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ABSTRACT 
While hardware/software partitioning has been shown to provide 
significant performance gains, most hardware/software partitioning 
approaches are limited to partitioning computational kernels 
utilizing integers or fixed point implementations. Software 
developers often initially develop an application using built-in 
floating point representations and later convert the application to a 
fixed point representation – a potentially time consuming process. 
In this paper, we present a hardware/software partitioning 
approach for floating point applications that eliminates the need for 
developers to rewrite software applications for fixed point 
implementations. Instead, the proposed approach incorporates 
efficient, configurable floating point to fixed point and fixed point to 
floating point hardware converters at the boundary between the 
hardware coprocessors and memory. This effectively separates the 
system into a floating point domain consisting of the 
microprocessor and memory subsystem and a fixed point domain 
consisting of the partitioned hardware coprocessors, thereby 
providing an efficient and rapid method for implementing fixed 
point hardware coprocessors. 

Categories and Subject Descriptors 
C.3 [Computer Systems Organization] Special-Purpose and 
Application-Based Systems - Real-time and Embedded Systems. 

General Terms 
Design, Performance. 

Keywords 
Hardware/software partitioning, floating point to fixed conversion, 
floating point, fixed point. 

1. INTRODUCTION 
Field programmable gates arrays (FPGAs) are becoming 
increasingly popular, having moved from primarily being utilized 
for hardware prototyping and debugging to being incorporated into 
many computing domains and consumer electronics. An FPGA can 
implement any hardware circuit simply by downloading bits for the 
hardware circuit, much in the same way that microprocessors can 
execute any software program simply by downloading a new 
application binary. With the continuing evolution of FPGAs, new 
devices have emerged that integrate one or more microprocessors 
and configurable FPGA resources onto a single chip with support 
for fast communication. Such devices, available from Xilinx, 

Altera, and Atmel, are ideally suited for hardware/software 
partitioning. 

Hardware/software partitioning is the process of dividing an 
application between software executing on a microprocessor and 
hardware implemented within an FPGA or ASIC. Significant 
previous research has demonstrated the performance and energy 
benefits of hardware/software partitioning over software execution 
alone with typical performance gains of 10-100X 
[1][4][11][14][17][19]. Hardware/software partitioning can also 
provide reductions in energy consumption of up to 95% 
[9][18][20]. 

Most hardware/software partitioning approaches are typically 
limited to partitioning computational kernels utilizing integers or 
fixed point computations. During initial software development, 
single and double precision floating point representations are often 
utilized to represent real numbers due to the convenience provided 
by built-in support within most programming languages, including 
C/C++/Java. However, directly implementing floating point 
operations within hardware requires significant area resources and 
potentially large power requirements. In addition, to provide 
acceptable performance, hardware implemented floating point 
implementations are typically very highly pipelined, thereby 
requiring multi-cycle latencies. On a related note, many embedded 
microprocessors do not provide hardware support for floating point 
operations and must rely on slow software based floating point 
calculations.   

Fortunately, many applications do not need floating point 
representations to support real numbers. Instead, a fixed point 
representation is a viable alternative that can be implemented 
efficiently in hardware. A floating point number is stored in what 
can be referred to as a binary scientific notation using a sign-
magnitude format that allows for a floating position of the radix 
point. For example, an IEEE 754 [10] single precision floating 
point number consists of a sign bit (S), an 8-bit exponent (E), and a 
23-bit mantissa (M). The resulting decimal value can be computed 
as follows: 

( ) 127
2 2*.1*1 −−= ES MValue  

For both single and double precision floating point representations, 
the mantissa provides the number’s precision and the exponent 
controls the number’s range. In comparison, a fixed point 
representation is directly stored as a two’s complement binary 
number with a fixed radix point. Unlike floating point arithmetic, 
fixed point operations can be very efficiently performed using 
integer operations. Fixed point additions directly map to integer 
additions, and fixed point multiplication can be performed using an 
integer multiplication followed by a fixed shift by the radix 
position. For a fixed point representation all bits directly affect the 
number’s precision, but the range of the number is determined by 
the fixed radix position. While a fixed point representation can 
provide greater precision than a floating point representation, a 
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floating point representation provides a much greater dynamic 
range of numbers that can be represented. For example, the smallest 
possible positive single precision floating point number is 1.2e-38, 
whereas the smallest possible positive number that be represented 
by any 32-bit fixed point representation is only 2.3e-10.  

For those applications that do not require the dynamic range 
supported by floating point representations, a fixed point 
implementation is often the best approach. However, one of the 
biggest challenges of using fixed point arithmetic is that of software 
development. Again, due to the lack of built-in support for fixed 
point representations in most programming languages, software 
developers will often initially develop an application using floating 
point representations and later convert the application to a fixed 
point representation.  

In an attempt to ease such development efforts, several research 
efforts have provided tools to assist in converting software 
programs using floating point values into fixed point 
implementations [2][5][12][15][16]. FRIDGE [12] is a system level 
fixed point design methodology in which a designer initially 
provides localized annotations for the critical fixed point operands 
using the fixed-C extension to the C programming language 
followed by simulation to verify correctness and automatically 
determine the fixed point representation needed throughout the 
remainder of the software application. The fixify environment, 
presented in [3], initially utilizes simulation to determine the ideal 
fixed point representation followed by a design space exploration 
step that analyzes the tradeoffs between numeric degradation, cost, 
and performance. As digital signal processors (DSPs) typically 
incorporate dedicated support for fast fixed point computations, in 
[15], researchers present an automated methodology for optimizing 
the application performance executing on a DSP while meeting a 
designer specific accuracy constraint. These existing automated 
conversion approaches are primarily targeted at the compilation 
phase of software development, for which the resulting output is a 
fixed point software implementation in which all floating point 
operations have been converted to a fixed point implementation. 

Similar challenges are encountered within hardware/software 
partitioning. For applications using floating point computations, a 
designer must minimally convert the floating point operation to a 
fixed point implementation for the critical kernels of the application 
that will be partitioned to hardware. While dedicated hardware for 
floating point operations may be needed for some applications, the 
significant area requirements and multi-cycle latencies preclude its 

use for most. Whether a designer manually converts the critical 
kernels to a fixed point representation or relies on an automated 
methodology, the end result is that the initial software application 
must be modified before partitioning. 

In this paper, we present an automatable hardware/software 
partitioning approach for floating point software applications that 
eliminates the need for developers to rewrite software applications 
utilizing fixed point implementations before partitioning. Instead, 
the proposed approach incorporates efficient, configurable floating 
point to fixed point and fixed point to floating point hardware 
converters at the boundary between the hardware coprocessors and 
memory. This effectively separates the system into a floating point 
computing domain consisting of the microprocessor and memory 
subsystem and a fixed point computing domain consisting of the 
partitioned hardware coprocessors. Within the proposed approach, 
no modifications are needed for the software application. 
Furthermore, the hardware coprocessor development, whether 
automated or manually performed, can treat floating point 
computations much in the same way as integer computations, 
thereby providing excellent hardware performance with minimal 
hardware requirements. We examine the performance 
improvements and hardware requirements of the proposed 
hardware/software partitioning approach for several embedded 
applications from the MiBench [8] and MediaBench [13] 
benchmark suites. 

2. HARDWARE/SOFTWARE 
PARTITIONING OF FLOATING POINT 
APPLICATIONS 
Figure 1 provides an overview of the proposed 
microprocessor/coprocessor architecture for hardware/software 
partitioning of floating point applications to fixed point hardware 
implementations. The partitioned application execution is separated 
into a floating point computing domain and a fixed point computing 
domain. The floating point domain encompasses the normal 
software execution and includes the microprocessor, caches, and 
memory subsystems. After partitioning the application between 
hardware and software, the software portion may continue to utilize 
floating point numbers. As such, all real numbers stored within the 
memory will utilize single or double precision floating point. 

The fixed point domain consists of the hardware coprocessors 
implemented using a fixed point representation and configurable 
Float-to-Fixed and Fixed-to-Float hardware converters that 
interface between the hardware coprocessors and microprocessor or 
memory. All floating point values read from memory will be 
converted by the Float-to-Fixed converter to the target fixed point 
representation. Similarly, all fixed point values written back to 
memory will be converted by the Fixed-to-Float converter to a 
floating point representation. 

By separating the partitioned application execution into floating 
point and fixed point domains, the software implementation does 
not need to be developed using, or converted to, a fixed point 
implementation. Instead, floating point operations may be used as 
needed by the application, requiring no modification to the initial 
floating point application, thereby reducing designer effort. After 
partitioning, the software partition will continue to utilize floating 
point operations. On the other hand, the hardware partition will 
utilize a fixed point representation in which arithmetic operations 
are only marginally more complex than their integer counterparts, 
providing fast, small, and power efficient hardware support for real 
numbers. 

Figure 1: Overview of proposed microprocessor/coprocessor 
architecture with configurable Float-to-Fixed and Fixed-to-Float 

converters. 
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We note that while technically possible, converting between 
floating point and fixed point numbers in software – a process 
requiring tens to hundreds of instructions for each such conversion 
– incurs considerable overhead that would severely impact 
performance, even leading to performance slowdowns.  

Figure 2 presents an overview of the proposed 
hardware/software partitioning methodology. Initially, the software 
application is profiled to determine the application’s critical kernels 
that are the potential candidates for hardware implementation. The 
partitioning process will then determine which critical kernels to 
implement in hardware, creating an initial annotated hardware 
description for the partitioned kernels.  

During this partitioning process, all floating point data types are 
treated as integers – single precision as a 32-bit integer, double 
precision as a 64-bit integer – in creating the partitioned hardware 
coprocessors. However, as the floating point values will eventually 
be replaced by the required fixed point representations, the resulting 
hardware description includes synthesis annotations indicating 
which registers and computations are floating point operations that 
must be converted to a fixed point representation.  

Floating point profiling can then be performed to determine the 
fixed point representation required by each critical kernel. 
However, if the required precision and dynamic range are already 
known, a designer can directly specify the required fixed point 
representation. Otherwise, automated fixed point profiling tools, 
such as those previously described, can be used to determine the 
required fixed point representation. Finally, the fixed point 
conversion process will convert the annotated hardware 
implementation into the final fixed point implementation by 
replacing the annotated floating point registers and operations with 
the provided fixed point representation and utilizing the 
configurable Float-to-Fixed and Fixed-to-Float converters. 

Because different application kernels may require varying fixed 
point representations, the floating point profiling is performed for 
all candidate kernels considered for partitioning to hardware. The 
resulting hardware implementation may require a Float-to-Fixed 
and a Fixed-to-Float converter for each distinct fixed point 
representation needed by the hardware coprocessors. Although, if 
only a single fixed point representation is needed for all hardware 

coprocessors, a single set of Float-to-Fixed and Fixed-to-Float 
converters is sufficient.  

3. FLOATING POINT TO FIXED POINT 
CONVERSION 
The Float-to-Fixed converter is a combinational logic design that 
converts the incoming floating point values into the defined fixed 
point representation. The Float-to-Fixed converter is implemented 
as a configurable Verilog hardware description that can be 
configured through a set of parameters to specify both the input 
floating point representation and the output fixed point 
representation. The configurable parameters include: 

 FloatSize – specifies the total number of bits within the 
floating point representation. A single precision floating 
representation requires 32 bits, whereas a double 
precision floating point representation requires 64 bits. 

 MantissaBits – specifies the number of bits within the 
floating point representation allocated to the mantissa. A 
single precision floating point representation uses 23 bits 
for the mantissa and a double precision representation 
uses 52 bits. 

 ExponentBits – specifies the number of bits within the 
floating point representation allocated to the exponent. 
The exponent is specified as 8 bits for a single precision 
floating point representation and as 11 bits for a double 
precision representation. 

 FixedSize – specifies the total number of bits within the 
fixed point representation. 

 RadixPointSize – specifies the number of bits needed to 
represent the RadixPoint. 

 RadixPoint – specifies the fixed location of the radix 
point. The fixed radix position also corresponds to the 
number of bits allocated for the fractional portion of a 

Figure 2: Hardware/software partitioning methodology for floating 
point applications. 

Figure 3: Hardware architecture for radix point parameter 
implementation of Float-to-Fixed converter.  
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fixed point number. As such, the integer portion of a 
fixed point representation can be calculated as FixedSized 
minus RadixPoint. 

Figure 3 presents an overview of the Float-to-Fixed converter 
design consisting of a NormalCases component for handling 
normal floating point to fixed point conversion and a SpecialCases 
component for detecting several special representations defined 
within the IEEE 754 standard, including positive zero, negative 
zero, denormalized numbers, positive infinity, negative infinity, and 
not-a-number (NaN).  

A fixed point representation does not support representing 
special cases for infinity or NaN. Thus, if a floating point input is 
infinity or NaN, the SpecialCases component will assert an 
Exception signal indicating that an exception has occurred. On the 
other hand, if the floating point input is the special case for 
representing either a positive or negative zero, the SpecialCases 
component will assert the Zero output signal. Finally, if the floating 
input is the special case for a denormalized number, the 
SpecialCases component will deassert the Normal output signal. A 
denormalized floating point number is a floating point number in 
which mantissa directly specifies the corresponding value, for 
which the resulting decimal value can be computed as follows: 

( ) 0
2 2*.0*1 MValue S−=  

The NormalCases component converts the input floating point 
value to the target fixed point representation assuming the input is 
not a special case and that no overflow will occur. In addition, the 
NormalCases component will also calculate an Overflow output 
that corresponds to the numbers of additional bits needed within the 
fixed point representation to avoid an overflow for the current 
conversion. Given the specified fixed point representation, 
incoming floating point representation, the exponent of the floating 
point input, and the Normal input from the SpecialCases 
component, the NormalCases component computes the required 
shift direction and amount needed to align the floating point 
number’s mantissa with the fixed point representation. Once 
aligned, the NormalCases component will calculate the two’s 
complement of the aligned value if the sign bit indicates the input is 
negative. Finally, all bits are and’ed with the inverse of the Zero 
input from the SpecialCases component to generate an output of 
zero if the input is one of the special cases for zero. 

For designs that require multiple fixed point representations or 
designs for which the final fixed point representation may not be 
known a priori, the specification of the radix point for the fixed 
point representation can be provided as an input to the Float-to-
Fixed converter, instead of as a parameter. With a radix point input, 
the modified Float-to-Fixed converter will incur some area and 
performance overhead compared to the parameter based 
implementation. 

4. FIXED POINT TO FLOATING POINT 
CONVERSION  
The Fixed-to-Float converter is a combinational logic design for 
converting a fixed point representation into the target floating point 
representation. The Fixed-to-Float converter can be configured 
through the same set of parameters used to specify the Float-to-
Fixed converter. Since the fixed point representation does not 
support special cases for infinity or NaN, the Fixed-to-Float 
converter need only handle the special case for representing zero. If 
an input fixed point number is zero, the Fixed-to-Float converter 
will output the special floating point representation for a positive 

zero. Although a representation for negative zero is possible within 
the floating point representation, there is no such distinction in the 
fixed point representation. Hence, we chose to store the value of 
zero as a positive zero. If the fixed point input is not zero, the 
Fixed-to-Float converter first determines the sign of the fixed point 
number, outputting the numbers sign bit. If the number is negative, 
the converter will calculate the number’s two’s complement. The 
Fixed-to-Float converter then utilizes a priority encoder to 
determine the position of the most significant bit of the fixed point 
input whose value is one. The position of this leading one is used to 
determine the shift direction and amount required to shift the fixed 
point number into a binary scientific notation, thus obtaining the 
required exponent and mantissa for the floating point 
representation.  

Again, for designs that require multiple fixed point 
representations or designs for which the final fixed point 
representation may not be known a priori, the specification of the 
radix point can be provided as an input to the Fixed-to-Float 
converter, instead of as a parameter.  

5. FIXED POINT HARDWARE 
COPROCESSOR  
The Float-to-Fixed and Fixed-to-Float converters allow for a 
straightforward fixed point coprocessor implementation. Figure 4 
presents an overview of the hardware coprocessor interface to 
memory encapsulating the integration of the Float-to-Fixed and 
Fixed-to-Float converters. The memory interface utilized within 
this illustration includes a memory address (Addr) input, separate 
read (Rd) and write (Wr) control inputs, a byte enable (BE) control 
input which enables writing individual bytes in a word addressable 
memory, and separate data inputs (DataIn) and data outputs 
(DataOut).  

The hardware coprocessor can directly interface with the 
memory’s Addr, BE, and Rd inputs. Memory reads include both 
reading floating point values as well as reading integer values. To 
provide a clear distinction between floating point and integer data, 
separate inputs for integer and converted fixed point values are 
provided to the coprocessor. For reading integer data from memory, 
the coprocessor’s IntDataIn input provides the unaltered value read 
from memory. Alternatively, for reading floating point values from 

Figure 4: Hardware coprocessor interface with configurable 
Float-to-Fixed and Fixed-to-Float converters. 
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memory, the FixedDataIn input is connected to the output of the 
Float-to-Fixed converter providing the converted value to the 
coprocessor.  

Similarly, the hardware coprocessor interface includes separate 
data outputs for writing integer (IntDataOut) and fixed point 
(FixedDataOut) values to memory. The WrFixed control output is 
utilized by the coprocessor to indicate the current value being 
written to memory is a fixed point value that needs to be converted 
to floating point. The WrFixed controls a multiplexer that either 
connects the IntDataOut output or converted floating point output 
of the Fixed-to-Float converter to the memory’s data input. The 
WrInt control output is utilized by the coprocessor to indicate the 
current value being written to memory is an integer value. The 
coprocessor’s WrFixed and WrInt outputs are connected via an OR 
gate to the memory’s Wr input. 

6. EXPERIMENTAL RESULTS 
We implemented the configurable Float-to-Fixed and Fixed-to-
Float converters using the Verilog hardware description language, 
in which the radix point can be specified as a parameter within the 
converter description or provided as an input to the converters. 
Three implementations for the Float-to-Fixed and Fixed-to-Float 
converters are needed for the various software applications 
considered within this paper. The first set of converters (12.20) is 
needed for converting between a single precision floating point 
representation and a 32-bit fixed point representation with a radix 
point of 20. The second set of converters (21.30) converts between 
a single precision floating point representation and a 51-bit fixed 
point representation with a radix point of 30. Finally, the third set of 
converters (17.47) converts between a single precision floating 
point representation and a 64-bit fixed point representation with a 
radix point of 47. The Float-to-Fixed and Fixed-to-Float converters 
were synthesized to a Xilinx Virtex-5 FPGA using the Xilinx ISE 
9.2 synthesis tools with speed as the main optimization goal. 

Table I presents the area (lookup tables (LUTs)), and delay 
(nanoseconds) for the three Float-to-Fixed and Fixed-to-Float 
converter pairs described above. On average, the radix point 
parameter implementation of the Float-to-Fixed converter is 9% 
faster with 10% fewer LUTs than the input based implementation. 
On the other hand, the radix point parameter implementation of the 
Fixed-to-Float converter is 25% faster, but that increase in speed 
comes at the expense of increased area – requiring 30% more 
LUTs.   

Using the Float-to-Fixed and Fixed-to-Float converters and the 
proposed hardware/software partitioning approach, we partitioned 
the mpeg2dec, mpeg2enc, and epic applications of the MediaBench 
benchmark suite [13] and fft and ifft applications on the MiBench 
benchmark suite [8], all of which required extensive floating point 
calculations. The target architecture includes a 250 MHz MIPS 
processor with support for floating point calculations and a Xilinx 

Virtex-5 FPGA executing at the maximum frequency as determined 
by synthesizing the resulting fixed point coprocessors using Xilinx 
ISE 9.2 for both the parameter based and input based converter 
alternatives.  

As determined by application profiling, the majority of 
execution time for mpeg2dec is spent computing the inverse 
discrete cosine transform (IDCT) that is implemented in software 
using a single precision floating point representation. Floating point 
profiling indicated that a 32-bit fixed point representation with a 
radix point of 20 provides the required dynamic range and accuracy 
to ensure the final results of the IDCT computation are identical to 
that of the floating point implementation.  

For mpeg2enc, the partitioned critical kernels consist of the 
forward discrete cosine transfer (DCT) and a sum of absolute 
differences computation performed during motion estimation of the 
encoding process. While the DCT operation requires a 32-bit fixed 
point representation with a radix point of 20, the sum of absolute 
differences computation only consists of integer calculations. Thus, 
the resulting hardware implementation includes both integer and 
fixed point computations that can be efficiently enabled through the 
hardware coprocessor interface.  

For the application epic, the execution is predominantly spent 
executing a convolution filter. The convolution filter internally 
utilizes a double precision floating point representation to compute 
the intermediate results, where the values read from and written to 
memory are stored using a single precision floating point 
representation. To provide the required dynamic range and 
accuracy needed for the calculation of intermediate results, floating 
point analysis determined that a 64-bit fixed representation with a 
radix point of 47 is required. We note that the Float-to-Fixed and 
Fixed-to-Float converters needed for this application do not need to 
convert from/to a double precision floating point representation 
because all values stored within memory are single precision 
floating point values.  

Finally, both the fft and ifft applications of the MiBench 
benchmark suite resulted in almost identical hardware coprocessor 
implementations needed to compute Fast Fourier Transformation 
(FFT) and Inverse Fast Fourier Transformation (IFFT). The FFT 
and IFFT both utilized a double precision floating point 
representation to compute the intermediate results, where the values 
read from and written to memory are stored using a single precision 
floating point representation. To provide the required dynamic 
range and accuracy needed for the calculation of intermediate 
results, floating point analysis determined that a 51-bit fixed 
representation with a radix point of 30 is required.  

Table II presents the application execution time before and after 
hardware/software partitioning and application speedup for the 
mpeg2dec, mpeg2enc, epic, fft, and ifft applications for both the 
radix point parameter and radix point input versions of the Float-to-
Fixed and Fixed-to-Float converters. Utilizing the radix point 

Table I: Area (LUTs) and delay (nanoseconds) requirements for 
Float-to-Fixed and Fixed-to-Float converters implemented using 

the Xilinx Virtex-5 FPGA.  

Table II: Application execution time and speedup for mpeg2dec, 
mpeg2enc, epic, fft, and ifft applications.  

DELAY AREA DELAY AREA

Float-to-Fixed (SP»12.20) 4.56 357 5.04 401
Float-to-Fixed (SP»21.30) 5.12 386 5.62 421
Float-to-Fixed (SP»17.47) 5.38 421 5.85 468
Fixed-to-Float (12.20»SP) 4.81 251 5.60 206
Fixed-to-Float (21.30»SP) 5.74 418 8.01 342
Fixed-to-Float (17.47»SP) 6.38 571 9.03 417

Radix Point InputRadix Point Parameter SW     
(s) MHz

HW/SW 
(s) S MHz

HW/SW 
(s) S

mpeg2dec 1.02 101 0.31 3.3 77 0.34 3.0
mpeg2enc 17.02 101 5.52 3.1 77 5.66 3.0
epic 0.32 88 0.18 1.8 69 0.20 1.6
fft/ifft 2.88 82 0.35 8.2 74 0.39 7.5
Average: 4.9 4.5

Radix Point Parameter Radix Point Input
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parameter converters, the proposed hardware/software partitioning 
approach achieves a speedup ranging from 1.8X to 8.2X, with an 
average speedup of 4.9X across all five applications. Alternatively, 
with the radix point input converters, the proposed 
hardware/software partitioning approach achieves an average 
speedup of 4.5X, with a maximum speedup of 7.5X for fft and ifft.  

7. CONCLUSIONS 
By integrating configurable Float-to-Fixed and Fixed-to-Float 
converters at the boundary between hardware and software, the 
proposed hardware/software partitioning approach for a floating 
point application provides application speedups of 4.9X on average 
without requiring any designer effort to re-implement software with 
a fixed point representation. The proposed approach provides an 
efficient method for partitioning floating point applications both in 
terms of design time and hardware requirements. In addition, the 
resulting hardware coprocessor interface provides a simple method 
for reading and writing both integer and floating point values from 
and to memory and can be efficiently integrated into the proposed 
design methodology.  

By eliminating the need to re-implement floating point 
applications using a fixed point representation, the proposed 
approach can significantly reduce the development time for 
hardware/software partitioning. However, a designer must still 
profile the application to determine the appropriate fixed point 
representation. To further reduce the development effort, we are 
currently investigating a dynamically adaptable Float-to-Fixed and 
Fixed-to-Float approach in which the hardware coprocessor is 
implemented with an adaptive fixed point representation that can be 
adjusted at run time to avoid potential fixed point overflows by 
trading off accuracy.  
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