
Specification and OS-Based Implementation of
Self-adaptive, Hardware / Software Embedded Systems

Yvan Eustache
Université Européenne de Bretagne
UBS LabSTICC Lorient, FRANCE
yvan.eustache@univ-ubs.fr

Jean-Philippe Diguet
Université Européenne de Bretagne
UBS LabSTICC Lorient, FRANCE

jean-philippe.diguet@univ-ubs.fr

ABSTRACT

This paper presents our solution for specifying and imple-
menting self-adaptivness within an OS-based and reconfig-
urable embedded system according to objectives such as qual-
ity of service (QoS), performance or power consumption. More
precisely, we detail our approach to separate, at runtime,
application-specific decisions and hardware/software imple-
mentation decisions at system level. The first ones are re-
lated to the control of the efficiency of applications, they
are specified in Local Configuration Managers (LCM) based
on the knowledge of application engineers. The second ones
are generic and address the choice between various hardware
and software implementations according to observations of
the gap between online measurements and objectives set by
the user, these decisions are implemented in the Global Con-
figuration Manager (GCM) as an adaptive close-loop model.
We have designed a video tracking application on an FPGA
to demonstrate the effectiveness of our solution, results are
given for a system built around a NIOS soft-core with µCOS
II RTOS and new services for managing hardware and soft-
ware tasks transparently.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms

Management, Design

Keywords

Self-adaptive embedded systems, HW/SW codesign

1. INTRODUCTION
The introduction of hard and soft processor cores into re-

configurable circuits has changed the job and horizon of de-
signers by providing them with complete Reconfigurable Sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

tem On Chip (RSoC) providing hardware (HW) reconfigu-
ration and the availability of (real-time) operating systems
(RTOS). Dynamic HW adaptation to application require-
ments is a real issue that enables architecture specialization
to optimize performances/cost/power trade-offs and a solu-
tion to perform online optimization that cannot be decided
offline.
An (RT)OS for RSoC is an absolute necessity for handling
complexity and providing the synchronization and communi-
cation abstraction of complex systems implementing hetero-
geneous applications where behavior is far from being deter-
ministic.
A lot of work has been done in the domain of reconfigurable
architectures, however there are still two issues that have
been more or less left on the sidelines: the transparent man-
agement of both HW and/or software (SW) tasks and the
configuration decision.
Here, we have put the HW target on the side due to the fact
that dynamic reconfiguration of FPGA with current Xilinx
tools is a specific problem that we have already addressed in
other projects.
In this paper, our solution for configuration decision is pre-
sented in five points. We first place our approach among the
existing work. Then in section 3, we detail an original strat-
egy for online configuration management in the context of an
RTOS-based embedded system. In section 4, we describe and
formalize decision mechanisms, while in section 5, we show
our implementation on a smart camera. Finally, in section 6,
we present results of our case study, before concluding.

2. RELATED WORK
When it comes to the issue of (re)configuration decisions

of embedded systems, two domains are related to our work.
Firstly, a lot of work has been produced in the domain of
adaptive architectures (clock and voltage scaling, pipeline
control, etc.), classified in the category of local configurations
based on specific aspects. Our aim is to add global config-
uration management including both algorithmic and archi-
tectural aspects. Secondly, from the SW point of view, QoS
management has been explored in-depth for web service ap-
plications. In [2], authors present a complete model for feed-
back control real-time scheduling. In [1], a relevant two-step
approach is proposed. However, this kind of technique is not
fit for embedded low cost systems.
The idea of improving an RTOS has already appeared to be
able to manage both HW and SW tasks. First proofs of con-
cepts have been exhibited in [6] and [5]. In [5], the RTOS
is dedicated to the management of HW tasks. In [6], the

67

OS4RS layer abstracts task implementations in HW or SW,
and is mainly based on message passing API to associate log-
ical and physical addresses on the reconfigurable hardware.
Bergmann et al. [7] present a solution based on a µcLinux
platform implemented on the Xilinx Micro-Blaze processor
where hardware modules are considered as usual processes
with their own address space. This work mainly focuses on
HW/SW inter-process communications (IPC). Another ap-
proach, also based on a standard POSIX interface, has been
chosen in [3]. The applied method is the migration of the
main time consuming services of OS into hardware. SW and
HW threads are managed through a new concept which is a
common API called Hthread combined with a generic hard-
ware interface. Finally, RECONOS, described in [4], is a so-
lution based on the same assumptions that we set when start-
ing our project. They selected eCos which is a low footprint
real-time OS compliant with embedded system requirements;
we have selected µCos and rejected Linux for the same rea-
sons and for its availability on Xilinx and Altera platforms.
They also propose a common hardware interface for hardware
modules, which are present in the OS task table through SW
delegates that seems to be equivalent to what we call a Legal

Representative and to the concept of Ghost Processes in [7].
Our main contribution is precisely related to the configura-
tion decision process that automatically manages system con-
figuration according to user requirements. Contrary to [4], we
distribute inter-process communications in order to speed up
and benefit from concurrency for HW/HW task communica-
tions.

3. CONFIGURATION MANAGEMENT
The first question raised by the reconfiguration process is

the locality. A reconfiguration can be decided at the appli-
cation level or system level. Based on application specific
data, a local decision provides a short reaction delay and
metrics to compute the QoS. However, some decisions must
be considered globally when a trade-off must be found over
the complete system between power consumption and com-
putation efficiency. An application is a set of inter-dependent
tasks, so the choice also impacts the application specification
by means of task and intra-task control definitions. Another
pertinent point is the complexity of the decision implemen-
tation. In the context of embedded systems, only low cost
solutions must be considered. The third point is the recon-
figuration type, actually we consider a configuration space
with 3 dimensions:
- hardware reconfiguration;
- algorithmic reconfiguration regarding different combina-
tions of tasks with various algorithmic schemes for executing
the application;
- communication scheme.
Each configuration is a point of the configuration space, which
is identified as a configuration identifier (CID) with charac-
teristics such as QoS, performances and power that are up-
dated according to online measurements. Three dimensions
of the configuration space are a good compromise between
accurancy and complexity.

3.1 Two-step configuration strategy
To cope with these issues, we implement a two-step con-

figuration management. The Local Configuration Manager
(LCM) is the first level of management. There is one LCM
per application; it is, therefore, application-specific and de-

signed as a kernel task by the application designer. The sec-
ond level is the Global Configuration Manager (GCM), there
is one unique and generic GCM for the whole system. It is
also implemented as a kernel task independently from em-
bedded applications.

The LCM is in charge of the algorithm selection for all the
tasks of the application it controls. This selection is based
on data retrieved through a standard interface. Actually, the
LCM is pending on mailboxes fulfilled by application tasks
that can provide relevant metrics for the LCM to select right
configurations (see Fig.1-a). The choice of these metrics falls
to the competences of the application designers.Then, the
LCM restricts the global configuration space regarding algo-
rithmic decisions and transfers this choice as a mask of CIDs
indicating which configurations are valid. Secondly, the LCM
transforms application specific metrics into a normalized met-
ric providing the GCM with the QoS of the application it
controls. This is a kind of ”application sensor” for the global
manager. Finally, the LCM controls the application config-
uration while applying the GCM decisions as described in
section 3.3.

The GCM is pending on mailboxes fed by LCMs, it is
in charge of global system parameters (e.g. video rate) and
HW/SW implementation decisions. It receives data from
sensors (gas gauge, CPU load, application QoS).The GCM
chooses the new system configuration according to user re-
quirements (system references) and configuration solutions
issued from the LCM design space restrictions. The decision
process is detailed in section 4. Finally, the GCM transfers
its configuration decisions to the LCMs, namely the CID it
has selected (see Fig.1-b).

3.2 Adaptivity-oriented design framework
We believe that our approach is a good way to impose

an adaptivity-oriented design discipline on the designer, the
framework is composed of clear steps with associated API
and Interfaces. The bottom flow can briefly be structured
with the six following steps.
1. Specification of the application with algorithmic configu-
ration in mind. The objective is to define, for the application
tasks, the relevant metrics to be transmitted to the Manager
for algorithmic decisions.
2. Specification of sensors (Power, Temperature, ...) provid-
ing information about environment and system status.
3. Design space exploration according to addressed magni-
tudes (e.g. Power, Exec. Time, QoS).
4. Encapsulation of task for configuration management: at
the software level by using LCM API to send metrics and
check configuration orders, and UCCI 1 API for inter-task
and task-OS communication, at the hardware level by using
UCCI VHDL shells and interrupt handlers.
5. LCM implementation: specification of LCM input mail-
boxes, implementation of decision rules as a FSM, namely
the internal program of the LCM.
6. Definition of application QoS to be controlled by the GCM,
use of LCM API to communicate this metric and CID mask
from the LCM to the GCM.
7. GCM implementation and tuning of GCM policy: PI con-
trol and observer parameters.

1Uniform interface for communication, configuration control

68

Cluster 1

LCM

T1 T6

T2

T7

T5

T8

Multicast CID

Source Tasks

Sink task

T3

T4

T9

Cluster 2

GCM

Source Task

Sink task

a) (Top-Down) Configuration propagation

•! Standard Task / GCM interfaces

•! Algorithmic decision based on comparison

of task metric with threshold

LCM

(Tracking)
•! Nwp1

T1

T2 T3

•! Nwp2
•! NRI

•! Nwp3

T4

•! Nobj

T7

•! Etrack

•! CID Mask

•! QoS

•! Standard LCM / GCM interfaces

•! Generic Decision method based on close-

loop model, fast configuration sorting, model

and Borda vote

GCM

b) (Bottom-up) Metric propagation

Figure 1: LCM/GCM/Task interfaces

3.3 Configuration control mechanisms
We solve synchronization by means of diffusion mecha-

nisms. Our method reuses existing communication channels,
which can be direct for HW to HW communications or based
on RTOS services for HW/SW and SW/SW communications.
UCCI has been defined for both HW and SW tasks and im-
plemented as generic HW shells and SW API respectively.
This aspect, which was previously published in [8], will not
be detailed here.
We have, therefore, developed the following strategy. Firstly,
the configuration manager, namely the LCM, sends the CID
to all source tasks of all clusters through a multi-cast diffu-
sion. Secondly, the CID is gradually propagated from the
source to the sink tasks over data channels. With such diffu-
sion principles, we guarantee that all tasks will be configured
starting with source tasks. Note that, the propagation prin-
ciple is included in UCCI services since HW tasks receive
and send configuration IDs via OS communication services
or directly according to the implementation of other tasks.
Moreover, each HW task has a SW legal representative (LR),
that for instance must be informed when the CID is directly
received from another HW task.

4. CONFIGURATION DECISION
The GCM takes a configuration decision based on a feed-

back controller that adapts the system configuration to user
requirement according to environment (data, system). This
idea is to implement a smooth control, as is currently done
for car engine power which can be dynamically adapted to a

R S

O

+

y(t)

y(t+1)^

x(t)e(t)
u(t)

-

+

Sensors
Life-Span (Battery), Exec.Time (OS), QoS (LCM)

GCM

um(t)

LCMs
CIDs

selection

Config.

decision

Reference :

-QoS

-Exec. Time

-Lifetime

Figure 2: Close-loop Self Reconfiguration

road profile for a given speed reference. The main differences
with this domain are firstly the control cost which can not be
neglected and secondly the control frequency which is much
higher in embedded systems.

4.1 Close-loop configuration Control
Control theory methodology first requires settling an ana-

lytical model close to the real system to be controlled. In our
case, the system is composed of a reconfigurable SoC run-
ning control, estimation and configuration tasks and a set of
application tasks, that can be implemented with various ver-
sions on different HW/SW resources. Our model, depicted
in Fig.2 is based on three elements. R is the control function
and S the configuration adaptation. O is the system observer,
which provides estimates for the next time slot. The observer
implements a system model that is updated when measures
are available.
u(t) is the user reference, depending on priorities a designer
can consider QoS, Lifetime (battery gauge), or Time (OS).
e(t) = u(t) − ŷ(t) is the difference between the reference and
the observer prediction output.
x(t) = ke(t) is the output of the proportional regulator (R).
The derivative effect is not used and the integral effect ap-
pears in the system modelling.
y(t) = y(t − 1) + x(t) is the output of the system after the
reconfiguration adaptation (S). This function introduces an
integrator effect.
ŷ(t+1) = a0y(t)+a1y(t−1)+a2y(t−2) produces an estimate
of the next average power consumption.
y(t) is a noisy signal, since the power and delay in the con-
figuration table are approximated. The first error source is
the load of non controlled sporadic tasks and the second is
the fluctuation of load that depends on nature of data.

The observer regularly updates a model that estimates the
system behavior. The aim is firstly to anticipate decisions
for reconfiguration and secondly to avoid costly sensor ac-
cesses when unnecessary. Considering algorithm complexity
for adaptation a 3-taps LMS (Least Mean Square Algo.) has
been chosen. Its stability is guaranteed under some condi-
tions which have been defined in another publication, these
details are out of the scope of the paper.

4.2 Configuration decision
The aim of the decision is to select, regarding a regulated

error, the best configuration from the configuration table
which is regularly updated with real measures. Our approach
has been driven by a tradeoff between efficiency and complex-
ity compliant with embedded systems.

69

The Decision Algorithm is described in Fig.3. The fre-
quency of metric transfers is controlled by the configuration
period. It means that metrics are transmitted to the LCM
after Ne consecutive executions of the application, it means
k.Ne executions of the task if k is the number of task iter-
ations within the application period. Secondly, the GCM is
also pending on a mailbox, waiting for data issued from LCMs
regarding algorithmic configurations, meaning that a first de-
cision reduction is obtained through LCM selection. Then, a
second restriction is introduced based on a paying off delay
Tk during which costly hardware reconfiguration is not autho-
rized. Tk corresponds to the minimum number of application
iterations required to accept the reconfigration overhead com-

pared to expected benefits. Tk = max
(

TR

GT
; ER

GE

)

. Where TR

is the reconfiguration delay in clock cycles, GT the perfor-
mance gain (the execution time difference between the new
and the previous configuration), ER the energy required for a
reconfiguration and GE the energy gain. Finally, all consid-
ered magnitudes are assessed for the final selection regarding
a given priority order (e.g. T, QoS, P). The algorithm runs
as follows. First, note that only the first constraint is regu-
lated (e.g. T) and considered for selection. Secondly, other
constraints are considered when more than one solution re-
spects the first one (namely V (1, j) > 0), otherwise the can-
didate providing the smallest error is selected regarding only
the first constraint. Then a vote based on Borda’s method
is processed among survivor solutions, each magnitude sorts
remaining configurations and attributes a vote corresponding
to the rank. Different weights can be assigned to the differ-
ent magnitudes. If multiple candidates obtain the same score
then a Hamming distance with current configuration is used
to select minimal SW → HW moves.

LCM Validation

Configuration space reduced to

SW ! SW or HW ! SW

Reconfigurations

No Yes

Borda vote based on W(i,j)

Tk > 0

Sort V(i,j) (decreasing order)

Rank based weight

allocation: W(i,j)

For i=1..3

Reduce Config. Space to V(1,j) > 0

If ! j | V(1,j) > 0

Sort V(1,j) (decreasing order)

Select 1st solution

No Yes

Figure 3: Decision algorithm

GCM

Decision
(wait on data)

CID (..,Ne,..)

Write

LCM_MB_xc

LCM

Selection
(wait on data)

Write

Ty_MB /_x

Task_y

Iteration

!Ne

Metrics

Write

LCMx_MB_y

NB Read

Ty_MB_c

Read Ty_MB

Write

GCM_MB_x

Read

LCM_MB_xc

CID (..,Ne,..)

Figure 4: Control sampling and application period

Configuration period: the issue of a sampling period
is a critical aspect of controlled systems, in our case sys-
tem we consider models linear with application iterations
which means that the sampling period is equal to Ne appli-
cation iterations as depicted in Fig.4, where Ne is an integer
and global configuration parameter. The approach minimizes
communication and computation overheads.

5. SMART CAMERA IMPLEMENTATION
We will now illustrate the different steps of the design

methodology proposed in section 3.2 with an embedded smart
camera for object tracking implemented on a FPGA. The pro-
totype has been tested for tracking an electric toy train.

5.1 Application specification, metric selection
Our object tracking application is composed of 9 HW or

SW tasks (T1 ... T9) described in Fig.5. These tasks are
controlled by a LCM implemented as a SW task.

T3:Reconstruction

T2 : Erosion / Dilation

T1 : Avg/Sub/Threshold

T4:Object Labelling

T8:Adaptive

Threshold

T0: Frame Acq.T9: Motion estimation,

LMS Modelling

QoS Computation

T7:Display

Variation sources

due to data :

- # Objects

- Area

- Position

-! Light
- Obj. Shape

- Ob. Area

- Obj. Position

- Image noise

Variations due to

data:

Smart Cam

LCM

QoS White points

Rounds

Objects

T5: Bounded Box

T6: Gravity Center

Isolated points

Area

position

Figure 5: Application flow

The metrics provided by tasks to the LCM ”tracking” are
indicated in Fig.1-a) the number of isolated white points
(Nwp) after tasks 1, 2 and 3, the number of iterations of ob-
ject reconstructions (NRI), the number of detected objects
(Nobj) and the error of tracking (Etrack) between prediction
based on motion estimation and object extraction from real
frames. On a global level, the GCM is also implemented as
a SW task. Additionally, some specific SW tasks are imple-
mented for VGA, battery and camera peripheral controllers,
they include a minimal LCM integrated in each task for con-
figuration communication with the GCM.

70

5.2 Environment sensors
The architecture is implemented on a NIOS soft core within

an Altera Stratix II 2S60ES FPGA board with a camera and
a VGA daughter board. We also plugged the camera and gas
gauge (power consumption measures) into the FPGA GPIO.
The extended RTOS is built around µCos and provides appli-
cation execution time measures. The QoS sensor is provided
by Task 10, it gives the difference between object position
based on labeling results and an estimation of object posi-
tions based on a LMS algorithm. A value higher than the
reference means that the application rate must be increased
with the fastest configuration.

5.3 Design Space Exploration
Hardware task modules are connected to the Avalon bus

and clocked only when used. A co-processor has been added
as a coarse grain instruction for the LMS and PI regulator
implementations. It is also used for application QoS compu-
tation (error between prediction and object position).
Significant algorithm configurations are selected with the fol-
lowing algorithmic choices:
1. Deep sleep mode: T2,3,4,5,6 are inactive;
2. Sleep mode: T3,4,5,6 are inactive;
3. Reconstruction T3: on or inactive;
4. T1: filter inactive or based on two or four images;
5. T8: on or inactive (fixed threshold).
With Pareto methods, we restrict the system configuration
space with architecture configurations.

5.4 UCCI encapsulation
The RTOS is extended with capabilities for communica-

tion and configuration of HW and SW tasks. A software task
is enhanced with configuration updates, metric computation
capabilities based on C code functions, and metric emissions
(towards the LCM mailbox queues) based on API.
A hardware task is encapsulated within a VHDL shell, includ-
ing communication and configuration supports. The generic
shell is adapted with the appropriated number of output and
input ports and mailboxes for the control of communication
with the OS and other tasks. Data transfers are based on
shared memory, dedicated registers are specified within the
UCCI shell to indicate their base address.

5.5 LCM and GCM implementation
The first point relies on the LCM strategies. Actually it

is currently implemented as rules defined by the application
designer according to simulation results. The number of mail-
box queue instances is defined for the capture of metrics.

The second point focuses on the main GCM parameters,
which are the PI regulator coefficients: ki, kp and the LMS
observer coefficient kL. Various experiences have been con-
ducted with the smart camera prototype implemented on
FPGA. The objective at this stage is to select coefficients
in order to decide a good trade-off between reaction speed
and error smoothing.

6. CASE STUDY
One of the main objectives of the project was the design of

a real demonstrator. This embedded system, supplied by a
battery, was mounted over a platform for tracking toy trains.
We applied a two-step strategy, the first step of which was a
design space exploration resulting in 58 configurations with
9 algorithmic combinations.

To illustrate the second step, which is self-adaptation, we
present a comprehensive example, the results of which are
summarized in Fig.6 for CID, execution time (cycle budget),
the application QoS and the metric sent by the first task T1

to the LCM, namely the number of white pixels. The prior-
ity order is QoS (the regulated magnitude), execution time
and power. This scenario highlights self-adaptation capabil-
ities. After several images without any movement, the train
enters the scene and executes two rounds at low speed and
two rounds at high speed, stops and goes backwards. It then
enters a Critical Zone, runs into and leaves the area. Finally,
the train continues its path at low speed. All the scenario
steps are described hereafter, and noted in Fig.6.
Starting point: Initially no object crosses the scene, the
system selects CID #0 where only task one is running int
SW, the camera frame rate is tuned according to the appli-
cation execution delay, which is 2 frames/s.
Object arrival: Then, an object enters the scene at low
speed, the system selects CID #12 and then a more effi-
cient configuration (CID #19) due to the initialization phase
of the tracking model (all tasks in HW, processing at more
than 20 frames/s.) and the QoS decreases until it goes under
the threshold of 10%. Then the less expensive configurations
from CID #16 to #9 are selected according to Borda’s votes.
Tracking QoS mainly depends on train speed and direction,
image rate, and distance to the camera.
Object speed up: we observe that the tracking system
follows the train during the straight line. However, during
curved lines, the system reacts, but no configuration is effi-
cient enough (error > 100%). CID #19 (all tasks in HW), the
best one in such a situation, is selected. The error is reduced
until the prediction model is adapted, then a less expensive
configuration can be selected.
Critical Zone: The QoS into the Critical Zone is increased
for security reasons, the reference is set at 2% and conse-
quently, only CID #18 and #19 remain eligible.
Sudden luminosity change: The threshold no longer fits
and the number of white pixels after the threshold (task T1)
suddenly grows and leads to the increase of the execution
time. A special configuration implements the adaptive com-
putation of a new threshold value based on the histogram
gradient. To readapt the tracking model, the high efficient
configuration (CID #19) is selected. The scenario ends with
a low speed run around the circuit with CID #12 according
to Borda’s vote.

6.1 Power and performance
The CPU time devoted to LCM and GCM tasks (0.33%

in a pure SW solution) and the HW overhead due to the
co-processor (1%) are negligible in such an applicative con-
text where reconfigurable architectures make sense. Tab.1-a)
shows the communication performances. The overhead of
HW ↔ SW communication is due to context switch and con-
trol. One can observe that it is drastically reduced for HW to
HW communications directly implemented in generic shells
for HW tasks. Some architecture configurations may involve
significant time overheads (HW and SW task switch), how-
ever it is also clear that HW tasks may be considered when
computing parallelism is available and relevant speeding up
achievable (e.g. image processing, encryption). In our case
study, we observe that message passing also represents a very
low percentage of the whole communication.
With different algorithm and architectural configurations, we

71

Figure 6: Decisions along scenario execution

obtain tracking system performances Tab.1-b). Execution
time results correspond to a tracking process with a stan-
dard input frame. Execution time variation is first due to
system architecture (e.g. cache miss, bus collision...) and
secondly to data features. Tab.1-c) shows examples of such
data-dependent performances that can justify the general-
ization of self-adaptive systems in the future. For instance,
erosion and labeling execution times depend on the number
of white pixels and the number of objects, and the number
of white pixels and object complexity, respectively.

7. CONCLUSION
Self-reconfiguration is a promising way to improve efficiency

of the SoC of the MIPS/Watt metric. It also appears to be an
economically viable solution for upgrading systems in reac-
tion to HW bugs and fault detection. FPGAs are not yet the
sought-after ’good’ solution for implementing such systems,
however they already propose available frameworks to study
and implement new concepts which need to be designed so
that such systems become a reality in the future. In this
work, we have proposed and fully implemented a solution
that relies on three main contributions. First, we extend the
RTOS classical task model in such a way that a given task
can be executed transparently with different HW and SW
implementations. This evolution also offers HW task access
to usual task communication and synchronization schemes.

a) Communication performances :
SW ↔ SW SW ↔ HW HW ↔ HW

MB Post 517 cy. 2035 cy. 15 cy.
MB Pend 425 cy. 3087 cy. 11 cy.

b) Examples of implementation results @ 50MHz:
T1-T2-T3 sw-sw-sw sw-hw-hw hw-hw-hw

T4-T5 sw-sw sw-hw hw-hw
Exec. Time 245.650.000 cy. 80.800.000 cy. 1.820.000 cy.

±0, 01% ±0, 04% ±0, 2%
Frames/s. 0,20 0,62 26

Area 19 % 59 % 92 %
Power 137 mW 228 mW 285 mW

c) Fluctuating execution time due to data :
Task variation Exec. Time

Erosion 1 pixel 14.240.816 cy.
320*240 pixels 146.197.242 cy.

Reconstruction 1 iteration 15.641.863 cy.
2 iterations 162.476.520 cy.
3 iterations 172.675.410 cy.

Table 1: Implementation Results

Moreover, its implementation is straightforward, because it
is based on HW and SW shells that are independent from
original C or VHDL code, respectively. Secondly, we propose
an original and lightweight solution for online reconfiguration
decisions; this is a learning-based method implemented as a
control loop. To the best of our knowledge, this is the first
time that observer and regulator concepts are applied in the
context of RSoC self-configuration. Finally, a complete proof
of concept has been designed with an object tracking ap-
plication implemented on an FPGA with camera, VGA and
battery peripherals. Self-reconfiguration, according to a QoS
reference, has been validated with this demonstrator.

8. REFERENCES
[1] B.Li and K.Nahrstedt. A control-based middleware

framework for quality of service adaptation. IEEE

Journal on Selected Areas in Communication, 1999.

[2] C.Lu, J.Stankovic, G.Tao, and S.Son. Feedback control
real-time scheduling: Framework, modeling and
algorithm. special issue of RT Systems Journal on

Control-Theoretic Approaches to Real-Time Computing,
23(1/2):85–126, july/september 2002.

[3] D.Andrews, R.Sass, E.Anderson, J.Agron, W.Peck,
J.Stevens, F.Baijot, and E.Komp. The case for high level
programming models for reconfigurable computers. In
ERSA, June 2006.

[4] E.Lűbbers and M.Platzner. Reconos: An rtos supporting
hard- and software threads. In FPL, August 2007.

[5] H.Walder and M.Platzner. Reconfigurable hardware
operating systems: From design concepts to realizations.
In ERSA, Las Vegas, USA, June 2003.

[6] J-Y.Mignolet, V.Nollet, P.Coene, D.Verkest, S.Vernalde,
and R.Lauwereins. Infrastructure for design and
management of relocatable tasks in a heterogeneous
reconfigurable system-on-chip. In DATE, March 2003.

[7] N.W.Bergmann, J.A.Williams, J.Han, and Yi.Chen. A
process model for hardware modules in reconfigurable
system-on-chip. In ARCS, 2006.

[8] Y.Eustache, J-Ph.Diguet, and M.El Khodary.
RTOS-based hardware software communications and
configuration management in the context of a smart
camera. In ERSA, June 2006.

72

