
Power Reduction via Macroblock Prioritization for
Power Aware H.264 Video Applications

Michael A. Baker, Viswesh Parameswaran, Karam S. Chatha, and Baoxin Li
Department of Computer Science and Engineering

Arizona State University
Tempe, Arizona 85281

{mike.baker, vparames, karam.chatha, baoxin.li}@asu.edu

ABSTRACT
As the importance of multimedia applications in hand-held
devices increases, the computational strain and correspond-
ing demand for energy in such devices continues to grow.
Portable multimedia devices with inherently limited energy
supplies face tight energy constraints and require optimiza-
tion for energy conservation. Power-aware applications give
their users flexibility to prioritize and trade between perfor-
mance and battery-life.

This paper introduces a power-aware technique for user
selectable power reduction in exchange for controlled reduc-
tions in video quality for H.264 video streams. The tech-
nique uses an encoder-decoder pair. The encoder character-
izes video streams and provides information to the decoder
via Flexible Macroblock Ordering (FMO) by generating pri-
oritized slice groups. The decoder selectively ignores low
priority slice groups based on user selected preference ef-
fectively reducing the decoder workload. With a reduced
computational requirement, processor voltage and frequency
scaling (DVFS) significantly improve decoder power perfor-
mance within timing constraints. Our PXA270 system im-
plementation resulted in power savings of as much as 53%
with an average PSNR per frame of 24dB compared to the
unmodified video.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [measurement techniques,
performance attributes]; K.8.1 [Personal Computing]: Ap-
plication Packages—graphics

General Terms
Performance, Measurement

Keywords
H.264, MPEG4, Video, Low Power, Power Aware, Voltage
Scaling, Frequency Scaling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

1. INTRODUCTION
Multimedia applications are among the most computa-

tionally expensive commonly found applications in portable
devices. They are also among the most power hungry. Ded-
icated portable multimedia devices such as MP3 players are
increasingly expected to deliver video content as well as the
traditional audio. Cell phones and handheld computers have
begun to merge into a new class of devices facing the same
demands. Consumers find devices which can provide all of
these services from telephone to personal digital assistant
to internet browsing and watching video-on-demand more
convenient than having the same services provided by mul-
tiple devices. A portable device struggling with a myriad of
tasks and a limited power budget faces numerous opportu-
nities for power conservation by focusing effort and limiting
resources on certain tasks. The concept of Power Aware de-
vices as presented in [12] asserts that the device should be
able to choose an appropriate power saving mode by direct
user input, based on the user’s history, or automatically by
sensing the environment.

Consider a situation where a portable multimedia device
user wants to watch a video program for the duration of air-
line flight, but remaining battery power only affords video
for half the duration. Under these circumstances users are
willing to sacrifice Quality of Service (QoS) in exchange for
increasing the time service is available. Power Aware appli-
cations provide users the flexibility to exercise this type of
trade-off.

Our Power Aware H.264 system provides user selectable
degrees of power saving effort in exchange for controlled QoS

reduction. Our goal is to reduce the amount of computation
required to decode the H.264 stream. We achieve this goal
by skipping carefully selected blocks during video stream de-
coding. Based on the number of skipped blocks, we can pre-
dict the resulting speed-up in the decoder and use Dynamic
Voltage and Frequency Scaling (DVFS) to reduce power con-
sumption. Our H.264 encoder-decoder system classifies mac-
roblocks in each frame into slice groups using Flexible Mac-
roblock Ordering (FMO) described in the H.264 standard
[15]. Our prioritization algorithm determines which blocks
in each frame are the most expendable and organizes them
into slices accordingly. Slice groups corresponding to dif-
ferent QoS measures are then selectively omitted from the
decoding process based on user preference. We compare the
effect on QoS and power savings using two types of error con-
cealment. Simple Copy Forward Error Concealment (CF-
ERC) provides replacement data from the previous frame
with a very inexpensive copy based solely on macroblock

261

location. Motion Vector Error Concealment (MV-ERC) is
more computationally expensive, but provides substantially
improved QoS.

The experimental results in Section 5 demonstrate that
both techniques are capable of enabling significant power
savings of up to 53% and 29% compared to the fully de-
coded video stream. In some cases, particularly using Mo-
tion Vector error concealment, the power savings are signif-
icant, while degradation to QoS is minimal. Significantly,
our encoded stream is also compatible with standard H.264
decoders without support for our slice dropping scheme.

Next we present some relevant background on H.264 and
QoS concepts. Previous work will be discussed in Section 2,
in Section 3 we introduce the encoder-decoder system, and
discuss modifications to the JM version 12.4 reference en-
coder and decoder [2]. Our experimental setup is explained
in Section 4 followed by our results and conclusion.

1.1 H.264
The H.264/Advanced Video Coding (AVC) codec is part

of the MPEG-4 suite of multimedia standards. The first
revision of the standard, completed in May 2003, sought to
address increasing demand on video bandwidth associated
with growing services like High Definition Television and
internet based streaming video applications [15].

H.264 implements a number of improvements over previ-
ous video codecs which collectively result in reductions of up
to 50% in bandwidth requirements for the same level of im-
age quality. The savings result from extensive analysis and
optimization in the encoder which serves to minimize redun-
dancy in the video stream, but comes at a significant cost
in computational complexity. The H.264 decoder’s complex-
ity is about 2.4 times that of a comparable H.263/MPEG2
decoder [4].

Reduced bandwidth makes H.264 bitstreams particularly
useful for hand-held applications using video streams trans-
mitted over a wireless network where bitrates are limited and
bandwidth comes at an absolute premium. In addition, stor-
age capacity in a mobile device may also be limited. Unfor-
tunately the increased computational complexity that comes
with reduced bandwidth has obvious negative consequences
for portable devices relying on battery power supplies.

1.2 Quality of Service
For our purposes, QoS is objectively defined as the level

of distortion introduced into a video at the individual frame
level and across several frames as a result of discarding resid-
ual data from macroblocks. We use Peak Signal to Noise
Ratio (PSNR) calculated between the unmodified video and
the same video with discarded data. We consider a PSNR
value around 25dB to be acceptable for a low power mode.
Values close to 35dB and higher are considered acceptable
for more expensive computations. This range corresponds
with the expected PSNR performance of a lower quality low
bit-rate video stream vs. a high bit-rate [3]. More details are
provided in Section 3.3. The Video Quality Measurement
Tool from MSU is used to collect PSNR data for individual
video frames [13].

2. PREVIOUS WORK
Several publications have focused on the effects of network

packet loss on streaming video quality, methods for recov-
ering from packet loss and encoder optimizations designed

to improve video streams’ robustness against packet loss. In
[11], a priority drop scheme manages prioritized data flow
on a network for frame dropping, and dynamically variable
coefficient quantization enabling graceful QoS degradation
under variable network conditions. Our encoded stream is
suited for similar packet prioritization, but without neces-
sary modifications to the video coding standard. Addition-
ally, reducing quantization levels in the decoder does not
provide significant computational savings relative to block
or frame dropping, and slice dropping provides better res-
olution version of frame dropping. [6] analyzes the video
stream in the compressed domain, pruning the compressed
data based on a model which estimates the effect on distor-
tion. This scheme is aimed at mobile devices on a network
where each device has limited computational ability con-
sidered by the video server which appropriately modifies the
compressed data stream. The transcoding scheme focuses on
computational constraints while minimizing the introduced
distortion, but it relies heavily on frame dropping and does
not provide measured distortion injection in contrast to our
approach.

Video decoding workload is highly variable. Significant
effort has gone toward predicting workload for the purpose
of DVFS for power optimization. [14] gives two methods for
predicting workload in MPEG streams in order to effectively
scale frequency and voltage. [3] describes a method for dy-
namically choosing IDCT algorithms in order to exchange
quality for energy. In [5] three techniques are introduced
for taking advantage of multimedia applications tolerant to
deadline misses enabling opportunities for DVFS. Here, data
points are dropped from the stream exchanging quality for
power savings; however, unlike our scheme, the impact of
individual data points on QoS is not considered.

3. POWER AWARE H.264 APPLICATION
We implemented our encoder-decoder pair by modifying

the JM H.264/AVC reference encoder and decoder version
12.4. Our goal was to free the decoder from the maxi-
mum amount of computation while minimizing the degrada-
tion introduced into the decoded video stream. We accom-
plish this by selectively skipping or dropping from the video
stream blocks which introduce the least amount of distor-
tion into the video output. The decoder need not perform
dequantization or inverse integer transform operations on
the dropped blocks, effectively reducing the time required to
decode a given video stream. The resulting speedup enables
application of Frequency and Voltage Scaling for potentially
significant reductions in power consumption.

Our encoder generates H.264 video streams inserting an
I frame every twelfth frame from which no blocks will be
dropped followed by eleven P frames with prioritized blocks.
We use the Group of Pictures (GOP) sequence:

{I, P, P, P, P, P, P, P, P, P, P, P }

The I frame uses intra-coding exclusively so that no error in-
troduced during block dropping will propagate beyond this
frame. The P frames in the sequence use inter-coding in
which blocks from each P frame may be reconstructed us-
ing data from the previous I or P frame in the video se-
quence. These inter-coded frames will propagate errors from
one frame to the next when a motion vector points to areas
in the previous frame impacted by dropped blocks.

262

At this point we avoid introducing B frames which use
motion vectors in both the forward and reverse direction
into the data stream in order to simplify analysis of the
decoded video stream. However, adding B frames to the
encoded stream in the future will improve bandwidth effi-
ciency, and reduce the propagation of distortion introduced
by dropped macroblocks. Since B frames are not normally
used as reference frames for Copy Forward or Motion Vec-
tor Copy operations, blocks dropped from B frames will not
propagate at all. Additionally, inserting a B frame between
two P frames means that the effect of distortion spreading
to multiple blocks through multiple motion vectors is lim-
ited to one stage over three frames instead of two as is the
case with a sequence of three P frames. Adding B frames to
the stream does; however, increase the computational load
on the decoder, potentially reducing power efficiency.

3.1 Error Concealment
H.264 includes provisions for error concealment to min-

imize video quality degradation in the event of lost data
such as dropped network packets or missed decoding dead-
lines. Error concealment functions typically replace an en-
tire missing frame or block with buffered data from a previ-
ously decoded frame. In the JM reference software, “conceal
by copy” replaces a missing block with its predecessor from
the previous frame. A“conceal by trial” replaces the missing
macroblock after evaluating the surrounding blocks to find
one whose motion vector points to data minimizing the dis-
tortion at the edge of the missing block. These two actions
loosely correspond to the error concealment actions taken
by our two decoder schemes. We use “conceal by copy” for
error correction in the simple CF-ERC decoder, and a mod-
ified version of “conceal by trial” for the MV-ERC decoder.
Since we selectively drop available blocks in the decoder, any
motion vector data calculated for a given macroblock is still
available to us. This provides the opportunity to replace the
macroblock using its motion vector data rather than a sim-
ple copy forward. This method is guaranteed to introduce
the minimum amount of distortion into the video stream
as the unmodified H.264 motion compensation algorithm in
the encoder has carefully selected the motion vector data for
each block to do exactly that.

3.2 Error Propagation
Error introduced in one video frame decreases as it prop-

agates forward due to leakage in the prediction loop [9]. Al-
though distortion introduced through macroblock dropping
need only be considered over the course of a window of sev-
eral frames [9], errors for a given frame can be approximated
as the sum of the propagation errors since the last I frame
[10].

Errors introduced through macroblock dropping propa-
gate to the next frame each time a macroblock in the follow-
ing frame references the dropped block via motion vector.
All or part of the distortion caused by the dropped mac-
roblock is carried forward when each dependent block in
the following frame is reconstructed from its correct resid-
ual data added to the distorted data present in the previous
(reference) frame.

We define the amount of error or distortion introduced
into the video stream by a single macroblock, MB, in terms
of Mean Squared Error (MSE). For our purpose, MSE de-
fined between the nth block in the current frame m, MBm

n

and the block in the same location from the previous frame,
MBm−1

n is given by

MSE (MBm
n)

= 1

162

∑

15

i=0

∑

15

j=0
||MBm

n (i, j) − MBm−1

n (i, j)||2
(1)

where A(i, j) is the Y component of the pixel at position
(i , j) in the 16 × 16 pixel block A. We derive the frame
distortion from macroblock dropping, Dm from the sum of
MSE (MBm

n) values across all n macroblocks in the frame

Dm =
n−1
∑

i=0

MSE(MBm
i) (2)

The total distortion of frame m, D̂m can be estimated as
the sum of the distortion due to dropped macroblocks added
to the distortion already present and propagated forward
from the previous frame

D̂m = Dm + D̂m−1 (3)

Since our system does not drop macroblocks from I frames,
and I frames are decoded independently without inter-coding,
the distortion in any I frame is considered to be zero. Thus,
the total distortion, D̂ present in the first P frame, m follow-
ing an I frame is D̂m = Dm. We can adjust for the attenua-
tion of distortion from the previous frame, D̂m by multiply-
ing by an empirically determined scaling factor 0 ≤ α ≤ 1
before adding Dm giving

D̂m = Dm + α · D̂m−1 (4)

3.3 Encoder Modification
The modified JM12.4 reference encoder prioritizes and or-

ders blocks within each frame according the amount of dis-
tortion, MSE (MB) we would introduce into the stream if the
block were dropped by the decoder. Blocks with the smallest
MSE are considered more expendable, and are placed at the
beginning of the list. Blocks with larger MSE are considered
more important and are placed at the end of the list.

After prioritizing the macroblocks, the encoder begins di-
viding the blocks into 6 slice groups numbered from 0 to
5. The most expendable blocks are placed in slice group 5

which will be the first slice dropped in the decoder. The
most important blocks are placed in slice group 0 which is
never dropped in the decoder. Each slice group has asso-
ciated with it an acceptable level of total distortion, D̂m

which acts as a threshold when assigning macroblocks to
slice groups. The threshold is estimated from user selected
Y -component PSNR values for each slice group. PSNR is
given by

PSNR = 10 · log
10

(

MAX 2

MSE

)

(5)

where MAX is the maximum pixel value, in our case 255.
Given a desired value for PSNR, we can calculate the asso-
ciated MSE by

MSE =
MAX 2

10PSNR/10
(6)

Since this value is an average across all macroblocks in
one frame, we multiply MSE by the number of macroblocks

263

in the frame to find the allowable distortion or distortion

threshold for slice group s, Ds. For CIF video, 352 × 288
gives us 22 × 18 blocks, or 396 macroblocks per frame, and
Ds = 396 · MSE.

The encoder builds slice groups for each frame starting
at the low distortion end of the prioritized macroblock list
and adding macroblocks to the lowest priority slice group as
long as the sum of their distortions does not exceed the pre-
viously calculated distortion threshold for that slice group.
The result is a slice group for each distortion threshold such
that dropping any slice and all higher numbered (more ex-
pendable) slices results in a level of distortion described by
the distortion threshold for the dropped slice. During this
process, the encoder also checks each macroblock’s distor-
tion in all three components (YUV) against an individual
macroblock threshold and immediately adds failing blocks to
slice 0. This check prevents the encoder from adding blocks
when plenty of room for additional distortion is available to
an expendable slice group, but adding it would introduce
obvious artifacts into the video stream.

3.4 Decoder Modification
We modified the JM12.4 reference decoder to drop slices

from the modified H.264 stream in accordance with a user
selected mode. The user chooses a desired level of QoS per-
formance in order to reduce power consumption in the de-
coder by selecting the number of slice groups to keep in the
stream. For example, placing the decoder in 6 slice mode

will not drop any slices. On the other hand, placing the de-
coder in 1 slice mode will drop slice 1 and any higher num-
bered slices, decoding only the most important slice, slice
0. Based on the user selected mode, the decoder performs
error concealment to replace data in the skipped slices. We
implemented two decoders—one using macroblock CF-ERC
and the other using MV-ERC as described in section 3.1.

The decoding loop treats I frames and slice groups num-
bered smaller than the mode number normally, reading and
decoding each macroblock. Slice groups with identification
numbers equal to or greater than the mode number are
skipped. The CF-ERC decoder does not read or decode
blocks in these slices so that they are treated as lost by the
error concealment function. The error concealment func-
tion is modified to ensure that conceal by copy is the only
method used for error concealment, avoiding the conceal by
trial function to minimize computational complexity for per-
formance reasons. The MV-ERC decoder does read each
macroblock in a dropped slice in order to obtain the associ-
ated motion vector data, but the coefficient data is not read,
and the block is never decoded. Each block from a dropped
slice is marked as lost in order to trigger error concealment,
and a modified version of the conceal by trial function is
used to recover the motion vector data for each marked mac-
roblock copying data from the previous (reference) frame in
accordance with the motion vector information.

In our testbed, preliminary results indicated that using
motion vectors for error concealment in all three video com-
ponents (YUV) was so computationally expensive that it
wiped out any savings achieved through avoiding integer
transform and dequantization operations. The process of
rebuilding blocks by performing motion compensation can
take 55% of the decoder’s effort [1]. As a result, we use
motion vector error concealment only for the Y component,
and simple copy forward to replace dropped UV data.

Glencoe Idle Power Consumption

With Frequency Scaling, 2N = 3

150

200

250

300

350

400

450

500

550

141516171819202122232425

L value

60

70

80

90

100

110

120

130

140

Frequency

PowerP
o

w
e
r

(m
W

)

F
re

q
u

e
n

c
y
 (M

H
z
)

Figure 1: Glencoe DVFM Characteristics

Table 1: Speedup and DVFM frequency for decoder
in 1-slice mode for CF and MV decoders.

CF MV
Video Speedup f(MHz) Speedup f(MHz)

akiyo cif 25% 351 9% 429
container cif 57% 312 16% 409.5
highway cif 43% 331.5 6% 448.5
soccer cif 30% 370.5 5% 448.5

tempete cif 65% 292.5 14% 429
waterfall cif 57% 312 17% 409.5

The CF-ERC decoder provides better power performance
than the MV-ERC alternative. In addition to skipping block
decoding, it avoids the expenses of recovering motion vector
information from the video stream and later dereferencing
it to perform error concealment. However, the improved
power performance implies reduced QoS. Although the en-
coder classifies blocks based on their distortion with respect
to the same block (same position) used in CF-ERC, the MV-
ERC method will regularly reconstruct a replacement block
with less distortion resulting in improved QoS as discussed
in Section 3.1.

4. EXPERIMENTAL SETUP
We generated H.264 video streams for 16 benchmark videos

using our modified JM12.4 encoder. These streams were
then decoded through the two modified JM12.4 decoders on
a Linux server, with an Intel(R) Xeon(TM) CPU running at
2.80GHz with 4GB RAM and on the Intel Glencoe Develop-
ment Platform running Linux 2.6.9 on the XScale-PXA270
rev 4, with 64MB RAM.

Power measurements were obtained for a subset of the
16 benchmark videos using the PXA270 Vcore voltage touch
point on the Glencoe Development Platform with a Keith-
ley 2000 Multimeter sampling at 100Hz with the decoder
running each video in each mode. Voltage samples were col-
lected and analyzed in Labview to obtain an average power
reading over several iterations of 1024 samples each. These
results are presented in the next section.

The Linux port for the Glencoe Development board in-
cludes a utility for Dynamic Voltage and Frequency Manage-
ment (DVFM) [7]. Frequencies are set by giving the utility
a clock multiplier, L, and a turbo mode multiplier, 2N. The
base clock frequency of 13MHz is multiplied by L · N to
obtain the desired frequency [8].

In order to obtain a piecewise-linear power function in
terms of L and 2N, it was necessary to fix the 2N value.

264

Power Consumption by Slice Mode

Copy Forward ERC

0
50

100
150
200
250
300
350
400
450
500

akiyo_cif

container_cif

highway_cif

soccer_cif

tempete_cif

waterfa
ll_cif

Video Title

P
ow

er
 (

m
W

)

6 slice
5 slice
4 slice
3 slice
2 slice
1 slice

(a) Copy Forward Error Concealment

Power Consumption by Slice Mode

Motion Vector ERC

0
50

100
150
200
250
300
350
400
450
500

akiyo_cif

container_cif

highway_cif

soccer_cif

tempete_cif

waterfa
ll_cif

Video Title

P
ow

er
 (m

W
)

6 slice
5 slice
4 slice
3 slice
2 slice
1 slice

(b) Motion Vector Error Concealment

PSNR by Slice Mode, CF-ERC: tempete_cif

20

25

30

35

40

45

50

0 6 12 18 24 30 36

Frame Number

P
S

N
R

 (
d

B
)

5 slice
4 slice
3 slice
2 slice
1 slice

(c) Copy Forward Error Concealment

PSNR by Slice Mode, MV-ERC: tempete_cif

20

25

30

35

40

45

50

0 6 12 18 24 30 36

Frame Number

P
S

N
R

 (
d

B
)

5 slice
4 slice
3 slice
2 slice
1 slice

(d) Motion Vector Error Concealment

Figure 2: Power figures by slice dropping mode for Copy Forward (a), and Motion Vector ERC (b). The
PSNR charts show QoS performance for each decoder mode on tempete cif for Copy Forward (c) and Motion
Vector ERC (d).

Table 2: Power and PSNR for decoder in 1-slice
mode for CF and MV decoders.

CF MV
Video P PSNR(dB) P PSNR(dB)

akiyo cif 29% 43.0 7% 43.8
container cif 50% 34.9 29% 37.6
highway cif 33% 34.5 2% 35.7
soccer cif 27% 28.7 0% 32.7

tempete cif 53% 24.1 5% 30.1
waterfall cif 51% 30.5 29% 33.8

We chose a value of 2N = 3 giving the suitable although
non-ideal function of power in terms of frequency for system
idle seen in Figure 1. We use frequencies ranging from the
default value of 468Mhz to 273MHz indicated in the chart
with L values from 24 down to 14. This range of frequencies
crosses three available voltage levels as can be seen in the
figure. The high step on the left corresponds to VDD = 1.5V ,
the middle step corresponds to VDD = 1.4V , and the low
step on the right corresponds to VDD = 1.3V . The power
performance chart for the idle Glencoe board gives an idea of
the power savings we should expect at various frequencies
after implementing DVFM in the decoder. Reductions in
VDD provide significant power savings as expected from the
quadratic relationship between power and supply voltage,
P = Cswitching · V 2 · f .

Our goal is to characterize the decoders’ power perfor-
mance given H.264 streams generated by the modified en-
coder. In the first step, we find the relative speedup expe-
rienced by the decoder when dropping slices and compare
with the speed of the decoder decoding all slices. Relative

speedup determines our ability to slow the decoder with fre-
quency scaling in order to reduce power consumption. To
collect decoder timing data, a 100 frame modified H.264
video stream was generated for each test video. Decoder
frame rate data was then collected over several iterations
for each video in each slice dropping mode on the Linux
server and the Glencoe board in order to verify the Glen-
coe’s performance.

In our analysis, we take the frame rate the Glencoe de-
coder achieves for the full six slice video as the nominal frame
rate against which improved frame rates for slice dropping
modes are compared for frequency scaling purposes. For in-
stance, if the decoder in 1 slice mode decoding akiyo cif fin-
ishes 25% earlier than the same video fully decoded, then we
can slow the clock by 25% and still decode at the same frame
rate. The adjusted frequency is given by f ′ = t′ · fdefault/t
where t′ is the improved decoding time, and fdefault is the
default frequency 468MHz. This value must be adjusted up
to the next available frequency in our DVFS scheme. For
akiyo cif, the calculated frequency, f ′ = 348.7MHz must
be adjusted up to the next available frequency, 351MHz at
VDD = 1.4V .

5. RESULTS
Timing results for the CF-ERC and MV-ERC decoders in

1-slice mode are given in Table 1 with the computed DVFM
frequency used for each video on the Glencoe board. The
associated power savings for a given video and frequency
are listed in Table 2 along with average P frame PSNR.
Significant power savings were obtained from the CF-ERC
decoder, in some cases without substantial impact on PSNR.
The MV-ERC decoder achieves much smaller power savings
due to the significant complexity of handling motion vectors

265

(a) akiyo cif

(b) soccer cif

Figure 3: Example of last P frame decoded before
next GOP demonstrating image quality for the Copy
Forward (middle) and Motion Vector Error Conceal-
ment (right) vs. the fully decoded video (left).

during decoding, but it does a much better job of preserv-
ing image quality. The two videos with the lowest PSNR
values decoded using the CF-ERC decoder see the largest
QoS improvement when the MV-ERC decoder is used. An
example of QoS performance of both encoders is presented
over all slide dropping modes for tempete cif in Figures 2(c)
and 2(d). The controlled introduction of distortion into the
video can be seen as well as the QoS improvement intro-
duced through MV-ERC.

The power measurements obtained for each video and de-
coder slice dropping mode are shown for both decoders in
Figures 2(a) and 2(b). The impact of voltage scaling is ev-
ident as power drops significantly each time reducing fre-
quency makes a lower VDD available as predicted in Figure
1. Figure 2(b) illustrates unpredictable performance when
using MV-ERC. Performance varies for both CF and MV
schemes with variations in the transmitted image. There
may be significant variation in MB inter-dependence and
motion-vector densities from one scene or even one frame
to the next. The MV-ERC scheme is particularly suscepti-
ble to these variations due to the expense of decoding with
motion estimation.

6. CONCLUSION
Our H.264 block prioritization scheme successfully enabled

significant power savings in concert with DVFM. Our ob-
jective QoS measurements indicate acceptable quality per-
formance, but there are several opportunities for improve-
ment. The subjective quality of the decoded videos can be
improved through further tuning of the parameters in the
encoder to reduce artifacts in the decoded image, partic-

ularly focusing on distinguishing foreground objects from
background. Tuning a number of other factors may also im-
prove performance. Some examples are reducing the num-
ber of slice groups which decreases decoding complexity and
bandwidth, considering motion vector data in addition to
distortion data when prioritizing macroblocks, using motion
vectors less aggressively in the decoder for MV-ERC, consid-
ering B frames, and varying the GOP size between I frames.

7. ACKNOWLEDGMENT
V. Parameswaran and B. Li are partially supported by

ARO grant W911NF-06-1-0354.

8. REFERENCES
[1] Y.-K. Chen, E. Q. Li, X. Zhou, and S. Ge. Implementation

of h.264 encoder and decoder on personal computers.
Journal of Visual Communication and Image
Representation, 17(2):509–532, April 2006.

[2] H.264/AVC. Reference software.
http://iphome.hhi.de/suehring/tml/.

[3] R. Henning and C. Chakrabarti. A quality/energy tradeoff
approach for idct computation in mpeg-2 video decoding.
In IEEE Workshop on Signal Processing Systems. 2000.

[4] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro.
H.264/avc baseline profile decoder complexity analysis.
IEEE Transactions on Circuits and Systems for Video
Technology, 13(7):704–716, July 2003.

[5] S. Hua, G. Qu, and S. Bhattacharyya. An energy reduction
technique for multimedia application with tolerance to
deadline misses. In DAC Proceedings, pages 131–136. June
2003.

[6] Y. Huang, A. V. Tran, and Y. Wang. A workload
prediction model for decoding mpeg video and its
application to workload-scalable transcoding. In
Proceedings of the 15th international conference on
Multimedia, pages 952–961. 2007.

[7] M. Ihmig. Porting linux 2.6.9 to the pxa270 based
development platform. research collaboration between Intel
and CMU, May 2005.

[8] Intel R©. Intel R©pxa27x processor family developer’s manual.
Intel Order Number: 280000-001, Apr. 2004.

[9] J. G. Kim, J. W. Kim, and C. C. J. Ku. Corruption model
of loss propagation for relative prioritized packet video. In
SPIE Proceedings. July 2000.

[10] J. S. Kim, J. G. Kim, K. O. Kang, and J. Kim. A distortion
control scheme for allocating constant distortion in fd-cd
video transcoder. In IEEE International Conference on
Multimedia and Expo, pages 161–164. June 2004.

[11] C. Krasic, J. Walpole, and W. Feng. Quality-adaptive
media streaming by priority drop. In Proceedings of the
13th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages
112–121. 2003.

[12] C. Lian, S. Chien, C. ping Lin, P. Tseng, and L. Chen.
Power-aware multimedia: Concepts and design
perspectives. IEEE Circuits and Systems Magazine,
7(2):26–34, Second Quarter 2007.

[13] MSU. Video quality measurement tool v. 1.52.
http://compression.ru/video/.

[14] D. Son, C. Yu, and H.-N. Kim. Dynamic voltage scaling on
mpeg decoding. In Proceedings of the Eighth International
Conference on Parallel and Distributed Systems. June
2001.

[15] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra.
Overview of the h.264/avc video coding standard. IEEE
Transactions on Circuits and Systems for Video
Technology, 13(7):560–576, July 2003.

266

