. The system model is learned 
(estimated) and automatically adjusted online with the RLS 
method, and the control inputs are calculated at runtime by 
optimizing a quadratic cost function. Due to online model 
estimation, this control algorithm has good performance even in the 
face of large system model uncertainties. 

The feedback control principle has found many applications in 
Systems-On-Chip (SoC). Lipsa et al [13] proposed a design 
methodology and framework for Autonomic Systems-On-Chip 
(ASoC), where an autonomic layer is added to monitor and control 
the functional layer to achieve self-calibration, fault tolerance or 
self-healing. Particularly relevant to this paper is Multiprocessor 
System-on-Chip (MPSoC), where multiple Processing Elements 
(PEs) are placed on a single chip and connected with a bus or 
network-on-chip. Each PE may be a dedicated ASIC or a 
programmable processor running several tasks using a real-time 
scheduling algorithm. Lankes et al [14] presented an extension to 
the SystemC-based simulator TAPES [15] to model and simulate 
an autonomic MPSoC system that can adapt to changing runtime 
conditions, although they did not use any formal control theory. 
Carta et al [16] presented a control theoretic approach to dynamic 
voltage/frequency scaling (DVFS) in a pipelined MPSoC 
architecture with soft real-time constraints. The techniques 
presented in this paper are rather generic and broadly applicable to 
any multiprocessor system, whether on-chip or not. For MPSoC, 
the processing and memory resources are typically more limited 
than a traditional distributed embedded systems, so it may be 
necessary to carefully evaluate runtime overheads of the control 
algorithms and their impact on control performance. 

The remainder of this paper is organized as follows. Section 2 
describes the system model and control architecture. Section 3 
presents the details of RLS based model estimator and LQ optimal 
controller design. Section 4 presents performance evaluation results. 
Section 5 presents conclusions. 

2. SYSTEM MODEL AND CONTROL 
ARCHITECTURE 

We consider the same system model as [9]. The application is a 
group of end-to-end periodic tasks. Each task is composed of a 
chain of sub-tasks. A subtask is released when its predecessor task 
has finished execution. All the sub-tasks of one periodic task share 
the same execution rate. The hardware platform is composed of 
multiple processors. Each sub-task can be allocated on any 
processor. Each processor runs a group of periodic sub-tasks, and 

the sub-task to processor mapping is predefined. Given a 
scheduling algorithm, a utilization bound can be determined such 
that the taskset on a processor is schedulable when the processor’s 
actual utilization does not exceed the bound. Typically, higher task 
execution rates lead to higher Quality of Service (QoS) in terms of 
application utility, but also higher processor utilization, and vice 
versa. In order to achieve high QoS while keeping the system 
schedulable, the actual utilization should be controlled to be at or 
just below the utilization bound. In this paper, our control objective 
is to maintain each processor’s utilization at the utilization bound 
(control set point) despite any execution time estimation errors 
and/or runtime variations by adjusting task execution rates 
dynamically, assuming that each task’s execution rate can be 
adjusted within a certain acceptable range, which is true for most 
soft real-time applications. 

The utilization model of each processor is as follows, the same as 
[9]: 

( 1) ( ) ( )y k y k B r k+ = + Δ , (1) 
where ny R∈  represents the processor utilization vector with size 
n; mr RΔ ∈  represents the change to task execution rates for the m 
tasks running on the system; n mB R ×∈  is defined as 

B GF= , (2) 
Where F is the available subtask allocation matrix that records 
which tasks are running on which processors.  

1 2{ , , , }nG diag g g g= L  is a diagonal matrix, where 
, 1,2, ,ig i n= L  are scalar values that denote the ratio between the 

change to the actual utilization of processor i and its estimation 
∆r(k). The size of gi measures the estimation error, i.e., how much 
the actual execution time of each task on processor i deviates from 
its estimated value, assuming that it is the same for all tasks on 
processor i. For example, if gi = 2, then each task’s actual execution 
time is twice the estimated value, hence the actual change to 
utilization caused by changing task rate is twice the estimated 
change. This may be due to uncertainties and runtime variations of 
actual task execution times, which may be quite different from their 
offline estimation. We will later show that our controller can handle 
larger values of gi than the MPC-based controller in [9] under both 
steady and varying execution time conditions.  

Example: We consider the distributed computing system from [9], 
with two processors and three periodic tasks, as shown in Fig. 2. 
Task 1 has a single subtask T11 running on Processor P1; Task 3 has 
a single subtask T31 running on Processor P2. Task 2 has two 
subtasks: T21 running on P1 and T22 running on P2, with the same 
execution rate. The system model is: 
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The system model (1) with the parameters (3) and (4) can be 
rewritten as 

1 1 1 11 1 21 2

2 2 2 22 2 31 3

( 1) ( ) ( ( ) ( ))
( 1) ( ) ( ( ) ( ))

y k y k g c r k c r k
y k y k g c r k c r k

+ = + Δ + Δ
+ = + Δ + Δ

 (5) 
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The control objective is to track the constant reference 
command refy , the processor utilization target vector, i.e., to 
minimize the error between the measured processor utilization and 
target utilization ( ) ( ) ( )refe k y k y k= − . The controller task can be 
put on a separate processor, or it should be assigned the highest 
priority if it shares a processor with other applications. In the latter 
case, that execution time of the controller is assumed to be 
negligible compared to that of the application tasks. There are a 
utilization monitor and a rate modulator on each processor. The 
utilization monitor reports each processor’s utilization in each 
sampling period, and the rate modulator is used to adjust the task 
execution rates. The inputs to the controller are each processor’s 
utilization in the current sampling period, the utilization target 
vector and the rate adjustment range of each task. The outputs of 
the controller are the changes to task execution rates 

T
m krkrkr ])()([)( 1 ΔΔ=Δ L . From the perspective of the plant, 

these outputs are called control inputs, and the rate modulators 
adjust the corresponding task rates according to 

mikrkrkr iii ,,2,1),1()()( L=−+Δ= . This is a Multiple-Input, 
Multiple-Output (MIMO) control problem that cannot be handled 
with the traditional Proportional, Integral and Derivative (PID) 
control algorithm. 

The actual gain matrix G is unknown because actual task execution 
times may be very unpredictable and deviate a lot from their 
estimated values. The MPC-based controller in [9] is designed with 
the assumption that the gain matrix elements 1 2 1g g= = , i.e. the 
controller assumes that the actual utilization change will be the 
same as the predicted utilization change. Even though the controller 
is designed under this assumption, the MPC-based controller in [9] 
is still stable when the actual gi values fall within the 
range 0 5.95, 1,2ig i< < = thanks to the feedback control principle. 
Although these controllers are robust with small estimation errors, 
the control performance may deteriorate with large execution time 
estimation errors, i.e. large model uncertainties. In this paper, we 
employ online model estimation to better cope with large model 
uncertainties and/or runtime variations. 

3. ONLINE ADAPTIVE OPTIMAL 
CONTROLLER DESIGN 

 

LQ Controller

Computing
System

RLS based
Model Estimator

ref

Outputs

Inputs

 
Fig. 1. Control architecture of RLS based model estimator and 

LQ optimal controller 
Fig. 1 shows the overall control system architecture, same as [17]. 
The RLS-based model estimator is used to learn and update a linear 
model of the distributed computing system (plant), and the LQ 
optimal controller is used to keep the output at the desired set point 
by setting the control inputs by minimizing a quadratic cost 
function. We adopt a centralized control architecture in this paper, 
although it is possible to extend to decentralized control 

architecture using the model decomposition technique in [11], 
which we leave as part of our future work. 

A. RLS-based Model Estimator 
The distributed computing system can be described with a general 
multiple-input-multiple-output (MIMO) model as follows: 

1 1( ) ( ) ( ) ( ) ( )A q y k B q u k d k− −= + , (6) 
where 1( )A q− and 1( )B q− are matrix polynomials in the 
backward-shift operator 

1 1
1

1 1
0 1

( ) ,

( ) ,

l
r

l
r

A q I A q A q

B q B q B q

− − −

− − −
−

= − −…−

= −…−
 (7) 

where l  is the order of the system, which is equal to 1 in our 
application. ( )d k is a sequence of independent, identically 
distributed n-dimensional random vectors with zero mean 
representing disturbances. We assume that ( )d k  is independent 
of ( )y k j− and ( )u k j−  for j > 0. ( ) ( )u k r k= Δ  is the control 
input, i.e., vector of task execution rate change, and ( )y k  is the 
control output, i.e., vector of processor utilizations. (Note that the 
notation is slightly different from that in [9].) 

We use the RLS estimator with exponential forgetting to estimate 
the coefficient matrices iA  and jB  online, where 0 i l< ≤  and 

0 j l≤ < , since their values may change due to varying runtime 
conditions. (This is the key difference and advantage of this control 
scheme compared to the MPC or PID-based controllers, where the 
system model is fixed at runtime, especially in the face of large 
model uncertainties.) 

For notational convenience, we rewrite the system model in the 
following RLS-friendly form, which we use in the remainder of the 
paper 

( 1) ( ) ( ) ( 1)y k X k k d kφ+ = + + , (8) 
where 

0 1 1

( ) [ ( ) ( 1) ( ) ( 1)] ,
[ , , , , ],

T T T T T

l l

k u k u k l y k y k l
X B B A A
φ

−

= − + − +
=

L L

L L
 

RLS estimator with exponential forgetting can be used to identify 
the time varying parameter matrix ( )X k  online. This estimator 
has been applied extensively in adaptive control system design as it 
can converge fast and reject disturbance well. The estimator is 
described by the following equations 

ˆ1 1 ,ε(k + )= y(k + )+ X(k) (k)φ , (9) 
1 1ˆ 1 ,

1

T

T

ε(k + ) (k)P(k )X(k + )= X(k)+
λ+ (k)P(k ) (k)

φ
φ φ

−
−

, (10) 

1
2

11 1 1 ) ,
T

1 T
T

P(k ) (k)P (k)= P (k )+( +( λ ) (k) (k)
( (k) (k))
φ φ φ φ
φ φ

− − −
− −  (11) 

where ˆ ( )X k  is the estimation of the ( )X k ; ε(k) is the estimation 
error vector, P(k) is the covariance matrix; λ is the forgetting factor 
( 0 1λ< < ). 

B. Linear Quadratic (LQ) Optimal 
Controller 

The primary control objective is to let the system output track the 
reference command with small tracking error. At the same time, it 
is desirable to avoid large changes to the control inputs. We achieve 
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these goals by minimizing the quadratic cost function J defined as 
follows: 

2

2

( ( 1) - ( 1))

( ( ) - ( -1))

refJ W y k y k

Q u k u k

= + +

+
, (12) 

where W is a positive-semi-definite weighting matrix on the 
tracking errors, (a higher weight indicates higher importance value 
of the corresponding output variable). Q is a positive-definite 
weighting matrix to penalize large changes in control inputs. W and 
Q are defined as diagonal matrices, and their relative magnitude 
provides a way to trade-off tracking accuracy for smaller changes 
in control input. The control input that minimizes J can be obtained 
by setting the derivative ∂J/∂u(k)=0,and solving for u(k) (The 
detailed derivation is described in [17] and omitted here): 

2 -1 2
0 0

0

ˆ( ) -( ) [ ( ( ) ( )

- ( 1)) - ( -1)].

T T T

T T T
ref

u k W B B QQ W X k k

y k B QQ u k

φ= +

+

%
 (13) 

4. PERFORMANCE EVALUATION 
In this section, we use simulation to compare the performance of 
the LQ optimal controller to that of the MPC-based controller.  

A. Simulator and Experimental Setup 
 

T11

T21 T22

T31

Utilization
Monitor

Rate
Modulator

Online
Adaptive
Optimal

Controller

P1 P2

Reference

 
Fig. 2. Overall control system architecture. 

We implemented a simulator for the utilization control of the 
2-processor system introduced in Section 2 in Matlab [19]. Fig. 2 
shows the overall control system architecture. We also implemented 
the MPC-based controller from [9] for performance comparison 
purposes. 

Let ( )ir k  denote the invocation rate of Task i in the (k)th 
sampling period, then: 

min, max,( ) , 1,2,3i i iR r k R i≤ ≤ = , (14) 

where min,iR  and max,iR  are the minimum and maximum 
execution rates of Task i, respectively, determined by the system 
designer from application domain knowledge. 

The control input vector is: 

[ ]1 2 3( ) ( ) ( ) ( ) Tu k r k r k r k= Δ Δ Δ , (15) 
where ( ) ( ) ( 1)i i ir k r k r kΔ = − −  is change to the task rate ( )ir k , 
whose constraints are determined by the constraints of ( )ir k . 
 
We assume rate monotonic scheduling on each processor, and let 

max,iy  denote the maximum utilization in processor i according to 
the Liu and Layland bound [6]:  

1/
max, (2 1), 1,2im

i iy m i= − = , (16)                      
where im is the number of subtasks on processor i.  

Since 1 2 2m m= = , max, 0.8284iy = , 1,2i = . The runtime processor 
utilization must satisfy: 

max,0 ( )i iy k y< < . (17) 
Parameter matrix F  in Equation (2) and constraints in Equation 
(14) are as follows, same as [9]: 

11 21 22 31

max,1 max,2 min,1 min,2

max,3 min,3

35, 35, 35, 45,
1 1, ,
35 700

1 1, .
45 900

c c c c

R R R R

R R

= = = =

= = = =

= =

 (18) 

As discussed in Section 2, the gain matrix G measures the 
estimation error. For simplicity, we assume the system gain 
g1=g2=g in the simulation experiments, i.e., the execution time 
estimation errors on both processors are the same, and adjust the 
magnitude of g to see how well the controller handles task 
execution time estimation errors. The MPC-based controller in [9] 
was shown to be stable under the condition 0 5.95, 1,2ig i< < = . 
We will show that the RLS-based LQ optimal control can tolerate a 
larger range of g while maintaining control stability, and when both 
controllers can maintain control stability, the RLS-based LQ 
optimal control shows better control performance, as measured by 
the aggregate error, defined in Equation (19) as the sum of squared 
errors between the target utilization and the actual measured 
utilization on each processor during a time interval while the 
system is in the steady state. 

2

1

2
2 1( ( )) /( )

T

i
k T

E e k T T
=

= −∑ , (19) 

where ( )ie k  is the tracking error of processor i’s utilization at 
time step k. T1 and T2 denote the simulation start and stop time steps 
for calculating the aggregate error. In our simulation experiments, 
we run the simulation for 1000 time steps, and the system goes into 
steady state before time step 200, so we set T1=200 and T2 =1000.  

B.  Experiment 1: Steady Execution Times, 
Small System Gain 

In this experiment, we set 1 2 0.35g g= = , i.e. the actual execution 
time is 35% of the estimated value. The initial task rates are 
assigned based on estimated execution times to make the utilization 
equal to the set point. Hence both processors are actually 
underutilized initially. The task rates are then increased gradually 
until the utilization of both processors converges to the set point of 
0.8284. The objective is to keep the processor utilizations at the set 
point without knowledge of the actual task execution times while 
achieving good control performance as measured by the aggregate 
error defined in Equation (19).  

Fig. 5 shows the processor utilization responses. (Note that the 
figure shows two curves for utilizations of the two processors, but 
they are quite close to each other so they look like one curve.) 
Although these two approaches both have acceptable performance 
in the steady state, the aggregate error of the LQ optimal controller 
in the steady state is slightly smaller than that of MPC controller, as 
shown in Table 1. 

Table 1. Aggregate errors in Experiment 1 
Algorithm LQ Controller MPC 

CPU1 0.0173 0.0216 
CPU2 0.0166 0.0202 
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C. Experiment 2: Steady Execution Times, 
Large System Gain 

In this experiment, we set 1 2 7g g= = , i.e. the actual execution 
time is seven times the estimated value. Both processors are 
initially over-utilized. The task rates are then decreased gradually 
until the utilization of both processors converges to the set point of 
0.8284.  
Fig. 4 shows the processor utilization responses. For the LQ 
optimal controller, the utilizations exhibit some initial oscillations 
due to model estimation inaccuracies, but as model estimation 
becomes more accurate later, they converge to the utilization set 
point quickly. For the MPC-based controller, the estimation error 
falls outside of the stability range, and processor utilizations 

oscillate significantly during the entire simulation time, which is 
obviously not acceptable for a real-time system. Intuitively, the 
actual utilization change caused by the rate modulator at each 
control step is much larger than (seven times) the estimated 
utilization change due to the grossly under-estimated task execution 
times, which caused the control instability. Table 2 shows the 
aggregate errors.  
 
 

Table 2. Aggregate errors in Experiment 2 
Algorithm LQ Controller MPC 

CPU1 0.0167 0.4170 
CPU2 0.0161 0.3719 

                   
(a)                                               (b) 

Fig. 3. Processor utilization response in Experiment 1 (g=0.35): (a). LQ optimal controller; (b). MPC-based controller 

               
(a)                                            (b) 

Fig. 4. Processor utilization response in Experiment 2 (g=7): (a). LQ optimal controller; (b). MPC-based controller 

             
(a)                                            (b) 

Fig. 5. Processor utilization response in Experiment 3 (g=0.35, 2, 0.5): (a). LQ optimal controller; (b). MPC-based controller 
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D. Experiment 3: Varying Execution Times 
In this experiment, task execution times vary dynamically at 
runtime. We set 1 2 0.35g g= = at simulation start time, 

1 2 2g g= =  at the 400th time step, and finally 1 2 0.5g g= =  at 
the 800th time step. This experiment is designed to test the 
robustness of the controller in the face of runtime workload 
fluctuations.  

Fig. 5 shows the processor utilization responses. When the 
workload is changed at the 400th and 800th sample steps, the LQ 
optimal controller keeps the utilizations at the desired set point 
with much smaller oscillation than the MPC-based controller, as 
confirmed by Table 3.  

Table 3. Aggregate errors in Experiment 3 
Algorithm LQ Controller MPC 

CPU1 0.0185 0.0215 
CPU2 0.0163 0.0324 

 
5. CONCLUSIONS AND FUTURE WORK  
In this paper, we address the processor utilization control problem 
in multiprocessor real-time embedded systems. In these systems, 
execution time may vary greatly, so an adaptive control approach 
is needed to keep the processor utilization at a given set point to 
ensure schedulability. MPC-based controller can handle execution 
time estimation errors within a certain range. To deal with large 
estimation errors, we employ Recursive Least Squares (RLS) 
based model estimator to estimate the system model online, and 
Linear Quadratic (LQ) optimal controller to keep the processor 
utilization at the desired set point. Simulation experiments shows 
that the LQ optimal controller has better system performance than 
the MPC-based controller under both constant and varying task 
execution time conditions, especially when the execution time 
estimation errors are large. 
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