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ABSTRACT
Adaptive Body Biasing (ABB) is a popularly used technique to mit-
igate the increasing impact of manufacturing process variations on
leakage power dissipation. The efficacy of the ABB technique can
be improved by partitioning a design into a number of “body-bias
islands,” each with its individual body-bias voltage. In this paper,
we propose a system-level leakage variability mitigation frame-
work to partition a multiprocessor system into body-bias islands at
the processing element (PE) granularity at design time, and to op-
timally assign body-bias voltages to each island post-fabrication.
As opposed to prior gate- and circuit-level partitioning techniques
that constrain the global clock frequency of the system, we al-
low each island to run at a different speed and constrain only the
relevant system performance metrics - in our case the execution
deadlines. Experimental results show the efficacy of the proposed
framework in reducing the mean and standard deviation of leak-
age power dissipation compared to a baseline system without ABB.
At the same time, the proposed techniques provide significant run-
time improvements over a previously proposed Monte-Carlo based
technique while providing similar reductions in leakage power dis-
sipation.

Categories and Subject Descriptors:  B.7.0 [HARDWARE]: Inte-
grated Circuits - General

General Terms: Design, Algorithms

1. INTRODUCTION
Variations in integrated circuit (IC) manufacturing process pa-

rameters such as gate length and channel doping concentration lead
to variations in the power dissipation and performance characteris-
tics of the fabricated die. In particular, due to the exponential de-
pendency of leakage power on transistor threshold voltage, small
variations in the process parameters that affect the threshold voltage
can lead to significant variations in the leakage power dissipation
of a transistor [11]. Furthermore, as process technology continues
to scale, the contribution of leakage power to overall power dis-
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Figure 1: High-level overview of the proposed framework. The
shaded boxes represent the novel contributions of our work.

sipation is steadily increasing. As a result, design methodologies
that can reduce leakage power variability with minimal impact on
system performance are imperative.

Adaptive Body Biasing (ABB) is an effective post-silicon tech-
nique to minimize the process-driven variability in leakage power
dissipation [14]. Specifically, a negative body-to-source voltage ap-
plied to an nMOS device, also called Reverse Body Biasing (RBB),
reduces its leakage power, while applying a positive body-to-source
voltage, or Forward Body Biasing (FBB), increases its leakage power.
Ideally, each device on a chip would have its own individual, in-
dependently tunable body bias voltage to optimally combat WID
process variations. Unfortunately, the area overhead and manu-
facturing cost of such a system would be prohibitive - in practice,
therefore, ABB is implemented using either two global body-bias
voltages (one for all nMOS devices and another for all pMOS de-
vices) or by partitioning the die into a number of body-bias is-
lands, with independently tunable body bias values for each island
[14]. The second alternative provides the additional flexibility to
address within-die (WID) sources of variability, without incurring
the significant area overhead of individual body-bias voltages for
each transistor. Once the system has been partitioned into body-
bias islands at design time, the body bias voltages for each is-
land can be tuned separately for each chip post-silicon based on
the specific impact that process variability has on that particular
chip. In this paper, we propose a framework for variability-aware,
system-level partitioning of Multiple Processor Systems-on-Chip
(MPSoCs) into body-bias islands at the processing element (PE)
granularity. Each island receives an independent body-bias volt-
age that can be tuned post-silicon, and also sets its clock frequency
based on the body-bias voltage it receives (RBB reduces clock fre-
quency, while FBB increases clock frequency). Furthermore, each
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die is constrained to meet the desired performance specifications -
therefore, if some islands on a particular die are slowed down be-
cause they received a reverse body-bias, other islands must be sped-
up (and forward body-biased) to compensate for the performance
loss. The framework consists of two sub-problems for which we
propose efficient and scalable algorithms: (1) deciding the optimal
partitioning of the system into body-bias islands at design time, and
(2) determining the optimal body-bias values for each island for
every manufactured die based on post-silicon leakage power mea-
surements. Figure 1 shows a high-level overview of the proposed
work, highlighting our specific contributions.

As opposed to prior work on gate-level body-bias island parti-
tioning, our focus on system-level partitioning is motivated by the
need to address the impact of process variations as early in the de-
sign cycle as possible. Furthermore, instead of meeting a specified
global clock frequency constraint, we can allow different parts of
the design to run at different speeds as long as the performance tar-
gets are met. Finally, as intellectual property (IP) based designs be-
come more prevalent, it may not be possible to partition an IP block
into separate body-bias islands at the gate-level, thereby making a
PE level granularity of partitioning inevitable.

2. RELATED WORK
There is a significant body of research over the last few years that

addresses the analysis and mitigation of leakage power variability
for digital ICs. In [11], the authors analyze the impact of vari-
ous sources of manufacturing process variation on sub-threshold
leakage power dissipation. [7] discusses design time techniques
that can be used at the circuit, micro-architecture and system level
to minimize leakage power dissipation in scaled technologies. Fi-
nally, [14] demonstrates the effectiveness of ABB in reducing the
impact of both D2D and WID process variations on leakage power.

More recently, in [8], the authors propose a gate-level partition-
ing strategy to form body-bias clusters at design time. The pri-
mary goal is to reduce the variability in leakage power dissipation
using ABB, with a constraint on the clock speed of the design.
As opposed to [8], we allow different PEs in the system to op-
erate at different clock speeds, based on the body-bias voltage of
the island they lie in, but constrain the execution deadlines of the
task graph running on the multiprocessor system. In [6], the au-
thors also consider the case of systems partitioned into a number of
body-bias clusters; however, the focus of this work is on the alloca-
tion of body-bias voltage assignments for each die after they have
been manufactured. It does not address the design time partition-
ing of the system into body-bias islands. Furthermore, like [8], [6]
concentrates on fully synchronous designs with constraints on the
global clock frequency of the system, while we impose constraints
only on system-level performance metrics.

There is comparatively little work that addresses leakage vari-
ability at the higher levels of design abstraction. In [12], the authors
explore the use of dynamic fine-grained body-biasing at the mod-
ule level for a superscalar out-of-order processor. In [15], the au-
thors solve the post-silicon ABB aware module selection problem
in high-level synthesis. Both these works assume a fine granularity
of body-bias island partitioning in which each module lies in a sep-
arate body-bias island, while this paper concentrates on finding the
optimal coarse grained partitioning.

3. PRELIMINARIES AND ASSUMPTIONS
We begin by discussing the assumptions and notation used in

the rest of the paper. We begin with the system architecture and
performance characterization, followed by the process variability
model used and finally the impact of body biasing on the leakage
power and the cycle time of the PEs.

Figure 2: (a) An example task graph T with six tasks. (b) A
multiprocessor system P with three processors.

3.1 Application Modeling
As mentioned before, we consider multiprocessor systems com-

prising of synchronous computational components, either hard IPs
or embedded processors (referred to as processing elements or PEs),
running an application specific task graph. The task graph is mod-
eled as a directed acyclic graph (DAG), G = (T, E), where a ver-
tex t ∈ T = {t1, t2, . . . , tN} represents a computation task and
an edge e ∈ E ⊆ T × T represents control or data dependen-
cies between tasks. The PEs in the system are represented by a set
P = {p1, p2, . . . , pM}. We assume that the tasks have already
been mapped on the processors in the system, i.e., there exists a
known mapping function M1 : T → P that maps each task in T to
a unique processor in P . Finally, we assume that tasks mapped to
the same processor are assigned a static priority based schedule and
include any structural dependencies that arise from the schedule as
edges in the set E. Figure 2 shows an example of a task graph with
six tasks mapped to a multiprocessor system with three PEs. Fol-
lowing the terminology in [4], a task ti ∈ T is called a terminal
node if it has no successors (tasks t4 and t6 in Figure 2) and an
input node if it has no predecessors (tasks t1 and t5 in Figure 2).

To measure the performance of a task graph T mapped on the set
of PEs P , we denote the execution time of task ti (1 ≤ i ≤ N )
on its PE, M1(pi), by λi. The completion time of task ti is de-
noted by Λi and can be computed as Λi = λi for every input node
in T and as Λi = λi + maxj:(tj,ti)∈E(Λj) for all other nodes.
Every terminal node ti in the task-graph has an associated dead-
line constraint Δi, and the performance constraints are met only if
Λi ≤ Δi for every terminal node. For notational simplicity, in the
rest of this paper, we will assume that every terminal node has the
same deadline constraint Δ. However, we note that our framework
does not need this assumption to be satisfied, and the results are
demonstrated for a general case in which each terminal node has
a different deadline constraint. The deadline constraints described
above can be translated to path based constraints by defining a set
of all paths, Φ = {φ1, φ2, . . . , φS}, in the task graph. Each φi

(1 ≤ i ≤ S) is a subset of tasks in T that form a path from an input
node in T to a terminal node. Given these paths, we can express
the deadline constraints as:

∑

i:ti∈φj

λi ≤ Δ,∀j : φj ∈ Φ (1)

3.2 Hardware Architecture
We assume that the system architecture consists of M hetero-

geneous PEs given by the set P = {p1, p2, . . . , pM}. Further-
more, each PE lies in one of K body-bias islands represented by
set B = {b1, b2, . . . , bK}, where K ≤ M . For example, in Fig-
ure 2, the three PE system is partitioned into two body-bias islands
(K = 2), b1 and b2. The mapping of the PEs to body-bias islands
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Figure 3: Impact of (a) gate length on the leakage power dis-
sipation, and (b) body-bias voltage on cycle time and leakage
power dissipation for 90nm technology.

is defined by a mapping function, M2 : P → B, that maps each
PE in the design to one of the K body-bias islands at design time.
This mapping function is not known in advance, and computing the
best M2 is one of the primary goals of this work.

The body-bias voltage and frequency of each island can be tuned
post-fabrication on a per-die basis to minimize the leakage power
dissipation of each die. As discussed in [14], it is not feasible to
allow for a continuous range of body-bias voltage and frequency
values. Instead, as in [14], we assume that the body-bias voltages
and clock frequencies are restricted to a discrete set of uniformly
spaced values, controlled by a digital input. Finally, since each is-
land on a given die can potentially run at a different speed after
body-biasing, we assume that inter-island communication occurs
via point-to-point asynchronous FIFOs [3], while intra-island com-
munication links can be fully-synchronous.

3.3 Variability Modeling
To model the impact of variability on the system, we define the

random vector L = {L1, L2, . . . , LM}, where Li is a random
variable that represents the intrinsic leakage power dissipation (i.e.,
the leakage power dissipation in the absence of any body-biasing)
of PE pi. We compute the distribution of random vector L using
Monte Carlo sampling, although any of the previously proposed an-
alytical frameworks can as easily be used. We model both D2D and
WID variations in transistor gate length and assume that the WID
gate length variations are spatially correlated [5] with the correla-
tion coefficient decaying exponentially with distance, as described
in [16]. We note that while other sources of process variations can
be modeled as well, gate length variations have been shown to be
the dominant source of leakage variability [11]. Figure 3(a) shows
the impact of gate length variation on leakage power dissipation for
an inverter in a 90nm technology.

Now, we define the random vector V = {V1, V2, . . . , VM} to
represent the body-bias voltage that each PE in the design receives
post-silicon. Even though it may be counter-intuitive to think of
body-bias voltages as random variables, the “randomness" arises
from the fact that each fabricated die receives a different body-bias
voltage configuration based on its leakage power values. In fact, as
we will show, computing the distribution of the random vector V is
an important step in our body-bias partitioning framework.

3.4 Impact of Body-Biasing
Body-biasing works by modulating the threshold voltage of the

transistors to which it is connected. Reverse body biasing (RBB)
increases the threshold voltage and thereby decreases the leakage
current of a device, but at the same time increases its delay by re-
ducing the drive strength of the device. The opposite is true for
forward body biasing (FBB). In the proposed framework, all gates
within a PE receive the same body-bias voltage; therefore, a RBB
leads to a decrease in leakage power and an increase in the cycle

time (or decrease in clock frequency) for that PE. In [8], the authors
show that the impact of body-biasing on delay and leakage power
can be modeled as linear and quadratic functions of the body-bias
voltages. Let L̃i be the leakage power dissipation random variable
for PE pi after body-biasing, we can write:

L̃i = Li(1 + αVi + βV 2
i ),∀i : pi ∈ P (2)

Furthermore, a change in the frequency of PE pi due to body-
biasing will also proportionally affect the execution latency of all
the tasks mapped to it. If we denote by λ̃i the execution latency of
task ti after body-biasing, we can write:

λ̃i = λi(1 − γVM1(i)),∀i : ti ∈ T (3)

Figure 3(b) shows the dependence of the cycle time and leakage
power dissipation of a simulated five stage ring-oscillator in a 90nm
technology on the body-bias voltage. As can be seen, the linear and
quadratic fits are extremely accurate and are used to compute the
coefficients α, β and γ in Equation 2 and Equation 3.

4. SYSTEM PARTITIONING INTO BODY-
BIAS ISLANDS

Having described the assumptions and mathematical notation,
we now move towards solving the body-bias partitioning problem,
i.e., finding the best mapping, M2 : P → B, from PEs to body-
bias islands. Recall that we have M PEs and K body-bias islands,
which yields a design space of KM possible partitioning options.
Exhaustively searching the design space is clearly infeasible, even
for small problem sizes. Instead, we solve this problem in two
steps: we first assume that the multiple processor system is parti-
tioned at the finest possible granularity, i.e., each PE lies in a sep-
arate body-bias island. Under this assumption, we then find the
optimal body-bias distribution for each PE using a novel convex
optimization based approach. Once we know the optimal distribu-
tions of body-bias voltages for each PE, we would like to assign the
PEs that have similar body-bias voltage distributions (i.e., are more
likely to be set at similar body-bias voltages) to the same body-bias
island. This is done by defining an appropriate distance measure
over the body-bias voltage distributions and projecting the result-
ing pair-wise distances matrix in a two-dimensional space. The fi-
nal step involves clustering the points in the two-dimensional space
using a single run of the k-means clustering algorithm. This yields
the final design time partitioning of PEs into body-bias islands.

We note that a similar idea of computing body-bias distributions
at the finest granularity has been used in [8], although their focus
was on gate-level partitioning to meet global clock frequency con-
straints. Moreover, unlike the work in [8] that needs multiple runs
of an optimization loop to compute the body-bias distributions, our
proposed convex optimization formulation is run only once, yield-
ing a significant improvement in run-time. Furthermore, the dis-
tance measure that we define over the computed body-bias voltage
distributions is tuned to account for the significant degree of het-
erogeneity in the size, leakage power dissipation, and performance
of the PEs that multiprocessor systems exhibit. Ignoring this het-
erogeneity can yield sub-optimal results.

4.1 Body-bias Voltage Distributions
The first step of the algorithm is to compute the body-bias volt-

age distributions Vi for each PE pi ∈ P , assuming that each PE
lies in a separate body-bias island. We first write the total leakage
power dissipation random variable after the impact of body-biasing,
Ltot, as:

Ltot =
M∑

i=1

L̃i =
M∑

i=1

Li(1 + αVi + βV 2
i ) (4)
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We would now like to minimize the expectation of the total leakage
power random variable. This gives the following objective func-
tion:

min
V

E(
M∑

i=1

Li(1 + αVi + βV 2
i )) (5)

Note that the feasible space of the minimization is over all possible
distributions of the random vector V . We now add the performance
constraints that ensure that the deadline, Δ, at each terminal node
in the task graph T must be met. To do so, we can rewrite Equation
1 as:

∑

i:ti∈φj

λi(1 − γVM1(i)) ≤S Δ,∀j : φj ∈ Φ (6)

It is important to note that the L.H.S. of Equation 6 is now a ran-
dom variable that represents the latency of each path in the task
graph under the impact of body-biasing. As a result, we have re-
placed the simple inequality in Equation 1 with a stochastic in-
equality constraint represented by ≤S . The stochastic inequality
constraint simply means that the random variable of path delay for
each path must always be less than the deadline constraint, Δ; i.e.,
the constraint must be met with probability 1. This problem, as
defined by the objective function in Equation 5 and the constraints
represented by Equation 6, does not admit an efficient solution [2].
To make the problem tractable, we use an idea from the adjustable
robust optimization approach presented in [1, 9] - we assume that
the unknown variable, i.e., the random vector V , is an affine func-
tion of the known leakage power random vector L. In other words,
we write each Vi as:

Vi =
M∑

j=1

sijf(Lj),∀i : 1 ≤ i ≤ M (7)

where sij ∈ R (1 ≤ i, j ≤ m) and f : R → R can be any arbitrary
function. In matrix form, Equation 7 can be written simply as V =
Sf(L), where S ∈ R

M×M . The advantage of this assumption
is that it reduces the search space from all possible distributions of
the random vector V to a search for the best matrix S, which makes
the problem more tractable. Rewriting the objective function and
constraints in terms of S, we get:

min
S

α
M∑

i=1

M∑

j=1

sijE(Lif(Lj))

+β
M∑

i=1

M∑

j=1

M∑

k=1

sijsikE(Lif(Lj)f(Lk)) (8)

While we omit the detailed proof due to space constraints, we note
that the objective function in Equation 8 is a convex function of the
elements of S.

The constraints from Equation 6 can also be expressed in terms
of S as follows:

∑

i:ti∈φj

M∑

k=1

λi(1 − γsM1(i)kf(Lk)) ≤S Δ,∀j : φj ∈ Φ (9)

To convert the stochastic inequality in Equation 9 to a regular in-
equality, we relax the constraint that delay of each path should al-
ways be less than the deadline to a constraint that ensures that the
deadlines are met with high probability. If δi represents the path
delay random variable for path φi (i : φi ∈ Φ), we can rewrite
Equation 9 as:

E(δi) + η
√

V ar(δi) ≤ Δ,∀i : φi ∈ Φ (10)

where V ar represents the variance of a random variable. The co-
efficient η determines the probability with which the path delay
random variable is required to meet the deadline constraint; in par-
ticular, this probability is an increasing function of the coefficient,
η. In our experiments, we find that setting η = 3 provides uni-
formly good results. Note that this is a design time approximation
only; after fabrication, we ensure that every fabricated die meets
the deadline constraints. While we omit details of the proof of con-
vexity of the constraints described by Equation 10 due to space
limitations, we note that the random variable δi (∀i : φi ∈ Φ) is a
linear weighted sum of set of random variables, where the weights
are real valued and unknown; i.e., the elements of the S matrix.
Equation 10 can therefore be converted to an equivalent convex
second order cone (SOC) constraint [2], one for each path in the
task graph. We now obtain a convex program in standard form,
with the minimization of a convex objective function (Equation 8),
over a convex feasible region (Equation 10). This can be solved in
polynomial time by any standard convex optimization toolbox (we
use the publicly available cvx tool from Stanford University).

Note that the formulation described above is convex for any choice
of the function f . In practice, we found that using f(Li) = 1√

Li

provides the most accurate results across all the benchmarks we
tested. This is, in fact, not surprising because: (1) the body-bias
voltage is a decreasing function of leakage power dissipation, since
PEs with high leakage tend to be set to a low body-bias voltage, and
(2) the leakage power has a quadratic dependence on the body-bias
voltage. Also, we note that the algorithm requires us to compute a
number of expectation terms over functions of the leakage power
dissipation random variables, for example E(Lif(Lj))(1 ≤ i, j ≤
n). Since we have characterized the distribution of L in Section 3.3,
the expectation terms can be computed using either fast numerical
integration algorithms or Monte Carlo estimation. We use the lat-
ter because of its ease of implementation. Finally, even though we
said that the body-bias voltages are restricted to lie within a dis-
crete set of values for practical reasons, it is clear that we have not
enforced that constraint in our body-bias voltage prediction formu-
lation. This is done on purpose - imposing that restriction would
make the problem NP-complete. Furthermore, the purpose of this
step is only to determine at design time which PEs are more likely
to receive similar body-bias values, (not to actually assign these
voltages to the fabricated die), thereby making our assumption rea-
sonable.

4.2 Body-bias Voltage Clustering
In the previous Section we outlined a convex optimization ap-

proach to determine the body-bias voltage distribution of each PE,
assuming that it lies in a separate body-bias island. We would now
like to group PEs that are assigned similar body-bias voltage dis-
tributions together. This allows a coarse granularity partitioning of
body-bias islands to mimic, as closely as possible, the finest gran-
ularity body-bias island partitioning in which each PE can inde-
pendently tune its body-bias voltage. We begin by computing a
“distance" between each pair of PEs in the design that represents
their affinity to lie in the same body-bias island.

While computing the distance between two body-bias voltage
distributions, it is insufficient to simply compare their statistics,
such as mean and variance, of the distributions. Consider a sce-
nario in which the body-bias voltage distributions of two PEs have
the same mean and variance but are negatively correlated. Let us
also assume that the mean of the distributions is zero. In this case,
every time one of the PEs is tuned to a positive body-bias volt-
age (FBB), the other PE will receive an RBB and vice-versa. As
a result, these PEs may not be good candidates for allocation to
the same island, though a distance computed only using their mean
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and variance terms may indicate otherwise. A second concern that
is particularly relevant in the case of heterogeneous multiprocessor
systems is that the PEs that contribute more to the overall leakage
power dissipation should be less likely to be allocated to islands
where their body-bias distributions are changed significantly from
the ideal distributions with the finest granularity of body-bias par-
titioning. To account for both these factors, we define a distance
measure dij between PE pi and pj as:

dij = E(Li + Lj)E((Vi − Vj)
2),∀1 ≤ i, j ≤ M (11)

where the distance between the voltage distributions of two PEs is
quantified by the E((Vi − Vj)

2) term, while the “inertia" of PEs
that contribute significantly to the total leakage power is quantified
by the E(Li + Lj) term.

The final step of the body-bias partitioning framework is to project
the computed pairwise distances into a low dimensional space. As
an analogy, it is useful to think of a situation in which we have
the pairwise distance between a set of “cities" (PEs) and we want
to reconstruct the locations of these cites on a 2-dimensional map.
These reconstructed locations can then be used to cluster the “cities"
into the desired number of groups. This problem falls under a broad
family of techniques known as multidimensional scaling - we use
the classical multidimensional scaling algorithm (also called Torg-
erson Scaling) presented in [13], to obtain, for each PE pi ∈ P , a
tuple (xi, yi) that represents its location in a 2D Euclidean space.
We now use a standard k-means clustering algorithm on the set of
M points in a 2D space to obtain the mapping M2 : P → B.
This completes our description of the variability-aware design time
partitioning of PEs into body-bias islands. In the next section, we
discuss post-fabrication tuning of the body-bias voltages for each
island for every fabricated die.

5. POST-FABRICATION TUNING
Once the PEs are clustered into K body-bias islands at design

time and the design is manufactured, the next problem is to opti-
mally select the body-bias voltage assignments for each manufac-
tured die using the measured leakage power dissipation values for
that die. Consider a single manufactured die with leakage power
dissipation vector l = {l1, l2, . . . lM}, where li is the leakage
power dissipation of PE pi (∀i : pi ∈ P ). Note that unlike the
leakage power random vector L that was used in the design time
partitioning, l is a set of fixed numbers for a given die, and is an
instance of the L random vector. Let v∗ = {v∗

1 , v∗
2 , . . . , v∗

M} be
the optimum body-bias voltages for each PE on the die. Since our
objective is to minimize the leakage power dissipation each die, we
can write v∗ as:

min
v

M∑

i=1

li(1 + αvi + βv2
i ) (12)

Next, we must constrain PEs that lie in the same body-bias island
to receive the same voltage, based on the mapping from PEs to
body-bias islands M2. This gives us the following constraint:

vi = vj ,∀(i, j) : M2(pi) = M2(pj) (13)

The performance constraints can be written as:

∑

i:ti∈φj

M∑

k=1

λi(1 − γvM1(k)) ≤ Δ,∀j : φj ∈ Φ (14)

Finally, as discussed in Section 3.2, the body-bias voltage values
are, in practice, restricted to a discrete set of uniformly spaced val-
ues. Let this discrete set of voltage values be vb = {vb1, vb2, . . . , vbF},
where vb1 ≤ vb2 . . . ≤ vbF . This gives us a final set of constraints:

vi ∈ {vb1, vb2, . . . , vbF },∀i : 1 ≤ i ≤ M (15)

Unfortunately, restricting the body-bias voltage to a discrete set
yields a computationally expensive combinatorial optimization prob-
lem. On the other hand, since the optimization algorithm needs to
be run repeatedly for each manufactured die, its run-time needs to
be kept as low as possible. With this in mind, we relax the con-
straints in Equation 15 to the following constraint:

vb1 ≤ vi ≤ vbF ,∀i : 1 ≤ i ≤ M (16)

to yield a quadratic programming problem that can be efficiently
solved. Let the solution of the relaxed optimization problem, con-
sisting of the objective function in Equation 12, and the constraints
specified in Equation 13, Equation 14 and Equation 16, be repre-
sented by v′. To recover v∗ from the relaxed solution v′, we use a
simple greedy algorithm that begins by setting each body-bias volt-
age from the relaxed solution, v′, to the next highest voltage in the
discrete set vb. Then, in each subsequent iteration, we reduce the
body-bias voltage of the island that provides the maximum leakage
power savings from this reduction, while still satisfying the perfor-
mance constraints. The iteration stops when none of the islands can
have their body-bias voltages reduced any further without violating
the performance constraints.

6. EXPERIMENTAL RESULTS
For our experiments, we use the two largest applications from

the E3S benchmark suite [4] - the telecom and auto-industry ap-
plications, consisting of 30 and 24 tasks respectively. The ap-
plications are mapped to heterogeneous multiprocessor platforms
consisting of embedded processors drawn from the E3S embedded
processor database. Specifically, the telecom application is mapped
and scheduled to two separate multiprocessor systems consisting of
24 (telecom-24) and 28 processors (telecom-28), while the smaller
auto-industry application is mapped and scheduled to two systems
with 16 (auto-16) and 20 processors (auto-20) respectively. This
gives a set of four benchmarks to test our proposed framework on.
So as to model realistic designs, for each benchmark, we set the
deadlines at the terminal nodes such that all the constraints are
tight, i.e., the terminal nodes do not have any additional slack.
Finally, the multiprocessor systems are floorplanned using an in-
house, simulated annealing based slicing-tree floorplanning algo-
rithm with an area minimization objective.

The process variation model and the impact of body-biasing on
leakage and delay are characterized for a BPTM 90nm technology
library, as described in Section 3.3 and Section 3.4. The total 3σ
value of gate length variation is assumed to be 15% of the nominal
gate length, and the spatial correlation model is configured such
that correlations become negligible at half the die length [5].

As a baseline to compare the proposed design time body-bias
island partitioning algorithm with, we use a Monte-Carlo based ap-
proach, similar to the one presented in [8] to compute the distri-
bution of the body-bias voltage vector V . For fairness, we use the
same clustering algorithm for the Monte-Carlo approach that was
used for the proposed approach.

After design-time partitioning of the system using the proposed
and Monte-Carlo approaches, which we will henceforth refer to as
Proposed and MC respectively, we generate 5,000 post-fabrication
die instances of the partitioned designs, and for each die, we as-
sign optimal body-bias voltages for each island using the technique
described in Section 5. The post-silicon voltage assignments are
restricted to lie in a discrete set of 32 values, corresponding to a 5-
bit digital control for the on-chip body-bias voltage generators [14].
Finally, to highlight the advantages of variability-aware partition-
ing proposed in this work, we also compare our results against a
variability-unaware approach, similar to the one presented in [10],
that considers only the nominal leakage power dissipation values
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Figure 4: % reduction in the mean (μ) and standard deviation
(σ) of leakage power dissipation as a function of the number of
body-bias islands in the system for the Proposed, MC and Static
approaches.

of each PE to create body-bias islands and statically assign them
to their best body-bias voltages (referred to as Static). Figure 4
shows the % reduction in the mean, μ, and standard deviation, σ,
of the total leakage power dissipation compared to the original de-
sign for all four benchmarks and as a function of the number of
body-bias islands into which the design is partitioned. Addition-
ally, each graph in Figure 4 is annotated with the speed-up in run
time of the partitioning algorithm obtained by using the Proposed
approach compared to the MC approach for the given benchmark.
From the results we can make the following observations:

• Both the Proposed and MC approaches lead to significant
reduction in the mean (average 28.25% and 28.24% re-
duction across all benchmarks) and standard deviation
(average 48.27% and 48.1% reduction across all bench-
marks) of the leakage power dissipation as compared to
the original design. On the other hand, the Static approach
can only provide a 19.6% average reduction in the mean and
only 14% reduction in the standard deviation of the leakage
power dissipation.

• The Proposed approach provides an average 38× speed-
up in design-time partitioning as compared to the MC
approach, without any loss in performance. This speed-up
in run-time can be extremely crucial if optimal design-time
partitioning into body-bias islands is included as an inner op-
timization loop within a larger variability aware framework
that includes mapping, scheduling and floorplanning. We de-
marcate exploring this possibility as future work.

• Increasing the number of body-bias partitions helps the vari-
ability aware approaches more than the Static approach. In
fact, for the Static approach, increasing the number of
body-bias islands provides no additional reduction in the
standard deviation of the leakage power dissipation for
three of the four benchmarks we studied.

The results presented in this paper can be used by system-level de-
signers to explore variability-aware decisions that provide a trade-
off between increased implementation complexity and reduced leak-
age variability - for example, the choice of adaptive versus static
body-bias assignment, the number of body-bias islands and the
number of body-bias voltage levels for each island.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an efficient and scalable frame-

work for leakage variability-aware, system-level partitioning of a
design into body-bias islands and post-silicon ABB voltage assign-
ment for each island. Our results indicate the computational effi-
ciency of our approach compared to a previously proposed Monte-
Carlo partitioning approach (average 38× speed-up), with similar
leakage power savings. Our results indicate that up to 40% re-
duction in the mean and up to 62% reduction in the standard
deviation of the leakage power can be obtained using the proposed
framework, compared to the original design. As future work, we
plan to integrate our design-time partitioning approach into a com-
prehensive variability-aware system-level mapping and floorplan-
ning framework.

8. REFERENCES
[1] A. Ben-Tal et al. Adjustable robust solutions of uncertain

linear programs. In Math. Program., pages 351–376, 2004.
[2] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, 2004.
[3] T. Chelcea and S. Nowick. Robust interfaces for

mixed-timing systems with application to latency-insensitive
protocols. In Proceedings of DAC, 2001.

[4] R. Dick. E3s: The embedded system synthesis benchmarks
suite.

[5] P. Friedberg et al. Modeling within-die spatial correlation
effects for process-design co-optimization. In Proceedings of
ISQED, 2005.

[6] J. Gregg and T. Chen. Optimization of individual well
adaptive body biasing using a multiple objective evolutionary
algorithm. In Proceedings of the 6th ISQED, 2005.

[7] J. Kao et al. Subthreshold leakage modeling and reduction
techniques. In Proceedings of ICCAD, 2002.

[8] S. Kulkarni et al. A statistical framework for post-silicon
tuning through body bias clustering. In Proceedings of
ICCAD, 2006.

[9] M. Mani et al. Joint design-time and post-silicon
minimization of parametric yield loss using adjustable robust
optimization. In Proceedings of ICCAD, 2006.

[10] U. Ogras et al. Voltage-frequency islands partitioning for
gals based networks-on-chip. In Proceedings of DAC, 2007.

[11] R. Rao et al. Statistical estimation of leakage current
considering inter-and intra-die process variation. In
Proceedings of ISLPED, 2003.

[12] R. Teodorescu et al. Mitigating parameter variation with
dynamic fine-grain body biasing. In Proceedings of MICRO,
2007.

[13] W. S. Torgerson. Multidimensional scaling: theory and
method. In Psychometrika, 1952.

[14] J. Tschanz et al. Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on
microprocessor frequency and leakage. In IEEE Journal of
Solid-State Circuits, 37(11), 2002.

[15] F. Wang et al. Variability-driven module selection with joint
design time optimization and post-silicon tuning. In
Proceedings of ASP-DAC, 2008.

[16] J. Xiong et al. Robust extraction of spatial correlation.
Proceedings of ISPD, 2006.

278


