
Distributed and Low-Power Synchronization Architecture
for Embedded Multiprocessors

Chenjie Yu
University of Maryland

College Park, USA
purety@umd.edu

Peter Petrov
University of Maryland

College Park, USA
ppetrov@umd.edu

ABSTRACT
In this paper we present a framework for a distributed and very
low-cost implementation of synchronization controllers and pro-
tocols for embedded multiprocessors. The proposed architecture
effectively implements the queued-lock semantics in a completely
distributed way. The proposed approach to synchronization im-
plementation not only completely eliminates the overwhelming bus
contention traffic when multiple cores compete for a synchroniza-
tion variable, but also achieves very high energy efficiency as the
local synchronization controller can efficiently determine, without
any bus transactions or local cache spinning, the exact timing of
when the lock is made available to the local processor. Application-
specific information regarding synchronization variables in the lo-
cal task is exploited in implementing the distributed synchroniza-
tion protocol. The local synchronization controllers enable the sys-
tem software or the thread library to implement various low-power
policies, such as disabling the cache accesses or even completely
powering down the local processor while waiting for a synchro-
nization variable.
Categories and Subject Descriptors: C.1.2 [Hardware]: Multiple
Data Stream Architectures (Multiprocessors); C.3 [Computer Sys-
tems Organization]: Special-Purpose and Application-Based Sys-
tems
General Terms: Algorithms, Design, Experimentation

1. INTRODUCTION
The ever increasing demands of many modern applications for

consolidated functionality, including multimedia, data, communi-
cation, security and many other capabilities coupled with increased
integration densities have resulted in the adoption and utilization of
embedded multiprocessor implementation platforms. Such appli-
cation domains include smart phones, portable media players, nav-
igation devices, and many others. While trying to meet the perfor-
mance requirements of such applications, embedded multiproces-
sor systems have encountered challenges that are specific to these
architectures and application domains, such as energy efficiency
considerations in battery-based devices and real-time performance
requirements for many time-critical tasks. These domain specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

requirements have resulted in new lines of research efforts aiming
at adopting and optimizing general-purpose hardware and software
organizations to the low-power and real-time requirements of the
modern embedded applications.

Multiprocessor architectures for the embedded domain have given
rise to some unique problems not present in uni-processor em-
bedded systems, such as inter-core communication, synchroniza-
tion, and data/code sharing. Furthermore, the typical availability
of application-specific information present at design time has en-
abled a new set of optimization strategies that aim at capturing and
exploiting this information at run-time, in order to achieve energy-
efficiency and time-deterministic performance for the particular ap-
plication program or set of tasks to be executed. One such problem
that arises in embedded multiprocessors is the typical need for syn-
chronization among the threads executing on the processor cores.
Such functionality is needed in many instances where execution
progress, data sharing, and communication between the parallel
threads need to be synchronized. It is usually the responsibility
of the software developer (or in recent developments of parallel
compilation environments, the compiler) to properly use the set of
available synchronization operations in order to ensure determinis-
tic event order and proper communication between the threads.

Several well known synchronization primitives are usually made
available to the software developer/compiler by system libraries or
directly by the operating system. Frequently used synchronization
primitives include locks, barriers, semaphores, and monitors. At
hardware level, however, various implementation approaches are
being used based on the underlying hardware architecture. Their
implementation is often based on certain atomic operations pro-
vided by the hardware. Conventional examples of such atomic op-
eration implementations include the pair of load-linked and store-
conditional instructions, or an atomic test-and-set instruction. Such
atomic primitives ensure that a software implementation of a syn-
chronization primitive would access a certain synchronization vari-
able and subsequently modify it accordingly, without the possibil-
ity of this variable being modified by another processor core.

While such implementation provides a general-purpose support
for a comprehensive set of synchronization primitives, its general-
ity comes with the price of significant power and inter-core com-
munication overheads. It has been known that such synchroniza-
tion can results in severe bus traffic contention when multiple pro-
cessors compete for the same synchronization variable [1]. In the
case when no local caching is available (or when no cache coher-
ence mechanism exists) the processors need to poll the synchro-
nization variable, thus polluting the interconnect to memory with a
large amount of traffic and also expending a significant amount of
power. When coherent caches are present, the polling is executed
locally by the spin-lock primitive, which, however, does not resolve

73

the power problem; significant bus contention ensues too when a
processor releases the synchronization variable, which leads to in-
validations in all remote caches. All these problems stem from the
need that all the processors compete to read and modify a shared
variable (the synchronization variable) in an atomic way. Recently
several research projects have proposed centralized solutions [2],
where a special hardware controller is introduced that keeps track
of the participating tasks and communicates with them. In such
a solution, however, all the communication in acquiring, releas-
ing, and granting the synchronization variable is routed through the
controller. This results in a performance overhead as the controller
needs to compete to access to the shared bus which impacts the
time of acquiring a lock and the overall system performance. An
alternative would be to create star-like dedicated communication
lines to each processor, albeit with significant price in silicon area
and routing overheads.

In this paper, we offer a completely distributed synchronization
architecture to address the aforementioned problems. Locally to
each processor, a light-weight hardware controller is introduced,
which captures the synchronization variables of interest to the local
processor. In this way, each processor participates in a completely
decentralized and distributed protocol of acquiring and releasing a
synchronization variable. Each such local controller monitors the
bus for “acquires” and “releases” of synchronization variables of
local interest and maintains a precise state of the global status of
each variable. The proposed organization requires no atomic oper-
ations for accessing and modifying main memory as it relies on the
inherent serialization nature of the memory bus. The end results is
that the semantic of queued locks is implemented in a completely
distributed manner with a near zero-latency lock acquisition and
release, while providing for precise and fine-grained power man-
agement to eliminate a large fraction of the energy wasted while
the processor waits on synchronization.

2. RELATED WORK
A large body of research work exists related to the synchroniza-

tion problems in multiprocessor systems. The performance impact
of synchronization due to bus contention and global communica-
tion has been recognized from various perspectives [1, 3, 4, 5].
The impact on power has been analyzed and addressed in [6, 7]

In [5], the authors propose a light-weight distributed synchro-
nization method in point-to-point communication applications. The
approach encodes the global data dependencies between two pro-
cessors directly in their memory accesses. In [4] and [8], the au-
thors propose the Lock Cache organization. The lock cache mech-
anism implements synchronization in a dedicated and centralized
hardware controller. With task preemption support from the RTOS,
the Lock Cache achieves good performance for database like ap-
plications. A light weight barrier-based parallelization support for
non-cache-coherent MPSoC platforms has been proposed in [3].
A cost-efficient barrier implementation for the specific targeted ar-
chitecture is outlined. In [6], the authors propose the thrifty bar-
rier mechanisms addressing the power problem in general-purpose
multiprocessor systems. By carefully predicting and monitoring
barrier stall times, processors are placed in low-power modes and
speculatively resumed when the barrier release is predicted.

The synchronization architecture proposed in this paper is com-
pletely distributed and achieves very fast lock acquisition, elimi-
nates bus contention traffic, and enables very fine-grained power
management at each processor node. It is suitable for multithread-
ing applications with unbalanced execution time, as well as appli-
cations executing a large number and short critical section regions,
which traditionally have incurred very high performance overhead
due to synchronization.

Processor P
requests L

i Processor P j
releases L

3 processors ahead
of local P t

Total number of processor
attempting to acquire L

....

Queue for lock L

i j

Local processor P t

t

(AHEAD)(TOTAL)

Figure 1: Distributed lock queue information

3. FUNCTIONAL OVERVIEW
Conventional synchronization implementations rely on atomic

operations to access and modify memory. Such a support enables
the processors to compete for the exclusive access to a synchro-
nization variable and setting it up as “acquired”. The processors
compete for such an access and whoever succeeds is “granted” the
synchronization variable, while the other processors continue their
attempts. Such atomic mechanisms in accessing memory locations
are used to build various high-level primitives, such as (spin) locks,
barriers, monitors, etc. While such synchronization implementa-
tions are general-purpose and impose small hardware and ISA con-
straints (some assume coherent caches), they can be extremely in-
efficient in terms of both performance and power consumption.

Since the processors have no knowledge as of the global status
of the synchronization variables, they all compete for the access to
the shared synchronization variable by overwhelming the memory
bus with transactions. Even in the presence of coherent caches, at
the moment a synchronization variable is released, all the proces-
sors waiting for it enter another competing cycle, which results in
a burst of bus traffic. Furthermore, when a processor attempts to
acquire a synchronization variable when it is not available, it has
to keep polling on it and generating bus traffic or in the case of
coherent caches, to continuously read it until its remote invalida-
tion. This can be extremely energy inefficient. A centralized so-
lution can alleviate the polling/spinning energy and the bus traffic
caused by competing accesses. However, as mentioned in the pre-
vious section, it can have a negative impact on performance since
lock acquisition and release will always have to be controlled by
the remote controller. Such a controller will have to compete for
the memory bus or use dedicated communication lines to the pro-
cessors, which could result in a significant hardware area cost and
chip routing complications.

The proposed distributed synchronization architecture addresses
the performance, latency, and power problems of the traditional
synchronization implementations. Each processor is assigned a lo-
cal light-weight controller that observes the sequences of remote
acquisition attempts and synchronization releases and participates
in a very low-cost and efficient distributed protocol for lock acqui-
sition and release. By monitoring the common memory bus, each
local controller is able to construct a state (per synchronization vari-
able) representing how many remote processors are waiting for the
synchronization variable and have requested it before the local pro-
cessor, as well as the total number of processors currently waiting
for the variable. A remote release observed on the bus results in
decrementing the number of processors waiting for the variable be-
fore the local processor. When this number reaches zero, the local
processor immediately acquires the lock. After the local processor
exits its synchronization section, it informs the local controller to
release the lock, which results in a bus transaction informing the

74

(1) if (RemoteAcquire)

(3) if (RemoteRelease)
(4) TOTAL −−;

(2) TOTAL++;

(1) if (LocalAcquire) {
(2) send Acquire(Lock) on the bus;
(3) if(TOTAL == 0)
(4) Grant local access;
(5) else
(6) AHEAD = TOTAL; }
(7) if (RemoteRelease) {
(8) if(AHEAD != 0)
(9) AHEAD −−;
(10) if (AHEAD == 0) Grant local access; }

TOTAL register:

AHEAD register:

Figure 2: Local queue maintenance

remote processors that the lock has been released. In this way, the
next processor in the global queue waiting for that lock will see its
local state indicating that there are now zero processors in-front of
it and can, thus, immediately acquire the lock.

Fundamentally, a distributed implementation of a queue lock mech-
anism is implemented as each local controller maintains the mini-
mal amount of information needed to represent the relevant queue
and the position of the local processor within it. Figure 1 illustrates
the data structure that is captures by each local controller, and the
minimal information needed to capture the structure with respect
to the local processor. Each processor needs to maintain the infor-
mation regarding its position within the queue; it also needs to be
able to update this information as remote processors are requesting
and releasing the lock. The relevant information about this can be
captured by two variables (counters), shown in Figure 1. The regis-
ter TOTAL consists with the total number of processors, which are
within the queue (have requested the lock, but are still waiting for
their turn). The AHEAD register captures the number of processors
that are ahead in the lock queue with regards to the local processor.
Clearly, when AHEAD becomes zero (down from a non-zero) it is
the local processor’s turn to acquire the lock.

Maintaining the TOTAL and the AHEAD registers can be achieved
by only monitoring the bus for remote acquire attempts and releases
to that particular lock. Clearly, acquire and releases generated by
the local processor would also have to be taken into account in
this process; they also need to be placed on the bus so that the re-
mote processors can accordingly adjust their local state regarding
this lock. Figure 2 illustares the functionality required to maintain
the TOTAL and the AHEAD registers for each lock, as well as the
detection mechanisms for when it is the local processor’s turn in ac-
quiring the lock. It is evident that this functionality can be achieved
through a rather simple finite-state machine (FSM) controller and
the pair of registers per synchronization variable.

The proposed protocol has the distinct advantage of near zero-
latency lock acquisition. When the lock is globally available, the
processor does not have to wait for a synchronization variable to be
atomically brought back from memory or to be acquired from some
remote centralized controller; the only latency incurred would be
the latency for the local controller to acquire the common bus in
order to send a lock acquire announcement (Step 2 in the functional
description for the AHEAD register). In the case of a lock just
being released by the last processor that has requested it before
the local processor, the synchronization variable is acquired at the
moment the local controller observes the release operation on the
common bus. Such lock acquisition is in effect instantaneous as it
can be triggered in the same clock cycle during which the remote

release was observed. Furthermore, since there is no contention
through atomic operations for the synchronization variable, it takes
only two bus transactions for a task/processor to acquire and release
the synchronization variable regardless of the timings of parallel
requests. The acquire request may occur concurrently with remote
processors. However, the common bus will serialize the requests
and all the local controllers will update their TOTAL and AHEAD
counters accordingly.

Since the local synchronization controllers have full information
regarding the global status of the synchronization variable, they
can provide for fine-grained power management policies on the lo-
cal processor. If, for example, the local task needs to wait for the
lock to be acquired (as in the case of spin-locks), the controller can
gate either the entire pipeline or the most power consuming compo-
nents, such as the access to caches. In this way, the processor can
be switched into a low-power mode very efficiently, and resumed
at the exact moment when the synchronization variable is to be ac-
quired. In the cases of non-trivial wake-up logic, the procedure can
be initiated in advance as the local controller has a complete infor-
mation as of the number of tasks/processors, which are in front of
the local task in the lock queue. The local synchronization con-
trollers can also work cooperatively with the OS. The OS allocates
the synchronization variable information in the controller’s internal
structures. Furthermore, the OS can utilize different power-saving
policies and resume policies based on (and controlled by) the par-
ticular application requirements in order to make the best trade-off
between performance and power.

4. SYSTEM ARCHITECTURE
The proposed distributed synchronization architecture requires

a hardware support in the form of the local synchronization con-
trollers. We refer to this hardware block as a Distributed Synchro-
nization Controller (DSC); an identical instance of it (of course,
with different run-time state) is assigned locally to each processor
node in the system and works independently from the other con-
trollers by reacting on the synchronization requests/releases placed
on the bus by the remote processors.

There exist several synchronization primitives that have been
used in the area of parallel programing and systems. In this pa-
per, we present how our distributed organization implements locks
and barriers. Most of the other synchronization primitives can be
derived from these two; thus, they can be either implemented in the
DSC in a similar manner, or emulated by software in the synchro-
nization library.

4.1 Synchronization Variable Identification
Since each lock/barrier is assigned an entry in the DSC, a mech-

anism is needed to identify the locks/barriers and their DSC en-
try. A synchronization variable is still assigned a memory loca-
tion within a known page/segment of the memory address space.
The page/segment identifier, which corresponds to some group of
the address most significant bits is used by the DSCs to determine
whether a read/write request to this location is an acquire/release
operation to that particular lock. Since our approach does not re-
quire that any particular value is written or read from that memory
location, its address is used for the sole purpose of broadcasting
the lock acquire and releases on the bus by means of normal read
and write memory transactions to that address. A group of the least
significant bits of this location is used to uniquely identify the cor-
responding lock/barrier. It is also used to identify the DSC entry for
that synchronization variable. We refer to this value as a LockID or
a BarrierID. The number of bits that is actually used to represent
a LockID is determined by the maximum number of synchroniza-

75

Acquire
to Bus

Control
LocalRel

Release
to Bus

RmtAcq
RmtRel
LocalAcq

TOTAL

AHEAD

New TOTAL
New AHEAD

....

....

B
ar

rie
rs

....

....

....

....

Lock ID1
Lock ID2

Lock ID8
Barr. ID1
Barr. ID

Barr. ID

2

8

TOTAL1

TOTAL2

TOTAL8

TOTAL1

TOTAL2

TOTAL8

AHEAD1

AHEAD2

AHEAD8

AHEAD1

AHEAD2

AHEAD8

Lo
ck

s

Figure 3: Synchronization Controller

tion variables that will be used in the system. In our experimental
benchmarks, including Splash-2, Mediabench, and a number of sig-
nal processing applications, this number never exceeds 10, and thus
we have adopted 4-bit IDs. The lock or barrier ID, corresponding
to least significant bits from the address is used to lookup the DSC
for that entry. One approach would be to use a CAM-based par-
allel lookup. Since the DSC size is very small (16 entries in our
study) and the LockID used as a key is 4-bits wide, such a parallel
lookup will be very fast and power efficient. Another implementa-
tion approach would be to use an additional mapping register/table,
which will be indexed through the LockID and will provide the ac-
tual DSC index, if that lock/barrier is relevant to the local processor.
If for some application the DSCs entries are exhausted then tradi-
tional lock implementation can be used instead for the remaining
locks/barriers that cannot fit in the DSC.

Clearly, this approach to lock/barrier identification does not im-
pose any extra requirements on the bus organization, as only tradi-
tionally supported read/write operations are used. A lock acquire
operation, for instance, is modeled as a normal read from the ad-
dress of that lock, while a lock release is modeled as a read oper-
ation to that location. The particular values written or read are of
no importance. If the system bus supports additional control oper-
ations, special Acquire and Release transactions can be used, with
a parameter corresponding to the lock-ID. In this way, the local
DSCs would monitor the bus for such transactions only.

4.2 Distributed Synchronization Controller
The DSC resides at each processor and manages synchronization

variables used by the tasks on this processor. It receives synchro-
nization requests from the local processor such as ”acquire a lock”,
”release a lock”, ”enter a barrier”. The DSC also monitors the sys-
tem bus for relevant relevant synchronization activities from other
processors, so as to determin whether to allow the local processor
to proceed or wait on synchronization events.

Figure 3 illustrates the DSC internal organization. It consists of
a number of entries that correspond to synchronization variables,
such as locks and barriers. For each entry, the controller regis-
ters the synchronization variable’s ID. This ID can be set when the
thread/task is loaded onto this processor by the operating system or
the program loader. Here we have assumed that the Lock/Barrier ID
is captures in the DSC and a parallel lookup is performed. As dis-
cussed above, an alternative implementation is also possible where
the identifier is mapped to a DSC index by a small set of registers.

Two counter/registers are associated with each synchronization
variable. The TOTAL and AHEAD counters for each lock/barrier
used by the local task are allocated and entry in the DSC. These two
registers record synchronization activities both from remote pro-
cessors and from the local processor that access the corresponding
synchronization variable.

On a bus transaction representing a remote lock acquire or re-
lease, or on a local acquire or release, a simple control logic is used
to update the registers. This controller implements the functional-
ity described in Figure 2 for lock implementation. This controller
contains two comparators and an increment/decrement module for
the TOTAL register, and a decrement unit for the AHEAD register.

Lock implementation. For lock implementation, the TOTAL
register counts the total number of remote processors that are wait-
ing to acquire access to the particular synchronization variable.
TOTAL is incremented when a remote processor sends an “ac-
quire(lock)” command on the bus - for a typical bus this could be
a read command to the location for that lock. Similarly, it decre-
ments when a remote processor broadcasts a release for the lock in
the form of a write to the lock address. In this way, when the local
processor issues “acquire(lock)” command, it knows immediately
how many processors are waiting in the queue, without the need to
request information from other processors or from the shared mem-
ory. The TOTAL register is initialized to zero when the lock is cre-
ated by the local thread and allocated into the DSC. When the local
processor issues an acquire to that lock, TOTAL is copied into the
AHEAD register. The AHEAD register indicates how many other
processors are still waiting before the local processor can acquire
a lock. It decreases monotonically on observing remote proces-
sors releasing the lock. When the AHEAD counter reaches zero,
the DSC determines that all remote processors that were before
the local in queue have released it and it is safe know for the lo-
cal processor to immediately be granted the lock. As is evident
from this description, the TOTAL and AHEAD registers for a par-
ticular lock throughout the system, represent the queue for that lo-
cal in a consistent way. Each processor keeps track of its place in
the queue locally without global cooperation with the other proces-
sors. This leaves out the necessity for a centralized control center
that handles the entire system, thus making the design entirely dis-
tributed and easy to implement in terms of global chip routing and
performance/power overheads. Additionally, atomic memory oper-
ations, which constitute the fundamental reason for the bus traffic
contention problem, are no longer needed to construct locks and
other primitives based on lock.

Barrier implementation. The distributed implementation scheme
for barriers follows the same concept. The TOTAL register captures
the constant that corresponds to the number of threads that must
reach the barrier before it is releases. In this scheme, the value in
TOTAL does not change during program execution. In the very be-
ginning when the barrier entry is loaded into the DSC, the AHEAD
register is initialized with the constant held in TOTAL (number of
threads required to reach the barrier). Subsequently, when the DSC
observes on the bus that another processor has reached the barrier, it
decrements the AHEAD register. Similarly, when the local proces-
sor reaches the barrier, the AHEAD counter is decremented and a
bus transaction is initiated by the DSC to notify the remote proces-
sors that the barrier has been reached locally. This bus transaction
can be modelled, for instance, as a read transaction from the mem-
ory location of the barrier (of course, no value is expected from
that memory location). Similarly as with locks, if the bus can sup-
ports extra commands, a new transaction type can be defined for
reaching a barrier, which will carry the Barrier-ID needed for the
remote DSCs to update their state. When AHEAD reaches zero,
it means that all the threads have reached the barrier (and for all
of them AHEAD will decrement to zero) and all the DSCs signal
their local processor that the barrier can be released. At that mo-
ment AHEAD is loaded with the constant from TOTAL and in this
way the distributed procedure is re-initialized for that barrier.

76

Processor
Suspend/
Resume

Acquire/
Release Lock

Acquire/
Release Lock

Processor

Cache

DSC

Cache
DSC

Lock Acquire

Lock ReleaseSystem Bus

Figure 4: Overall system organization

4.3 Power Management
By having the DSC handle most synchronization operations, it

becomes possible to place the local processor in various power
down modes, including a complete shut-down, while the local thread
is waiting on a synchronization step. The DSC continues its oper-
ation while the processor is suspended and resumes the processor
execution when the synchronization conditions are met. As the lo-
cal DSC controllers are exceedingly small and simple, the achieved
power savings would be significant, especially in parallel multi-
threaded programs with unbalanced workloads. We quantify this in
our experimental study.

Various power-down scheme can be explored. One approach
would be to disable the accesses to the data cache for a spin-lock
software implementation, where the proposed distributed synchro-
nization architecture is implemented in an ISA-transparent way. In
this case, the software implementation of the lock consists of a
small loop, which iteratively attempts to read and set the lock in an
atomic way. The DSC will intercept the execution of the atomic op-
eration by matching the address with the known segment/page for
synchronization variables and will then proceed with its function.
When the lock is not yet available it will indicate that the atomic-
ity of the operation has failed - the software implementation will
proceed with next attempt of acquiring the lock. The spin-access
to the local data cache and/or remote memory through the bus will
be blocked and thus no power will be spent in such energy inef-
ficient operations. Alternatively, the processor ISA is augmented
to support dedicated instructions for lock acquisition and release.
These instructions can be implemented to either block or non-block
the pipeline execution. The blocking version would simply stall
the pipeline until it is signalled by the DSC to continue execution
when the lock has become available to the local processor. Clearly,
while the pipeline is stalled the processor will be in a low-power
mode as no execution activities be present. The non-blocking ver-
sion of these instruction would be used by the operating system
or thread library to implement higher-level power saving policies.
These policies will be briefly described in Section5.

5. COMPILER AND OS SUPPORT
The role of the compiler/software developer is limitted to the

instantiation of the locks/barriers and the allocation of unique ad-
dresses for each such synchronization variable. As explained in
the previous section, this address will be used to form the unique
LockID or BarrierID. In the case of dedicated instructions for the
synchronization operation and system bus support for acquire/release
commands, the role of the compiler is to generate the globally
unique identifier for each lock and barrier. This can be easily achieved
with an operating system support. As this is performed during pro-
gram initialization, no performance overhead will be incurred in

practice. The operating system (or thread library) then makes sure
to allocate and load the state for each such lock/barrier in the local
DSC. This is performed when the worker threads are loaded on the
processor nodes. The DSC controllers on different processors can
have different sets of synchronization variables allocated to them
depending on what the working threads are operating on and the
way synchronization is performed amongst them.

An efficient OS support can be implemented when non-blocking
versions of the lock acquire and release instructions are supported,
then the OS can have a full control in implementing the power sav-
ing policies. When the lock or barriers are released, the DSC will
simply generate an interrupt and inform the local OS. There are
various trade-offs that can be considered. For example, some locks
are used in very short critical sections. In this case, the programmer
can expect very short stall times and thus inform the OS to just stall
the processor pipeline and accesses to the cache structures. Some
locks, however, may be used for longer critical sections in unbal-
anced thread execution. In such cases a thread may stall for a sig-
nificant amount of time waiting for its turn; consequently, more ag-
gressive power down technique must be considered. In such power-
down policies where the processor is brought to very low-power
mode through voltage/frequency scaling, the latency of resuming
the processor may be non-trivial. Since these parameters are spe-
cific to the processor microarchitecture and manufacture process, it
may be best for the programmer and the OS to decide what power-
saving technique to employ to achieve maximum benefits.

6. EXPERIMENTAL RESULTS
We have conducted a detailed experimental study on a set of mul-

tithreaded parallel applications. We have chosen the kernel pro-
grams from SPLASH-2 [9], and parallel MPEG encoder/decoder
from ALPBench [10]. We have also constructed a set of bench-
marks, which are configured as four parallel threads, each per-
forming one stage of computation in a stream processing pipeline.
The threads communicate through butterfly buffers and synchro-
nize using standard locks and barriers. The individual tasks con-
stitute of: FFT, ADPCM, matrix multiplication, data encryption
tasks, lzo-compression, g721, image processing - the blur and the
edge-detection, and video processing. The tasks cover benchmarks
from the MediaBench [11] and MiBench [12] suits, as well as from
other open-source image and video processing tools. These appli-
cations, however, do not exhibit heavy lock/barrier utilization, and
will only demonstrate the power benefits of the proposed technique.
To evaluate the impact on the performance and system bus traffic,
we have constructed two benchmarks, P1 and P2, that stress the
synchronization operations of acquiring and releasing locks. The
first benchmark, P1, comprises of simple short critical sections ex-
ecuted iteratively, in which contention for locks is frequent; four
threads iteratively enter a short critical section to update a shared
variable. The second benchmark, P2, consists of interleaved long
and short critical sections, where lock contention is less severe.

We have used the M5 [13] simulator to perform our experiments,
extended with a library for thread synchronization primitives. The
simulated hardware configuration is of four processors connected
to a shared memory through a common bus. Each processor fea-
tures a 32K, 4-way set associative cache, with snoop-based co-
herence support. The cache power expenditure of the four cache
configurations have been obtained through Cacti v4.2 tool [14] for
0.18µm technology. The energy associated with the additional
hardware structures for the proposed methodology are evaluated
as follows: We have modeled the TOTAL and AHEAD registers
as 2-bit up/down counters, since there are only four processors in
the system. The baseline is based on load-linked/store-conditional

77

Bus Transactions Performance (cycles)
Baseline DSC Reduct. baseline DSC Reduct.

P1 88,506 32,508 63.27% 157,436 133,434 15.25%
P2 3,904 1,833 53.05% 231,918 205,462 11.41%

Table 1: Performance and bus traffic characteristics

paused cycles total cycles p/t
FFT 78,045 228,722,336 0.03%
LU con 393,799,327 1,117,336,393 35.24%
LU noncon 151,248,064 788,640,101 19.18%
RADIX 222,772 23,251,486 0.96%
CHOLESKY 78,175 924,734,914 0.01%
Mpegenc 62,020,947 192,784,501 32.17%
Mpegdec 1,312,658 15,388,463 8.53%
APP1 10,594,745 18,069,904 58.63%
APP2 72,411,385 112,554,584 64.33%
APP3 23,963,057 36,836,670 65.05%
APP4 5,899,673 12,160,014 48.52%

Table 2: Performance balance characteristics

paired instructions, which require polling of data cache when a
thread is waiting for a lock or barrier.

As seen in Table 1, by applying our efficient synchronization ar-
chitecture, the cache activities and bus contention due to synchro-
nization are both greatly reduced. The application performance in
terms of CPU cycles is also improved, because of reduced cache
misses and bus traffic.

Table 2 reports the number of cycles the processors in the sys-
tem wait for synchronization and the total number of cycles of ex-
ecution. It is noteworthy that the results vary significantly across
the different benchmarks. Some kernels, such as FFT, RADIX,
CHOLESKY from splash2, are very well balanced in terms of par-
allel thread running times. For these benchmarks, stall times caused
by blocking on barriers is negligible. In other applications, signifi-
cant stalling times due to synchronization can be observed and the
power reductions for these benchmarks will be higher.

Table 3 reports the energy reductions achieved by employing
the proposed synchronization mechanisms. For this study we have
modeled a DSC that disabled the accesses to the data cache, while
the processor is spinning on the lock. Consequently, the achieved
energy reductions are in correlation with the amount of time spent
waiting on acquiring the lock or clearing the barrier. The average
energy reductions among these benchmarks is 29%, which includes
the overhead introduced by the synchronization controllers.

7. CONCLUSIONS
We have presented a novel synchronization implementation scheme

that achieves good performance and power efficiency. The pro-
posed method features dedicated controllers that are distributed across
the system to handle all synchronization related operations. Oper-
ating system and compiler support are integrated to provide flexible
and optimal control of the controllers. Experimental results show
promising power and performance improvements for a broad range
of applications.

8. REFERENCES

[1] B. Akgul and V. Mooney, “PARLAK: Parameterized Lock
Cache Generator”, in Design Automation and Test in Europe
(DATE), pp. 1138 – 1139, 2003.

energy(mJ) improved baseline reductions
FFT 28,043 28,057 0.05%
LU con 139,786 214,661 34.88%
LU noncon 132,593 161,350 17.82%
RADIX 4,411 4,454 0.95%
CHOLESKY 100,796 100,811 0.01%
Mpegenc 29,531 41,324 28.54%
Mpegdec 3,056 3,305 7.55%
APP1 1,406 3,420 58.89%
APP2 7,625 21,394 64.36%
APP3 2,458 7,014 64.96%
APP4 1,174 2,296 48.86%

Table 3: Achieved energy reductions

[2] M. Monchiero, G. Palermo, C. Silvano and O. Villa, “Effi-
cient Synchronization for Embedded On-Chip Multiproces-
sors”, IEEE Transactions on Very Large Scale Integration
Systems, vol. 14, n. 10, pp. 1049–1062, October 2006.

[3] A. Marongiu, L. Benini and M. Kandemir, “Lightweight
barrier-based parallelization support for non-cache-coherent
MPSoC platforms”, in CASES, pp. 145–149, 2007.

[4] B. Akgul, J. Lee and V. Mooney, “A system-on-a-chip lock
cache with task preemption support”, in Conference on Com-
pilers, Architecture, and Aynthesis for Embedded Systems
(CASES), pp. 149–157, 2001.

[5] C. Yang and A. Orailoglu, “Light-weight synchronization
for inter-processor communication acceleration on embedded
MPSoCs”, in CASES, pp. 150–154, 2007.

[6] J. Li, J. Martinez and M. Huang, “The Thrifty Barrier:
Energy-Aware Synchronization in Shared-Memory Multipro-
cessors”, in International Symposium on High Performance
Computer Architecture (HPCA), 2004.

[7] O. Golubeva, M. Loghi and M. Poncino, “On the energy
efficiency of synchronization primitives for shared-memory
single-chip multiprocessors”, in Great Lakes Symposium on
VLSI (GLSVLSI), pp. 489–492, 2007.

[8] B. Saglam and V. Mooney, “System-on-a-chip processor syn-
chronization support in hardware”, in Design, Automation
and Test in Europe (DATE), pp. 633–641, 2001.

[9] J. Singh, W-D. Weber and A. Gupta, “SPLASH: Stanford par-
allel applications for shared-memory”, SIGARCH Computer
Architectures News, vol. 20, n. 1, pp. 5–44, 1992.

[10] M-L. Li, R. Sasanka, S. Adve, Y-K. Chen and E. Debes, “The
ALPBench benchmark suite for complex multimedia applica-
tions”, in International Symposium on Workload Characteri-
zation, pp. 34–45, October 2005.

[11] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Medi-
aBench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems”, in 30th MICRO, pp. 330–
335, December 1997.

[12] M.R Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge and R.B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite”, in WWC, pp. 3–
14, Dec 2001.

[13] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi and
S. Reinhardt, “The M5 Simulator: Modeling Networked Sys-
tems”, IEEE Micro, vol. 26, n. 4, pp. 52–60, 2006.

[14] D. Tarjan, S. Thoziyoor and N. Jouppi, “CACTI 4.0: An In-
tegrated Cache Timing, Power and Area Model”, Technical
report, HP Laboratories Palo Alto, June 2006.

78

