

Online Adaptive Utilization Control for Real-Time
Embedded Multiprocessor Systems

Jianguo Yao and Xue Liu

School of Computer Science,
McGill University,

Montreal, QC H3A2A7, CANADA
(jianguo,xueliu)@cs.mcgill.ca

Mingxuan Yuan, Zonghua Gu
Department of Computer Science and Engineering
Hong Kong University of Science and Technology,

P.R.CHINA
(csyuan, zgu)@cse.ust.hk

ABSTRACT
To provide Quality of Service (QoS) guarantees in open and
unpredictable environments, the utilization control problem is
defined to keep the processor utilization at the schedulable
utilization bound, even in the face of unpredictable and/or varying
task execution times. To handle the end-to-end task model where
each task is comprised of a chain of subtasks distributed on
multiprocessors, researchers have used Model Predictive Control
(MPC) to address the Multiple-Input, Multiple-Output (MIMO)
control problem. Although MPC can handle a limited range of
model uncertainties due to execution time estimation errors, the
system may suffer performance deterioration or even become
unstable if the actual task execution times are much larger than
their estimated values. In this paper, we present an online adaptive
optimal control approach using Recursive Least Squares (RLS)
based model estimator plus Linear Quadratic (LQ) optimal
controller. We use simulation experiments to demonstrate the
effectiveness of our controller compared with the MPC-based
controller.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems
--- Performance attributes

General Terms
Management, Performance.

Keywords
Feedback control, multiprocessors, real-time scheduling.

1. INTRODUCTION AND RELATED
WORK

Traditional hard real-time systems execute in a closed environment
and rely on worst-case analysis to make offline guarantees, i.e., by
scheduling real-time tasks based on conservative estimations of the
worst-case execution time of each task on a given hardware
platform [1], [2] . But in recent years, there is a growing collection
of real-time embedded systems that execute in an open and
unpredictable environment yet still must make performance

guarantees, where task execution time may suffer large
uncertainties due to input parameter variations or unpredictable
environment. A key challenge is to provide real-time guarantees
even though the workload cannot be accurately characterized a
priori. The traditional approach of worst-case analysis for making
real-time guarantees may cause under-utilization and wasted
resources, since a task’s WCET is often much bigger than its
average execution time. We need more dynamic and adaptive
scheduling algorithms that can adjust scheduling parameters
according to runtime variations of task execution time while still
making real-time guarantees. Feedback control is an effective
technique to tackle these challenges [3], [4], [5].

To guarantee that the system is schedulable, that is, no deadline
miss occurs, it is sufficient to keep each processor’s utilization to
be under the schedulable utilization bound. For example, if the
scheduling algorithm is rate monotonic scheduling, where each task
is assigned a fixed priority and a task with higher execution rate is
assigned a higher priority, then the system is schedulable if the
processor utilization does not exceed 1/(2 1)mm − , where m is the
number of tasks on the same processor [6]. (This is often called the
Liu and Layland bound.) If the scheduling algorithm is Earliest
Deadline First (EDF), then the schedulable utilization bound is 1.
Recently, researchers have applied feedback control techniques to
keep processor utilization to be under the schedulable utilization
bound through dynamic resource allocation in response to workload
variations, in order to achieve high processor utilization while still
meeting real-time constraints.

Lin et al applied feedback control techniques to real-time
scheduling in the face of uncertain workloads in [4]. Goel et al
proposed a feedback-based scheduling approach to meet real-time
requirement [3]. Stankovic et al [5] applied feedback control to
distributed real-time systems. Lu et al [7] presented a survey of
feedback control techniques to ensure real-time guarantee under
unknown execution time. Yong etl al [8] used a distributed
utilization feedback controller to handle system dynamics caused
by load balancing for large-scale server clusters. Recent work on
utilization control based on Model Predictive Control (MPC) was
capable of handling execution time variations within a certain range
[9], [10], [11]. Chen etl al [12] presented a Multi-Parametric Rate
Adaptation (MPRA) algorithm for discrete rate adaptation in
distributed real-time systems with end-to-end tasks, where an
adjustment tree is computed offline using mp-MILP
(Multi-Parametric 0-1 Mixed Integer Linear Programming). When
system variation happens at runtime, the controller searches this
tree based on the variation to make online adjustments. All the
above approaches based on feedback control require having an
accurate model of the real-time system, which may be difficult to
obtain for realistic systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

85

Some authors have designed centralized or decentralized
MPC-based controllers to solve the processor utilization control
problem [9], [10], [11] based on approximate models of the
underlying systems and the tasks running on top of them. It was
shown [9] that these approaches can perform well within a limited
range of model uncertainties in terms of execution time estimation
errors and/or variations. However, the system may suffer
performance degradation or even become unstable if the task
execution times are underestimated by a significant degree, i.e., the
actual task execution times are much larger than their estimated
values. (On the other hand, overestimation of task execution times
may cause slow convergence to the set point, but will not cause
instability.) In this paper, we present a CPU utilization control
technique using Recursive Least Squares (RLS) based model
estimator and Linear Quadratic (LQ) optimal controller [17], which
is a self-tuning adaptive control algorithm without any need for
prior knowledge of the system model. The system model is learned
(estimated) and automatically adjusted online with the RLS
method, and the control inputs are calculated at runtime by
optimizing a quadratic cost function. Due to online model
estimation, this control algorithm has good performance even in the
face of large system model uncertainties.

The feedback control principle has found many applications in
Systems-On-Chip (SoC). Lipsa et al [13] proposed a design
methodology and framework for Autonomic Systems-On-Chip
(ASoC), where an autonomic layer is added to monitor and control
the functional layer to achieve self-calibration, fault tolerance or
self-healing. Particularly relevant to this paper is Multiprocessor
System-on-Chip (MPSoC), where multiple Processing Elements
(PEs) are placed on a single chip and connected with a bus or
network-on-chip. Each PE may be a dedicated ASIC or a
programmable processor running several tasks using a real-time
scheduling algorithm. Lankes et al [14] presented an extension to
the SystemC-based simulator TAPES [15] to model and simulate
an autonomic MPSoC system that can adapt to changing runtime
conditions, although they did not use any formal control theory.
Carta et al [16] presented a control theoretic approach to dynamic
voltage/frequency scaling (DVFS) in a pipelined MPSoC
architecture with soft real-time constraints. The techniques
presented in this paper are rather generic and broadly applicable to
any multiprocessor system, whether on-chip or not. For MPSoC,
the processing and memory resources are typically more limited
than a traditional distributed embedded systems, so it may be
necessary to carefully evaluate runtime overheads of the control
algorithms and their impact on control performance.

The remainder of this paper is organized as follows. Section 2
describes the system model and control architecture. Section 3
presents the details of RLS based model estimator and LQ optimal
controller design. Section 4 presents performance evaluation results.
Section 5 presents conclusions.

2. SYSTEM MODEL AND CONTROL
ARCHITECTURE

We consider the same system model as [9]. The application is a
group of end-to-end periodic tasks. Each task is composed of a
chain of sub-tasks. A subtask is released when its predecessor task
has finished execution. All the sub-tasks of one periodic task share
the same execution rate. The hardware platform is composed of
multiple processors. Each sub-task can be allocated on any
processor. Each processor runs a group of periodic sub-tasks, and

the sub-task to processor mapping is predefined. Given a
scheduling algorithm, a utilization bound can be determined such
that the taskset on a processor is schedulable when the processor’s
actual utilization does not exceed the bound. Typically, higher task
execution rates lead to higher Quality of Service (QoS) in terms of
application utility, but also higher processor utilization, and vice
versa. In order to achieve high QoS while keeping the system
schedulable, the actual utilization should be controlled to be at or
just below the utilization bound. In this paper, our control objective
is to maintain each processor’s utilization at the utilization bound
(control set point) despite any execution time estimation errors
and/or runtime variations by adjusting task execution rates
dynamically, assuming that each task’s execution rate can be
adjusted within a certain acceptable range, which is true for most
soft real-time applications.

The utilization model of each processor is as follows, the same as
[9]:

(1) () ()y k y k B r k+ = + Δ , (1)
where ny R∈ represents the processor utilization vector with size
n; mr RΔ ∈ represents the change to task execution rates for the m
tasks running on the system; n mB R ×∈ is defined as

B GF= , (2)
Where F is the available subtask allocation matrix that records
which tasks are running on which processors.

1 2{ , , , }nG diag g g g= L is a diagonal matrix, where
, 1,2, ,ig i n= L are scalar values that denote the ratio between the

change to the actual utilization of processor i and its estimation
∆r(k). The size of gi measures the estimation error, i.e., how much
the actual execution time of each task on processor i deviates from
its estimated value, assuming that it is the same for all tasks on
processor i. For example, if gi = 2, then each task’s actual execution
time is twice the estimated value, hence the actual change to
utilization caused by changing task rate is twice the estimated
change. This may be due to uncertainties and runtime variations of
actual task execution times, which may be quite different from their
offline estimation. We will later show that our controller can handle
larger values of gi than the MPC-based controller in [9] under both
steady and varying execution time conditions.

Example: We consider the distributed computing system from [9],
with two processors and three periodic tasks, as shown in Fig. 2.
Task 1 has a single subtask T11 running on Processor P1; Task 3 has
a single subtask T31 running on Processor P2. Task 2 has two
subtasks: T21 running on P1 and T22 running on P2, with the same
execution rate. The system model is:

11 211

22 312

00
, ,

00
c cg

G F
c cg

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

, (3)

1
1

2
2

3

()
()

() , () () ,
()

()

r k
y k

y k r k r k
y k

r k

Δ⎡ ⎤
⎡ ⎤ ⎢ ⎥= Δ = Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥Δ⎣ ⎦

 (4)

The system model (1) with the parameters (3) and (4) can be
rewritten as

1 1 1 11 1 21 2

2 2 2 22 2 31 3

(1) () (() ())
(1) () (() ())

y k y k g c r k c r k
y k y k g c r k c r k

+ = + Δ + Δ
+ = + Δ + Δ

 (5)

86

The control objective is to track the constant reference
command refy , the processor utilization target vector, i.e., to
minimize the error between the measured processor utilization and
target utilization () () ()refe k y k y k= − . The controller task can be
put on a separate processor, or it should be assigned the highest
priority if it shares a processor with other applications. In the latter
case, that execution time of the controller is assumed to be
negligible compared to that of the application tasks. There are a
utilization monitor and a rate modulator on each processor. The
utilization monitor reports each processor’s utilization in each
sampling period, and the rate modulator is used to adjust the task
execution rates. The inputs to the controller are each processor’s
utilization in the current sampling period, the utilization target
vector and the rate adjustment range of each task. The outputs of
the controller are the changes to task execution rates

T
m krkrkr])()([)(1 ΔΔ=Δ L . From the perspective of the plant,

these outputs are called control inputs, and the rate modulators
adjust the corresponding task rates according to

mikrkrkr iii ,,2,1),1()()(L=−+Δ= . This is a Multiple-Input,
Multiple-Output (MIMO) control problem that cannot be handled
with the traditional Proportional, Integral and Derivative (PID)
control algorithm.

The actual gain matrix G is unknown because actual task execution
times may be very unpredictable and deviate a lot from their
estimated values. The MPC-based controller in [9] is designed with
the assumption that the gain matrix elements 1 2 1g g= = , i.e. the
controller assumes that the actual utilization change will be the
same as the predicted utilization change. Even though the controller
is designed under this assumption, the MPC-based controller in [9]
is still stable when the actual gi values fall within the
range 0 5.95, 1,2ig i< < = thanks to the feedback control principle.
Although these controllers are robust with small estimation errors,
the control performance may deteriorate with large execution time
estimation errors, i.e. large model uncertainties. In this paper, we
employ online model estimation to better cope with large model
uncertainties and/or runtime variations.

3. ONLINE ADAPTIVE OPTIMAL
CONTROLLER DESIGN

LQ Controller

Computing
System

RLS based
Model Estimator

ref

Outputs

Inputs

Fig. 1. Control architecture of RLS based model estimator and

LQ optimal controller
Fig. 1 shows the overall control system architecture, same as [17].
The RLS-based model estimator is used to learn and update a linear
model of the distributed computing system (plant), and the LQ
optimal controller is used to keep the output at the desired set point
by setting the control inputs by minimizing a quadratic cost
function. We adopt a centralized control architecture in this paper,
although it is possible to extend to decentralized control

architecture using the model decomposition technique in [11],
which we leave as part of our future work.

A. RLS-based Model Estimator
The distributed computing system can be described with a general
multiple-input-multiple-output (MIMO) model as follows:

1 1() () () () ()A q y k B q u k d k− −= + , (6)
where 1()A q− and 1()B q− are matrix polynomials in the
backward-shift operator

1 1
1

1 1
0 1

() ,

() ,

l
r

l
r

A q I A q A q

B q B q B q

− − −

− − −
−

= − −…−

= −…−
 (7)

where l is the order of the system, which is equal to 1 in our
application. ()d k is a sequence of independent, identically
distributed n-dimensional random vectors with zero mean
representing disturbances. We assume that ()d k is independent
of ()y k j− and ()u k j− for j > 0. () ()u k r k= Δ is the control
input, i.e., vector of task execution rate change, and ()y k is the
control output, i.e., vector of processor utilizations. (Note that the
notation is slightly different from that in [9].)

We use the RLS estimator with exponential forgetting to estimate
the coefficient matrices iA and jB online, where 0 i l< ≤ and

0 j l≤ < , since their values may change due to varying runtime
conditions. (This is the key difference and advantage of this control
scheme compared to the MPC or PID-based controllers, where the
system model is fixed at runtime, especially in the face of large
model uncertainties.)

For notational convenience, we rewrite the system model in the
following RLS-friendly form, which we use in the remainder of the
paper

(1) () () (1)y k X k k d kφ+ = + + , (8)
where

0 1 1

() [() (1) () (1)] ,
[, , , ,],

T T T T T

l l

k u k u k l y k y k l
X B B A A
φ

−

= − + − +
=

L L

L L

RLS estimator with exponential forgetting can be used to identify
the time varying parameter matrix ()X k online. This estimator
has been applied extensively in adaptive control system design as it
can converge fast and reject disturbance well. The estimator is
described by the following equations

ˆ1 1 ,ε(k +)= y(k +)+ X(k) (k)φ , (9)
1 1ˆ 1 ,

1

T

T

ε(k +) (k)P(k)X(k +)= X(k)+
λ+ (k)P(k) (k)

φ
φ φ

−
−

, (10)

1
2

11 1 1) ,
T

1 T
T

P(k) (k)P (k)= P (k)+(+(λ) (k) (k)
((k) (k))
φ φ φ φ
φ φ

− − −
− − (11)

where ˆ ()X k is the estimation of the ()X k ; ε(k) is the estimation
error vector, P(k) is the covariance matrix; λ is the forgetting factor
(0 1λ< <).

B. Linear Quadratic (LQ) Optimal
Controller

The primary control objective is to let the system output track the
reference command with small tracking error. At the same time, it
is desirable to avoid large changes to the control inputs. We achieve

87

these goals by minimizing the quadratic cost function J defined as
follows:

2

2

((1) - (1))

(() - (-1))

refJ W y k y k

Q u k u k

= + +

+
, (12)

where W is a positive-semi-definite weighting matrix on the
tracking errors, (a higher weight indicates higher importance value
of the corresponding output variable). Q is a positive-definite
weighting matrix to penalize large changes in control inputs. W and
Q are defined as diagonal matrices, and their relative magnitude
provides a way to trade-off tracking accuracy for smaller changes
in control input. The control input that minimizes J can be obtained
by setting the derivative ∂J/∂u(k)=0,and solving for u(k) (The
detailed derivation is described in [17] and omitted here):

2 -1 2
0 0

0

ˆ() -() [(() ()

- (1)) - (-1)].

T T T

T T T
ref

u k W B B QQ W X k k

y k B QQ u k

φ= +

+

%
 (13)

4. PERFORMANCE EVALUATION
In this section, we use simulation to compare the performance of
the LQ optimal controller to that of the MPC-based controller.

A. Simulator and Experimental Setup

T11

T21 T22

T31

Utilization
Monitor

Rate
Modulator

Online
Adaptive
Optimal

Controller

P1 P2

Reference

Fig. 2. Overall control system architecture.

We implemented a simulator for the utilization control of the
2-processor system introduced in Section 2 in Matlab [19]. Fig. 2
shows the overall control system architecture. We also implemented
the MPC-based controller from [9] for performance comparison
purposes.

Let ()ir k denote the invocation rate of Task i in the (k)th
sampling period, then:

min, max,() , 1,2,3i i iR r k R i≤ ≤ = , (14)

where min,iR and max,iR are the minimum and maximum
execution rates of Task i, respectively, determined by the system
designer from application domain knowledge.

The control input vector is:

[]1 2 3() () () () Tu k r k r k r k= Δ Δ Δ , (15)
where () () (1)i i ir k r k r kΔ = − − is change to the task rate ()ir k ,
whose constraints are determined by the constraints of ()ir k .

We assume rate monotonic scheduling on each processor, and let

max,iy denote the maximum utilization in processor i according to
the Liu and Layland bound [6]:

1/
max, (2 1), 1,2im

i iy m i= − = , (16)
where im is the number of subtasks on processor i.

Since 1 2 2m m= = , max, 0.8284iy = , 1,2i = . The runtime processor
utilization must satisfy:

max,0 ()i iy k y< < . (17)
Parameter matrix F in Equation (2) and constraints in Equation
(14) are as follows, same as [9]:

11 21 22 31

max,1 max,2 min,1 min,2

max,3 min,3

35, 35, 35, 45,
1 1, ,
35 700

1 1, .
45 900

c c c c

R R R R

R R

= = = =

= = = =

= =

 (18)

As discussed in Section 2, the gain matrix G measures the
estimation error. For simplicity, we assume the system gain
g1=g2=g in the simulation experiments, i.e., the execution time
estimation errors on both processors are the same, and adjust the
magnitude of g to see how well the controller handles task
execution time estimation errors. The MPC-based controller in [9]
was shown to be stable under the condition 0 5.95, 1,2ig i< < = .
We will show that the RLS-based LQ optimal control can tolerate a
larger range of g while maintaining control stability, and when both
controllers can maintain control stability, the RLS-based LQ
optimal control shows better control performance, as measured by
the aggregate error, defined in Equation (19) as the sum of squared
errors between the target utilization and the actual measured
utilization on each processor during a time interval while the
system is in the steady state.

2

1

2
2 1(()) /()

T

i
k T

E e k T T
=

= −∑ , (19)

where ()ie k is the tracking error of processor i’s utilization at
time step k. T1 and T2 denote the simulation start and stop time steps
for calculating the aggregate error. In our simulation experiments,
we run the simulation for 1000 time steps, and the system goes into
steady state before time step 200, so we set T1=200 and T2 =1000.

B. Experiment 1: Steady Execution Times,
Small System Gain

In this experiment, we set 1 2 0.35g g= = , i.e. the actual execution
time is 35% of the estimated value. The initial task rates are
assigned based on estimated execution times to make the utilization
equal to the set point. Hence both processors are actually
underutilized initially. The task rates are then increased gradually
until the utilization of both processors converges to the set point of
0.8284. The objective is to keep the processor utilizations at the set
point without knowledge of the actual task execution times while
achieving good control performance as measured by the aggregate
error defined in Equation (19).

Fig. 5 shows the processor utilization responses. (Note that the
figure shows two curves for utilizations of the two processors, but
they are quite close to each other so they look like one curve.)
Although these two approaches both have acceptable performance
in the steady state, the aggregate error of the LQ optimal controller
in the steady state is slightly smaller than that of MPC controller, as
shown in Table 1.

Table 1. Aggregate errors in Experiment 1
Algorithm LQ Controller MPC

CPU1 0.0173 0.0216
CPU2 0.0166 0.0202

88

C. Experiment 2: Steady Execution Times,
Large System Gain

In this experiment, we set 1 2 7g g= = , i.e. the actual execution
time is seven times the estimated value. Both processors are
initially over-utilized. The task rates are then decreased gradually
until the utilization of both processors converges to the set point of
0.8284.
Fig. 4 shows the processor utilization responses. For the LQ
optimal controller, the utilizations exhibit some initial oscillations
due to model estimation inaccuracies, but as model estimation
becomes more accurate later, they converge to the utilization set
point quickly. For the MPC-based controller, the estimation error
falls outside of the stability range, and processor utilizations

oscillate significantly during the entire simulation time, which is
obviously not acceptable for a real-time system. Intuitively, the
actual utilization change caused by the rate modulator at each
control step is much larger than (seven times) the estimated
utilization change due to the grossly under-estimated task execution
times, which caused the control instability. Table 2 shows the
aggregate errors.

Table 2. Aggregate errors in Experiment 2
Algorithm LQ Controller MPC

CPU1 0.0167 0.4170
CPU2 0.0161 0.3719

(a) (b)

Fig. 3. Processor utilization response in Experiment 1 (g=0.35): (a). LQ optimal controller; (b). MPC-based controller

(a) (b)

Fig. 4. Processor utilization response in Experiment 2 (g=7): (a). LQ optimal controller; (b). MPC-based controller

(a) (b)

Fig. 5. Processor utilization response in Experiment 3 (g=0.35, 2, 0.5): (a). LQ optimal controller; (b). MPC-based controller

89

D. Experiment 3: Varying Execution Times
In this experiment, task execution times vary dynamically at
runtime. We set 1 2 0.35g g= = at simulation start time,

1 2 2g g= = at the 400th time step, and finally 1 2 0.5g g= = at
the 800th time step. This experiment is designed to test the
robustness of the controller in the face of runtime workload
fluctuations.

Fig. 5 shows the processor utilization responses. When the
workload is changed at the 400th and 800th sample steps, the LQ
optimal controller keeps the utilizations at the desired set point
with much smaller oscillation than the MPC-based controller, as
confirmed by Table 3.

Table 3. Aggregate errors in Experiment 3
Algorithm LQ Controller MPC

CPU1 0.0185 0.0215
CPU2 0.0163 0.0324

5. CONCLUSIONS AND FUTURE WORK
In this paper, we address the processor utilization control problem
in multiprocessor real-time embedded systems. In these systems,
execution time may vary greatly, so an adaptive control approach
is needed to keep the processor utilization at a given set point to
ensure schedulability. MPC-based controller can handle execution
time estimation errors within a certain range. To deal with large
estimation errors, we employ Recursive Least Squares (RLS)
based model estimator to estimate the system model online, and
Linear Quadratic (LQ) optimal controller to keep the processor
utilization at the desired set point. Simulation experiments shows
that the LQ optimal controller has better system performance than
the MPC-based controller under both constant and varying task
execution time conditions, especially when the execution time
estimation errors are large.

ACKNOWLEDGEMENTS
This work was partially supported by NSERC Discovery Grant

#341823-07, Hong Kong RGC CERG #613506, and a National
Study-Abroad Scholarship of P. R. China under Grant No. [2007]
3020.

REFERENCES
[1] L. Sha and J.B. Goodenough, "Real-Time Scheduling Theory

and Ada," Computer, vol. 23, no. 4, pp. 53-62, 1990.
[2] A.J. Garvey and V.R. Lesser, "Design-to-time real-time

scheduling," IEEE Transactions on Systems, Man and
Cybernetics, vol. 23, no. 6, pp. 1491-1502, 1993.

[3] A. Goel, Walpole, and M. Shor. "Real-rate scheduling," in
proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp.
434-441, 2004.

[4] S. Lin and G. Manimaran. "Double-Loop Feedback-Based
Scheduling Approach for Distributed Real-Time Systems," in
proceedings of the High Performance Computing (HiPC),
pp. 268-278, 2003.

[5] J.A. Stankovic, T. He, T.F. Abdelzaher, M. Marley, G. Tao,
S.H. Son, and C. Lu. "Feedback Control Real-Time

Scheduling in Distributed Real-Time Systems," in
proceedings of the IEEE Real-Time Systems Symp, 2001.

[6] J. Liu, Real-Time Systems: Prentice Hall PTR 2000.
[7] C. Lu, J.A. Stankovic, S.H. Son, and G. Tao, "Feedback

Control Real-Time Scheduling: Framework, Modeling, and
Algorithms," Real-Time Systems, vol. 23, no. 1, pp. 85-126,
2002.

[8] F. Yong, W. Hongan, L. Chenyang, and A.R.S.C. Ramu
Sharat Chandra. "Distributed Utilization Control for
Real-Time Clusters with Load Balancing," in proceedings of
the 27th IEEE International Real-Time Systems Symposium,,
pp. 137-146, 2006.

[9] C. Lu, X. Wang, and K. X., "Feedback utilization control in
distributed real-time systems with end-to-end tasks," Parallel
and Distributed Systems, IEEE Transactions on, vol. 16, no. 6,
pp. 550-561, 2005.

[10] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, "FC-ORB: A
robust distributed real-time embedded middleware with
end-to-end utilization control," Journal of Systems and
Software, vol. 80, no. 7, pp. 938-950, 2007.

[11] X. Wang, D. Jia, C. Lu, and .X. Koutsoukos, "DEUCON:
Decentralized End-to-End Utilization Control for Distributed
Real-Time Systems," IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 7, pp. 996-1009, 2007.

[12] Y. Chen, C. Lu, and X. Koutsoukos. "Optimal Discrete Rate
Adaptation for Distributed Real-Time Systems," in
proceedings of the 28th IEEE International Real-Time
Systems Symposium, pp. 181-192, 2007.

[13] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O.A.B.O. Bringmann,
and W.A.S.W. Stechele. "Towards a Framework and a Design
Methodology for Autonomic SoC," in proceedings of the
Second International Conference on Autonomic Computing,
pp. 391-392, 2005.

[14] A. Lankes, T. Wild, and J. Zeppenfeld, "System Level
Simulation of Autonomic SoCs with TAPES," ARCS vol.
4934/2008, pp. 9-22, 2008.

[15] T. Wild, A. Herkersdorf, and G.-Y. Lee, "TAPES -
Trace-based architecture performance evaluation with
SystemC," Design Automation for Embedded Systems, vol. 10,
pp. 157-179, 2006.

[16] C. Salvatore, A. Andrea, P. Alessandro, A. Andrea, and B.
Luca, "A control theoretic approach to energy-efficient
pipelined computation in MPSoCs," ACM Transactions on
Embedded Computing Sys., vol. 6, no. 4, pp. 27, 2007.

[17] X. Liu, X. Zhu, P. Pradeep, Z. Wang, and S. Sharad. "Optimal
multivariate control for differentiated services on a shared
hosting platform," in proceedings of the 2007 46th IEEE
Conference on Decision and Control, pp. 3792-3799, 2007.

[18] M. Karlsson, X. Zhu, and C. Karamanolis. "An adaptive
optimal controller for non-intrusive performance
differentiation in computing services," in proceedings of the
International Conference on Control and Automation, vol. 2,
pp. 709-714, 2005.

[19] The MathWorks, MATLAB Function Reference, 2007.

90

