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ABSTRACT
Security is a growing concern in processor based systems and hence
requires immediate attention. New paradigms in the design of MP-
SoCs must be found, with security as one of the primary objectives.
Software attacks like Code Injection Attacks exploit vulnerabilities in
“trusted” code. Previous countermeasures addressing code injection
attacks in MPSoCs have significant performance overheads and do
not check every single line of code. The work described in this paper
has reduced performance overhead and ensures that all the lines in
the program code are checked.

We propose an MPSoC system where one processor (which we
call a MONITOR processor) is responsible for supervising all other
application processors. Our design flow, LOCS, instruments and
profiles the execution of basic blocks in the program. LOCS sub-
sequently uses the profiler output to re-instrument the source files
to minimize runtime overheads. LOCS also aids in the design of
hardware customizations required by the MONITOR. At runtime,
the MONITOR checks the validity of the control flow transitions and
the execution time of basic blocks.

We implemented our system on a commercial extensible proces-
sor, Xtensa LX2, and tested it on three multimedia benchmarks. The
experiments show that our system has the worst-case performance
degradation of about 24% and an area overhead of approximately
40%. LOCS has smaller performance, area and code size overheads
than all previous code injection countermeasures for MPSoCs.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and De-
sign Aids

General Terms
Design, Measurement, Performance, Security

Keywords
Architecture, Code Injection, Execution Profile, MPSoC, Tensilica

1. INTRODUCTION
The increasing complexity and functionality of designs in embed-

ded systems necessitates the exploration of new design paradigms
with multiple processors on a single chip. Consumer devices such
as cellular handsets already employ dual processor chips (DSP and
RISC) [6]. Future multimedia devices will embed many processors
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on a single chip to tackle pipelining and parallelism, required to sup-
port a range of functionalities in a single embedded system [6, 20].

With the leap ahead in technology and newer design models, secu-
rity attacks are imminent. Security is usually an afterthought in the
design of general purpose embedded systems and single processor
system on chips; and hence we see a wide range of attacks which
systems today cannot confront [15]. We believe that security should
be one of the design objectives and in this paper we show how de-
signers can incorporate that when designing MPSoCs for multimedia
applications.

Software attacks (and particularly code injection attacks) are the
most commonly encountered attacks in embedded systems [13]. The
US-CERT vulnerability reports show that, on average, nearly 11%
of all vulnerabilities reported in 2007 referred to buffer overflow
attacks, which is only one of the ways in which to induce a code
injection attack. The statistics for the percentage of vulnerabilities
pertaining to buffer overflow attacks reported in 2007 is shown in
Figure 1. A variety of other common software attacks are discussed
in [12, 19, 22].
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Figure 1: Buffer Overflow Vulnerabilities from US-CERT
Code injection attacks pose significant risk in multiprocessor sys-

tems as they are inherently more complicated than single processor
systems. Security always adds overheads but it is imperative that se-
curity measures are included as part of the design process in MPSoCs
with a goal to minimize overheads [15].

In this paper, we propose an MPSoC with an additional processor
(MONITOR processor) for security. Our system is briefly described
here. The basic blocks in each of the application processors are in-
strumented to allow checking at runtime by the MONITOR. A key
feature of our design flow LOCS is that the use of simulation trace
analyzer and execution profiler tool allows the MPSoC designer to
adjust the frequency of how often the security checks happen for
each basic block. The MONITOR has a record of execution times (a
min and max time is given for each basic block - to allow for cache
misses) for each basic block in each of the application processors. In
addition, it also contains the control flow map of the programs in the
application processors. Thus, if the application program takes more
time than it should, or if it takes a path in the program which was
not intended, then an interrupt is raised from the MONITOR which
alerts the application processors.

The remainder of the paper is organized as follows. A summary of
related work is in Section 2. Section 3 describes the methodology our
design flow LOCS employs to secure an MPSoC. The software and
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hardware design flows are described in Section 4. Section 5 presents
the results followed by discussion of key issues in Section 6. Finally
the paper is concluded in Section 7.

2. RELATED WORK
In this section, we describe the existing countermeasures for MP-

SoCs and also evaluate the scalability issues of some of the coun-
termeasures from the single processor domain to the multiprocessor
domain.

Software based countermeasures can be classified into either static
or dynamic techniques. Static techniques try to eradicate the vulnera-
bilities in the code during compilation while the dynamic techniques
detect attacks at runtime. A number of static analysis techniques
have been proposed in [2, 3, 4, 19].

A dynamic code analysis tool proposed in [5] helps in protection
against invalid array accesses. CCured proposed in [9] uses both
static and dynamic analysis for checking that the pointers are safe
and would not cause memory errors which could potentially be used
for code injection attacks.

In terms of hardware based countermeasures, Milenkovic et al. in
[8] proposed a method to fetch instructions from the memory using
a signature verification unit. Ragel et al. in [14] also proposed a
method for basic block validation using microinstructions.

The hardware techniques in [1] proposed architectural modifica-
tions to detect code injection attacks via runtime monitoring. An-
other hardware based method in [7] proposes to use a separate secure
return address stack (SRAS) to prevent buffer overflow attacks.

Static analysis tools like Stack Guard in [2], only aim to solve
buffer overflow problems, and may not scale for other types of code
injection attacks. Static analysis may also require the code to be writ-
ten in a specific manner causing issues of portability. Static analyzers
by themselves are not enough as they do not protect against attacks
that occur at runtime.

The dynamic code analysis tools proposed in [5] and [9] incur
runtime overheads of up to 220% and up to 150% respectively. The
extremely high runtime overhead for [5, 9] makes them difficult to
scale for multiprocessor applications.

A lot of the solutions proposed using hardware assisted techniques
require major hardware modifications which are not possible in all
commercial processors such as Tensilica’s Xtensa LX2. Xtensa LX2
can be extended only to a certain extent using Tensilica’s Instruction
Extension (TIE) language which allows the users to define custom
hardware. The approach in [8] requires architecture modification
to allow interception of fetched instructions while the approach in
[14] requires modification of the microinstructions. Both the features
of interception of fetched instructions and modifications of microin-
structions are unavailable in Xtensa LX2. The hardware techniques
proposed in [1, 7] also face similar limitations of needing significant
architectural modifications.

Thus the existing single processor hardware techniques cannot be
directly applied for the MPSoC domain on commercial processors
like Xtensa LX2 and similar where the processor hardware descrip-
tion is unavailable.

In the multiprocessor domain, the work in [11] uses a software
based approach and the work in [10] uses a hardware based approach
for detecting code injection attacks on MPSoCs. For the remainder
of this paper, we refer the work in [11] as SW MON and the work in
[10] as SHIELD.

In contrast to the case study in SW MON and in SHIELD, the
work described in this paper is a profiler driven design flow for ad-
dressing security aspects of MPSoCs. Our approach in this paper
monitors every single line of the application program code unlike
the approaches in SW MON and SHIELD where the control flow in-
structions were not monitored. In addition, our design flow also has
half as much increase in code size compared to the approaches in
SW MON and SHIELD.

The profiler driven design flow in this paper provides the designer
with an insight of the application’s hot-spots at the basic block level.
When designing for security, this provides the designer the flexibility
to trade-off between performance and the granularity level of moni-

toring. The approaches in SW MON and SHIELD did not have any
profile information available to the designer and hence failed to pro-
vide the mechanisms for the trade-off discussed above. Finally our
approach achieves the lowest performance and code-size overheads
compared to the approaches in SW MON and SHIELD whilst still
being automated and just as easy to implement. Our approach in this
paper has been thoroughly tested on three multimedia benchmarks
whereas the ones in SW MON and SHIELD were case studies.

2.1 Attack Model and Assumptions
We target code injection attacks that can take place on an MPSoC.

Examples of such attacks include stack and heap based buffer over-
flows, spurious control flows within the program, and run-time code
corruption. It must be noted that we are not trying to handle phys-
ical attacks and hence attacks such as erasure of data or instruction
memory through physical access to the device are not covered by our
technique.

We assume that each processor has its own separate instruction and
data memories and that it is safe to use the system library functions.
We also assume that our MONITOR is totally secure and cannot be
attacked. This is a reasonable assumption given that the MONITOR
only has a few instructions which initiate the monitoring hardware
and these can be placed in a ROM.

2.2 Contributions
The contributions of this paper are as follows:

1. For the first time a systematic methodology is proposed that
checks every single line of program code. This methodology
provides a fully automated approach and an intelligent static
analyzer to achieve an instrumented binary for the MPSoC ar-
chitecture.

2. A novel profiler driven design flow is proposed for incorpo-
rating security measures in an MPSoC system. Our design
flow shows the program hot-spots (at the basic block level),
and suggests the designs with minimal performance overhead.
Our novel methodology of using the program hot-spots infor-
mation at the basic block level allows the designer to achieve
a balance between performance and security.

3. This is the first time a methodology for detecting code injec-
tion attacks on MPSoCs has been tested with three multimedia
multiprocessor benchmarks.

2.3 Limitations
The limitations of our approach are as follows:

1. The program trace profiler in our design flow, LOCS, calcu-
lates the minimum (min) and maximum (max) execution times
for each basic block. However the min and max times need to
be estimated for the basic blocks that do not fall on the execu-
tion path using the processor’s instruction set architecture.

2. A very small number of basic blocks that are involved in inter-
processor communication often violate their min or max times
raising false alarms. The range of time these basic blocks
take cannot be accurately determined and hence they are only
checked for the correctness of their control flow.

3. For a particular basic block that represents a loop, LOCS per-
forms the timing check on that basic block only when the loop
execution finishes, whereas the approach in SHIELD performs
a timing check on every iteration of the loop. The approach in
SHIELD may detect the attack faster if it happens in the first
few iterations, otherwise our design flow LOCS would detect
it faster because the security processor in SHIELD would have
a lot of communication backlog to process.

4. Our approach does not cover data corruption or bit flips in the
data memory.

3. PROPOSED METHODOLOGY
The proposed methodology for designing a secure MPSoC con-

sists of three main components, which are static analysis, simulation
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and profiling, and profiler driven security tuning. Finally, the allow-
able program behavior in the presence of the MONITOR is given.

The architectural framework is shown in Figure 2 where a dedi-
cated processor called MONITOR is employed, for supervision of
the application processors. The application processors can be con-
figured to execute an application program by themselves or even
combine together in a pipelined fashion to execute multiprocessor
applications. For example, the application processors can communi-
cate amongst themselves using a FIFO buffer as shown in Figure 2.
Each processor is assigned a unique id pId. Each application pro-
cessor talks to the MONITOR using a special TFIFO queue that
timestamps every entry into the queue. The use of the timestamp is
discussed later in this section.

SECURED MPSoC STRUCTURE
PIPELINE OF APPLICATION PROCESSORS

App. Proc. 
P1

MONITOR 
Proc. (PM)

TFIFONInterrupt2
Interrupt3

InterruptNInterrupt1

App. Proc. 
P2

App. Proc. 
P3

App. Proc. 
PN

FIFO1 FIFO2 FIFO3 FIFON

TFIFO3TFIFO2TFIFO1

Figure 2: The architectural framework of the proposed design

3.1 Static Analysis
A program is a collection of basic blocks, and we reassert the

claim in [14] that ensuring the integrity of the basic blocks suffices to
ensure the integrity of the program. The source assembly program is
statically analyzed to enable its instrumentation. First, the assembly
program in the application processors is divided into basic blocks and
instrumented with a special hardware instruction called CHKBLK.
Each basic block is assigned a unique block id bId. The CHKBLK
instruction is inserted at the start of each basic block. Figure 3(a)
shows an extract of the assembly program from an application pro-
cessor and Figure 3(b) shows how the basic block is instrumented
with the CHKBLK instruction. The role of the CHKBLK instruction
is discussed later in this section.

In the instrumentation process however, if a particular basic block
represents a loop, it is to be instrumented slightly differently. If the
control flow instruction at the end of a basic block has a possible
transition to the start of the same basic block, then that basic block
represents a loop. Figure 3(d) shows the instrumentation of the basic
block representing a loop in Figure 3(c). Along with the CHKBLK
instruction at the start of the basic block in Figure 3(d), a special
dummy label iL6 is also inserted after the CHKBLK instruction. The
label iL6 is inserted and the target of the branch instruction at the
end of the basic block is changed to iL6 to ensure that the CHKBLK
instruction is not repeatedly executed in the loop. These basic blocks
which represent loops are recorded and the designer is notified in the
security tuning process.

The CHKBLK instruction is a hardware instruction that is used
to push information into the TFIFO buffer connecting an applica-
tion processor to the MONITOR. The number in the CHKBLK in-
struction represents an encrypted block Id and processor Id. Each
CHKBLK instruction that is pushed into the TFIFO buffer is also
time-stamped with the clock cycle count time (CCOUNT). The time-
stamp is used by the MONITOR for runtime checking.

Finally, the instrumented assembly file is analyzed for control flow.
Since the file is divided into basic blocks, and each basic block has an

...
L6:    mov a4, a5         

xor a6, a4, a3       
beq a6, a2, L6
...

...
L6:    CHKBLK  9621

iL6:   mov a4, a5         
xor a6, a4, a3       
beq a6, a2, iL6

CHKBLK  1105
...

(d)(c)

...
L2:    add a3, a7, a9

l32r a6, .LC0       
bne a3, a6, L7
movi a5, 0x4         

L3:    ...

...
L2:    CHKBLK  8180

add a3, a7, a9
l32r a6, .LC0       
bne a3, a6, L7
CHKBLK  6125
movi a5, 0x4                 

L3:    CHKBLK  7605
...

(b)(a)

Figure 3: (a) Assembly Extract (b) Instrumentation with CHK-
BLK instruction (c) Assembly Extract (d) Editing a basic block
with loop structure

id, the transitions between basic blocks can be numerically mapped.
The control flow generation strategies mentioned in SW MON and
SHIELD had to rely on theoretical estimates or make an exception
for the control flow checking hardware for an indirect jump or an
indirect call instruction. Our work here uses the output from the pro-
filer to obtain the possible transitions of these indirect control flows.
Hence, given that the test data covers the nature of data to be used
in the system, the profiler output can be used to resolve the indirect
transitions at design time.

3.2 Simulation Analysis and Profiling
After the instrumentation of the assembly source in each applica-

tion processor, the program execution in each processor is traced and
analyzed using an automated script. Each execution of the CHKBLK
instruction from the trace is analyzed in a sequential order. The anal-
ysis in a sequential order of CHKBLK instructions gives us the basic
block to basic block transitions of the application program in each
processor.

These transitions are then merged with the transitions obtained
from the theoretical analysis in Section 3.1 and this resolves any am-
biguity resulting from indirect control flow instructions. Thus we
finally obtain a transition table that shows all the possible transitions
for each basic block in the application program. The transitions ta-
ble (also called the control flow table) is stored in the MONITOR for
runtime checking.

Since each CHKBLK instruction is time-stamped as described in
Section 3.1, the time difference between two consecutive CHKBLK
instructions in the trace file gives us the basic block execution time.

A lot of these basic blocks will be executed more than once and
it is possible that they have different execution times due to cache
hits or misses. Hence we obtain a range of timings for each basic
block from the execution trace and select the minimum (min) and
maximum (max) times. These min and max times are then stored in
the MONITOR for runtime checking.

3.3 Profiler Driven Security Tuning
Our profiler tool analyzes the simulation trace file and extracts the

number of times each of the basic blocks was executed and moni-
tored. The number of times a particular basic block was executed and
monitored is generally the same, except in the case of basic blocks
that are loops. For example, a case where a basic block that is a loop
is executed two times; the first time for 10 iterations and the second
time for 7 iterations; would be monitored only twice. This is due
to the software instrumentation explained in Section 3.1 using Fig-
ure 3(c) and (d). Figure 4 shows the monitoring frequency of most
of the executed basic blocks plotted on a log scale graph from one
of the application cores while the system was executing a JPEG De-
coder program. Note that only the basic blocks that were executed
more than 10 times are shown.

Looking at the information presented in Figure 4, the designer can
clearly see how frequently particular basic blocks are executed and
monitored and which of the basic blocks represent a loop. This infor-
mation can be used to tune the application’s security requirements.
For example, Figure 4 shows that basic block number 5 is a loop
and is executed and monitored about 1600 times. But the individual
iterations in each of the 1600 executions are not monitored. If the
designer considers that block 5 is extremely important and all the it-
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erations must be monitored, this can be specified to our design flow,
LOCS, which would instrument the basic block 5 such that every it-
eration is monitored. On the other hand some of the basic blocks
which are executed and monitored many times, may not need to be
monitored at all. The designer can again control and exclude some
blocks from being monitored. It should be noted that LOCS does not
need any user intervention and provides a default solution in which
every basic block will be checked, but it does offer the option of
designer intervention if required.

3.4 Runtime Checks
The runtime checks are performed by the MONITOR using cus-

tomized hardware. The MONITOR must however initiate the check-
ing using the software instruction VERIFY. The algorithm used by
the MONITOR is shown in Algorithm 1.

Algorithm 1 Algorithm in the MONITOR processor
Initialize finished = 0;
while ((finished == 0) AND (error == 0)) do

for j = 1 to N do
if (TFIFOPj

not EMPTY) then
Read and Decrypt TFIFOPj

Information
VERIFY(error, finished);

As described in Algorithm 1, all the TFIFOs are checked for data.
If the data is available in any of the TFIFOs, it is read and decrypted
through a hardware instruction. The VERIFY instruction, which is
a Single Instruction Multiple Data (SIMD) instruction, performs the
timing and control flow checks in hardware. It updates the error to 1
if any of the processors fails any of the checks and also updates finish
to 1 if the application has ended.

The intrinsics of the VERIFY instruction are shown in Figure 5.
The encrypted number in the CHKBLK instruction (communicated

Y

CHKBLK #### Decrypt

(t > Tmin)? &
(t < Tmax)?

Y

N

N

Finished?

Interrupt

End

Separate 
Info. bId,pId

Y

N

pId, bId, t

Control Flow
Correct?

Figure 5: The runtime checks performed in hardware
to the MONITOR through TFIFO) is decrypted using the hardware
key in the MONITOR. The time (t), processor Id (pId) and the block
Id (bId) information are separated and used to check the validity
of the timing and control flow against the stored information in the
MONITOR. The time information refers to the execution time of the
basic block identified by bId. If the execution time of the basic block
bId is less than its stored minimum execution time (T min) or greater
than its stored maximum execution time (T max), the appropriate ap-
plication processors referred to by pId are interrupted. The control
flow check ensures the transition to the current basic block from the
previous basic block is valid. The system exits once the final proces-
sor has finished execution.

3.5 Application Behavioral Properties
We discuss in this section, the set of program properties that will

be monitored by our system. We define the program behavior in dif-
ferent scenarios when the properties of the program are violated. As
discussed in Section 3.4, our MONITOR checks for timing and con-
trol flow. The MONITOR generates SIGTI when the timing checks
fail and SIGCF when the control flow check fails. We classify the
branch, jump, call and return instructions as control flow instructions
(CFIs). Also after the software instrumentation, each basic block
starts with a CHKBLK instruction and ends with a CFI. We will re-
fer to these instructions as bounding instructions (BI).

Table 1 shows the list of properties that are checked in our system.
The first column lists the type of the property being checked. The

Attack Type Original Modified Error
T1 non-BI added more non-BI SIGTI
T2 non-BI CHKBLK SIGCF/TI
T3 non-BI CFI SIGCF/TI
T4 CHKBLK modify num SIGCF/TI
T5 CHKBLK CFI SIGCF/TI
T6 CHKBLK non-BI SIGTI
T7 CFI another CFI SIGCF a

T8 CFI modify target SIGCF
T9 CFI non-BI SIGCF b

T10 CFI CHKBLK SIGTI/CF

Table 1: Different code integrity violations and error signals
aAttack not detected if only opcode changed.
bAttack not detected if branch instruction changed to non-BI.

second column shows the type of the original instruction in the pro-
gram and the third column shows the type of the attack instruction.
The final column shows the error signals generated by the MONI-
TOR.

In the attack of type T1, where more non-BI instructions are added
into the basic block, the timing of the basic block is violated and
hence the MONITOR generates SIGTI. In T2, if a non-BI instruc-
tion is replaced with a CHKBLK instruction, the MONITOR will
generate a SIGCF. The CHKBLK instruction replacing the non-BI
instruction is unlikely to have the correct encrypted numbers for the
processor Id (pId) and the block Id (bId) and hence generate SIGCF.
In T3, the CFI replacing the non-BI instruction may cause a switch
to a basic block, which is an incorrect control flow and hence gener-
ate SIGCF. In both T2 and T3, the premature end to the basic block
means that its execution time is less than its minimum execution time
causing the MONITOR to generate SIGTI.

In type T4 attack, the modification of the numbers in the CHK-
BLK instruction would reveal incorrect pId and bId numbers when
decrypted in the MONITOR. This would fail the control flow and
timing checks thus generating SIGCF and SIGTI. In T5, when the
CHKBLK is changed to a CFI, in the case of an incorrect transition
to another basic block, a SIGCF would be generated. But in the case
of a continued execution (i.e., the branch is not taken and the exe-
cution continues to the next instruction in memory), a SIGTI will be
generated as the maximum execution time of the basic block will be
exceeded. The attack in T6 is similar to T5 (case of continued exe-
cution), causing a SIGTI due to the execution time being exceeded.

In T7, if the existing CFI is changed to another CFI, and the result-
ing transition is an incorrect control flow, the MONITOR will gen-
erate a SIGCF. However, if only the opcode is changed (e.g., branch
not equal (bne) changed to branch if equal (beq)) and the targets are
left unmodified, the control flow will not be violated and hence the
attack would be undetected. Type T8 attacks causes the monitor to
generate a SIGCF, if the modified target causes an incorrect control
flow. In T9, the MONITOR generates a SIGCF as the original CFI
was supposed to cause a change in the control flow to a basic block
other than the basic block under the current basic block in memory
(e.g., the jump CFI). However, if the original CFI was such that the
basic block under the current basic block in memory is a valid tran-
sition, then the attack may not be detected (e.g., the branch CFI). In
T10, the CHKBLK instruction causes a premature end to the current
basic block which results in the execution time of the current basic
block to be less than its minimum execution time generating a SIGTI
from the MONITOR. Since the CFI in T10 is replaced with a CHK-
BLK instruction now, the next basic block executed will be the basic
block following the current basic block in memory. Therefore, if the
original CFI (e.g., jump CFI) was supposed to cause a forced tran-
sition to a basic block other than the one following the current basic
block in memory, the MONITOR would generate SIGCF.

Any attack that relies on the corruption of the numbers in the
CHKBLK instruction would be detected because those numbers are
encrypted. It is impossible for an attacker to know the key that is built
into the processor hardware. Physical attacks are beyond the scope
of this paper but even if the attacker manages to get hold of the key,
mass attacks would not be possible as each processor is built with
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a random hardware key. Processor designs that exploit the physical
characteristics of integrated circuits can be used to embed a key in
hardware as was proposed in [18].

4. DESIGN FLOW
Our design flow LOCS, shown in Figure 6, involves a hardware-

software co-design approach for implementing security features in
an MPSoC architecture. The inputs to LOCS are the source assem-
bly files and the architectural configuration of the design platform.
The C/C++ source files are also valid inputs as they can easily be
compiled through the target processor’s cross-compiler. We assume
that each architectural configuration has a unique secure random key
built into the processor. As explained earlier in Section 3.5, pro-
cessors can be designed with secure random keys using the physical
characteristics of the integrated circuits. Our design flow, LOCS,
automates the software instrumentation and identifies the required
hardware customizations in the MPSoC design platform. The final
outcome is the customized MPSoC with securely loaded binaries of
the application software.

Architectural 
Configuration

Storage Tables

Basic Block Division

Assemble and Link

Binary

Control Flow Extraction

Simulation Analysis

TFIFO Queues

SIMD Hardware

Build Hardware

Custom Hardware

Instructions

Source ASM

Loop Instrumentation

Security Level Tuning

MPSoC
Secure 
Loading

Register File

S
O
F
T
W
A
R
E

H
A
R
D
W
A
R
E

Figure 6: Hardware/Software flow of the proposed design

4.1 Software Design
The software design flow is shown in the left side of Figure 6. The

C/C++ source files can be compiled to generate the assembly code
for the target instruction set architecture (ISA). The source assem-
bly files are first divided into basic blocks and the basic blocks that
represent a loop are identified. Then the control flow map of the pro-
gram is extracted through static analysis. After this, the programs are
simulated and a trace file is generated. The trace file is analyzed to
extract the minimum and maximum execution times of basic blocks.
The control flow and the timing information is then loaded into the
custom hardware tables for use by the MONITOR at runtime. The
profile information for the basic blocks obtained from the simulation
is used by the designer for modifying the granularity at which some
of the basic blocks are monitored.

Finally the instrumented application is assembled and the binary is
loaded through a “Secure Loader” into the MPSoC using a secure key
(same random key that is built into the architectural configuration).
Every basic architectural configuration as well as the secure loader
that goes with it are built with a different random hardware key.

4.2 Architectural Design
The hardware design flow is shown in the right hand side of Fig-

ure 6. It involves the design of custom instructions, TFIFO queues,
Single Instruction Multiple Data (SIMD) hardware units, custom
register file and storage tables. The custom instructions are required
for interfacing with the TFIFO queues and SIMD units. The SIMD
units represent hardware that can handle operations on multiple data.
We design the SIMD units for the implementation of the VERIFY
instruction in hardware as detailed in Section 3.4. For N applica-
tion processors, N SIMD units and TFIFO queues are needed. The
customized storage tables in hardware are used to store the control
flow and basic block timing information available from the software
design phase.

5. EXPERIMENTAL SETUP AND RESULTS
In order to evaluate the effectiveness of our proposed design flow

we used a commercial processor, Xtensa LX2, from Tensilica Inc.
[16]. We extended the base processor’s architecture (64 general pur-
pose registers, 80 instructions) with additional custom hardware (reg-
ister file, storage tables, instructions). We also used the proces-
sor’s special feature called Ports and Queues to implement the FIFO
buffers required for our design flow.

It is difficult to have free access to multiprocessor benchmarks
partitioned for Tensilica’s toolset but we could still obtain three mul-
timedia benchmark systems which were designed using Tensilica’s
toolset for our experimentation. These benchmarks were; a six pro-
cessor JPEG encoder benchmark and a five processor MP3 encoder
benchmark produced by Shee et al. in [17], and a five processor JPEG
decoder benchmark produced by Wong et al. in [21]. All these par-
titioned benchmark programs (pipeline of processors) were mapped
into Xtensa LX2 using the design flow shown in Figure 6.

LOCS was designed using Python which is a high level program-
ming and scripting language. A number of bash scripts have also
been used for generating Makefiles for compilation. We implemented
the algorithms described in SW MON and SHIELD to compare and
evaluate with our design flow LOCS. The comparisons and the anal-
ysis are presented in the following subsections.

5.1 Performance Metrics
The execution times of three different approaches on three multi-

media benchmarks are laid out in Table 2. The JPEG Encoder bench-
mark was tested on five different benchmark image files. MP3 was
tested on a small music file and the JPEG Decoder benchmark was
tested on three different benchmark image files of varying sizes. The
App. Exec. time in the second column refers to the time the appli-
cation takes to finish execution without the MONITOR and security
instructions. The Sys. Exec. time in the third to fifth column refers
to the time taken by the entire MPSoC system with the MONITOR
to finish execution. Table 2 clearly shows that our design flow in
LOCS achieves the best system execution time amongst the three
approaches and finishes soon after the application.

Benchmark App. Exec. Sys. Exec. time (×103 cc)
time (×103 cc) SW MON SHIELD LOCS

JPEG Encoder
grandmom 4221.5 42350.1 4504.2 4238.3

mom 4221.7 47674.8 4504.6 4239.3
mom-daughter 4221.7 44170.1 4504.4 4238.5
flower garden 4221.2 85129.9 4516.9 4240.1

tennis 4221.0 67754.2 4507.2 4236.1
MP3 216571.4 6259514.7 274823.0 268628.2

JPEG Decoder
galois 9266.0 378363.8 17975.9 10836.5
pattern 7587.0 418910.4 21632.8 10430.2

pip 299.6 1403.1 318.9 305.4

Table 2: Results from the tests comparing three approaches

The statistics in Table 2 clearly show that the execution time of the
approach in SW MON is significantly worse than the other two ap-
proaches. Figure 7 shows the percentage increase in the clock cycle
runtime of LOCS as well as the approach in SHIELD when com-
pared to the Application’s Execution time without any security mea-
sures. Figure 7 shows that LOCS has significantly reduced overhead
than the approach in SHIELD. LOCS has negligible overhead for
the JPEG Encoder benchmark, around 25% overhead for the MP3
benchmark and no more than 20% overhead for the three images
tested in the JPEG Decoder benchmark.

5.2 Area Overheads
The details of the MPSoCs generated for all three multimedia

benchmarks are shown in Table 3. The first column lists the bench-
mark data files used for each of the multimedia benchmarks tested.
The second column refers to the total area of the MPSoCs without
the MONITOR and custom hardware. The third, fourth and fifth col-
umn gives the new area with the MONITOR and custom hardware
for security for each of the three approaches. The fifth column is
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Figure 8: Percentage Inc. in Code and Area for three approaches

for the power consumption of each core in the MPSoC without the
custom hardware.

Benchmark Orig. Area Area with MONITOR (mm2) Power
(mm2) SW MON SHIELD LOCS (mW )

JPEG Enc. 3.363 4.805 4.208 4.196 55.51
MP3 1.962 2.441 2.792 2.739 134.61

JPEG Dec. 1.427 1.786 1.931 1.929 126.45

Table 3: Area overhead and Power from the experimental setup

Figure 8 shows the comparison between the three approaches in
terms of percentage increase in code size and percentage increase in
area. The approach in SW MON is mainly software based and hence
it can be seen that there is a larger increase in code size but a smaller
increase in area compared to the other two approaches. However it
has a significant performance penalty as discussed in Section 5.1.

The comparison of the two mainly-hardware approaches in SHI-
ELD and LOCS clearly shows that LOCS has a smaller percentage
increase in the code size and area. In fact, if the approach in SHIELD
increases the code size by K instructions, LOCS increases the code
size by only K

2
instructions. The relationship exists because LOCS

adds only one special instruction per basic block whereas the ap-
proach in SHIELD adds two.

It should be noted that in both LOCS and the approach in SHIELD,
100
N

% of the area overhead is due to an additional processor, where
N is number of processors in the MPSoC excluding the MONITOR.
For example, since N = 5 for MP3, 20% of the total 42.3% area
overhead refers to the MONITOR; and the other 22.3% is due to the
custom hardware. Chip area and designing for flexibility is one of the
trade-offs that a designer has to consider during the MPSoC design
process. Trade-offs are discussed further in Section 6.

6. DISCUSSION
We employ a dedicated processor in an MPSoC architecture for

security purposes. Such a configuration allows for flexibility in the
design process, where security is often an after thought. The flexi-
bility arises due to the fact that the MONITOR can be adapted in-
dependently of the application processors. If the custom hardware
was designed as a functional unit for each processor then each pro-
cessor’s functional unit would need to be changed if there were any
changes in the design. This is often an expensive exercise in an ASIP
based design.

To address the timing issues in the case of an interrupt in the
application processor, we have to employ a separate time counter
rather than using the application processor’s CCOUNT register. The
counter register will be incremented on every clock cycle except

when the application processor is in the interrupt subroutine (ISR).
To address the limitation of not being able to perform timing checks
on the blocks that are involved in an inter-processor communication,
we propose to stall the appropriate counters when the TFIFOs are full
or empty. Our approach can be readily scaled to larger systems by
employing more than one MONITOR. A greater number of MONI-
TORS would result in a faster detection of code corruption or faults
but would also mean a higher area overhead. The designers must
consider the area and speed requirements of the system being de-
signed while deciding on multiple MONITORS.

In addition to detecting code injection attacks, our system can also
tackle reliability issues caused due to control flow errors. Prelim-
inary testing on using LOCS for detecting random bit flips in the
control flow instructions yielded a promising detection rate of ap-
proximately 80%. Our future work will include results for detection
of control flow errors induced due to reliability issues.

7. CONCLUSIONS
In this paper, we have presented a very low overhead design flow

for detecting code injection attacks in an MPSoCs architecture. We
have formulated a list of admissible application behavior for our
MPSoC system. We have devised an automatic hardware-software
methodology to design our solution using a commercial ASIP de-
sign tool from Tensilica Inc. We have tested our system on multi-
media benchmarks and reported the performance, area and code size
overheads. The results show that these overheads are much lower
when compared to previously proposed methods. The applicability
of LOCS for detecting control flow errors caused due to reliability
errors were identified. We conclude that our technique is a low over-
head solution for addressing concerns regarding code injection at-
tacks in MPSoCs.
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