
Static Analysis of Processor Stall Cycle Aggregation ∗

Jongeun Lee
Jongeun.Lee@asu.edu

Aviral Shrivastava
Aviral.Shrivastava@asu.edu

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85281

ABSTRACT
Processor Idle Cycle Aggregation (PICA) is a promising approach
for low power execution of processors, in which small memory
stalls are aggregated to create a large one, and the processor is
switched to low-power mode in it. We extend the previous pro-
posed approach in two dimensions. i) We develop static analy-
sis for the PICA technique and present optimum parameters for
five common types of loops based on steady-state analysis. ii) We
show that software only control is unable to guarantee its correct-
ness in a varying runtime environment, potentially causing dead-
locks. We enhance the robustness of PICA with minimal hardware
extension, ensuring correct execution for any loops and param-
eters, which greatly facilitates exploration based parameter opti-
mization. The combined use of our static analysis and exploration
based fine-tuning makes the PICA technique applicable, to any
memory-bound loop, with energy reduction. We validate our ana-
lytical models against simulation based optimization and also show
through our experiments on embedded application benchmarks, that
our technique can be applied to a wide range of loops with average
20% energy reductions compared to executions without PICA.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and appli-
cation-based systems—Real-time and embedded systems;
D.3.4 [Software]: Programming languages, Processors—Code gen-
eration, Compilers, Optimization

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
Low power, code transformation, embedded systems, memory bound
loops, processor free time, stall cycle aggregation
∗The authors would like to thank Eugene Earlie, Intel Inc., and
Kalyan Basu, Microsoft for their insightful ideas. We would also
like to thank Microsoft Research and Science Foundation of Ari-
zona (SFAz) for their support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

1. INTRODUCTION
Power may well be the single most important concern in the de-

sign of battery-operated handheld devices. The battery is typically
the prime determinant of the weight, volume, shape, size, charg-
ing time, charging frequency, and ultimately the usability of the
portable system. Consequently decreasing the power consumption
of embedded processors is an important research concern.

Many power reduction techniques fundamentally save power when
the full performance is not needed. While Dynamic Voltage and
Frequency Scaling (DVFS) techniques [1] attempt to discover ex-
ecution intervals when the processor can be slowed down, Dy-
namic Power Management (DPM) implemented using clock gating,
power gating, etc. [2] attempt to discover opportunities to stop the
processor, or parts thereof, without hurting the performance. Such
DPMs are realized in processors in the form of power states; e.g.,
the Intel XScale processor has 3 low-power states, IDLE, DROWSY,
and SLEEP. However, the time to switch to even the shallowest low
power mode, IDLE, is 180 processor cycles and additional 180 pro-
cessor cycles to come back from it. Interestingly, when the Intel
XScale is executing, although the processor experiences memory
stalls almost 30% of the time (IPC = 0.7), practically no stall is
more than 360 processor cycles. Thus while the total stall time is
significant, each stall duration is too small to save power by switch-
ing the processor to low-power state. Consequently, most previous
techniques attempt to switch the processor to low-power states in
between applications, or when task deadlines are known before-
hand such as in real-time systems.

We earlier proposed a technique [3] to collect several small stalls
together to create a large stall in memory-bound loops. Processor
power can be saved by switching the processor to low-power mode
during the large stall. The aggregation technique is a hardware-
software cooperative approach in which the compiler analyzes the
application to find out what needs to be prefetched. It delegates the
task of large scale prefetching to a programmable prefetch engine
and switches to low-power mode. The prefetch engine brings data
from the memory to the cache on behalf of the processor, and it
wakes up the processor at a pre-determined time. The processor
wakes up and operates on the data in the cache without any mem-
ory stalls. Figure 1 plots the computation and data transfer rates
(number of useful cycles per every 100 cycles) for a simple loop,
before and after applying processor aggregation. In (b), soon after
cycle 3000 prefetch is activated and the processor is switched to the
IDLE state for about 1000 cycles. Once the processor is woken up
it runs much faster because there is no memory stall. Because of
large scale prefetching, the data transfer rate is higher in the pro-
cessor aggregation case, and there is a runtime reduction of about
20%.

While processor stall cycle aggregation can reduce processor

25

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9

time (Kcycle)

CPU

Mem

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

time (Kcycle)

CPU

Mem

IDLE
State

Prefetch

Higher CPU
& Mem Util

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9

time (Kcycle)

CPU

Mem

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

time (Kcycle)

CPU

Mem

IDLE
State

Prefetch

Higher CPU
& Mem Util

(a) Before aggregation (b) After aggregation

Figure 1: CPU and memory utilization (Percentage of cycles when useful work is done).

power consumption without performance penalty for memory-bound
loops, the previous proposal has several limitations. In this paper,
we significantly enhance our previously proposed aggregation tech-
nique, both in terms of applicability and energy efficiency, and call
it PICA (Process Idle Cycle Aggregation).

(i) Previous aggregation approach depended on the compiler to
estimate key parameters of aggregation, i.e., wakeup timew, which
is the number of lines that the prefetch engine should fetch before
waking up the processor. Due to the non-determinism in the mem-
ory speed the processor may not wakeup from the low-power state,
resulting in a deadlock. In this paper we enhance the aggregation
mechanism with hardware deadlock prevention mechanism. A ma-
jor advantage of our deadlock-free PICA is that it enables us to
determine the PICA parameters by simulation, making PICA appli-
cable to any loop, with power reductions on memory-bound loops.

(ii) Static code analysis to determine aggregation parameters pre-
sented in the previous proposal worked only for a specific kind of
loop. We profile several important applications, classify the kinds
of loop present, and develop code analysis techniques for them.
This makes PICA applicable to a wide variety of important appli-
cations.

(iii) Finally, we propose to find the starting values of the PICA
parameter exploration through static compiler analysis, and then
fine tune it by simulations to achieve the maximum energy savings.
PICA achieves average 20% power reduction on a wide variety of
loops.

2. RELATED WORK
DVFS [1, 4] implementation requires a voltage regulator which

is fundamentally different from a standard voltage regulator be-
cause it must also change the operating voltage for a new clock
frequency [5]. This and more considerations result in high transi-
tion overhead for DVFS. The Intel XScale processor has frequency
switching time of 20µs [6, 7]. Consequently, in order to hide
the penalty of voltage regulation, DVFS is applied at the context
switching granularity, typically by the operating system.

In contrast, DPM implemented using clock gating, power gat-
ing, body biasing, etc. [2, 8] has relatively low transition overhead.
Stopping parts of the processor, such as power gating of functional
units, has a penalty of about 10 processor cycles, and therefore can
be controlled by the compiler. However, stopping the whole pro-
cessor has much higher overhead, thus not being exploited by com-
pilers.

Our PICA approach collects small stalls and creates a long stall
so that the processors can be profitably switched to low-power. This
technique is primarily based on large scale prefetching. Software
prefetching techniques [9] augment the application code with fetch
instructions, which will bring additional lines from the memory.

1: for (i = 0; i < N ; i++) do
2: Any statements involving i
3: end for

(a) Original loop

1: setPrefetchArray addr, stride, #lines, · · ·
2: startPrefetch
3: for (j = 0; j < N ; j+=T) do
4: procIdleMode w
5: M = min(j + T,N)
6: for (i = j; i < M ; i++) do
7: Same statements involving i
8: end for
9: end for

(b) PICA-transformed loop

Figure 2: Simplified PICA transformation.

Similarly, hardware prefetching mechanisms [10] predict what will
be needed next in the hardware itself, and request the predicted
data. In either case, prefetching data that will not be used, i.e.,
incorrect prediction increases cache pollution and degrades power
and performance.

While the issue of when to prefetch is simple in small scale
prefetching mechanisms, for large scale prefetches proper schedul-
ing is very important so as not to overwrite still-to-be-used data in
the cache. While scratch pad management techniques [11, 12, 13]
attempt to solve this problem, they do not consider cache eviction
and write-back. In this paper, we present steady-state analysis of
the data in the cache for several kinds of loops, and increase the
applicability and effectiveness of PICA approach by answering the
question of “when to prefetch.”

3. DEADLOCK-FREE PICA
Figure 2 shows the loop transformation that is required to per-

form processor stall aggregation. While the prefetch of the required
data is initiated at the beginning of the loop, the original loop, that
ran from i = 0 to i = N , has to be tiled into “tiles” of size T .
Within each tile, in line 4, the processor is first put into the low-
power mode with parameter w. The prefetch continues to transfer
data between the cache and the memory, and after it has made a
request for w lines, it wakes up the processor. When the processor
wakes up, it will work on the data present in the cache. But since it
will consume data faster than memory can produce, T is computed
so that the tile ends just when all the data in the cache is used up,
and the processor will miss in the cache if it continues anymore. w
is computed under the constraint that memory should not overwrite
the still-to-be-used data in the cache. Both these parameters are

26

Table 1: Modified prefetch engine behavior
Instruction Description
setPrefetchArray Add to counter1 the number of lines to request
startPrefetch Start counter1 (decrement it by one for every line

completed)
procIdleMode w Set counter2 to w and put processor into sleep mode

only if w ≤ counter1, otherwise do nothing. Also
start counter2 (decrement it by one for every line
completed; upon reaching zero wake up the processor)

estimated by the compiler. However, due to indeterministic cache
state, variable memory speed, or incorrect estimation ofw, it is pos-
sible that during the time when the processor is awake, it may fetch
more lines than estimated by the compiler. Note that the number
of lines fetched while the processor is in low-power mode is con-
trolled by the parameter w, but the number of lines fetched when
the processor is awake is not controlled. This mismatch in the ac-
tual memory speed and the compiler estimated memory speed may
result in more lines being fetched than what compiler estimated. If
less then w lines remain to be fetched when the processor goes into
the idle mode, then it will not be able to get out of the idle mode,
as the prefetch engine will not generate w requests.

To avoid deadlocks we add a simple hardware logic to the prefetch
engine, which checks whether there are enough lines to fetch be-
fore putting the processor to the idle mode. This can be imple-
mented with little overhead using a counter for the number of the
remaining line requests. The prefetch engine commands have to be
modified accordingly, as summarized in Table 1. (Previously sep-
arate commands, setProcWakeup and procIdleMode, are merged
into one, procIdleMode.) In addition to making PICA robust, this
enhancement greatly improves the applicability of our technique.
In the previous approach, the compiler was responsible to estimate
w and T , so as to avoid the deadlock. Pessimistic estimates by
the compiler to guarantee correctness resulted in lower energy re-
ductions. Since PICA avoid deadlocks, it facilitates exploration-
based parameter optimization. We can aggressively explore the pa-
rameter space and find the optimal PICA parameters w and T for
any memory-bound loop to maximize the energy reduction. This
greatly enhances the applicability of PICA on complex programs,
which may be out of the reach of traditional compiler analysis.

4. ANALYTICAL PICA OPTIMIZATION
Although PICA parameters can be determined through an explo-

ration based approach, the exploration space is quite large. The
upper bound on T is the number of iterations. An upper bound on
w is the minimum of total number of lines in the cache and the
total number of lines programmed to be prefetched. Since explo-
ration based PICA parameter optimization may be time consuming,
it is valuable to develop analytical techniques to optimize PICA pa-
rameters. We present our analysis on steady-state optimal PICA
parameters for common types of loops.

4.1 Loop Classification
We studied several multimedia and DSP applications to find out

all the memory bound loops. Most of the loops with compile-time
deterministic access pattern fall into the 7 types listed in Table 2,
which classifies loops based on the multiplicity of arrays in the
loop (AM), the multiplicity of references to each array (RM), and
whether (or which) references have the same speed (SS).

Type 1 is the simplest and a generalization of the only case ad-
dressed in our earlier work [3]. Types 2 and 5 allow different ar-

Table 2: Loop classification
Type AM RM SS Example

1 multi single all ref.’s A[i] +B[i] + C[i]
2 multi single none A[i] +B[2i]
3 single multi all ref.’s A[i] +A[i+ 10]
4 multi multi all ref.’s A[i] +A[i+ 10] +B[i] +B[i+ 20]
5 multi multi all ref.’s to

same array
A[i] +A[i+ 10] +B[2i] +B[2i+ 30]

6 single multi none A[i] +A[2i]
7 multi multi none A[i] +A[2i] +B[i+ 10] +B[3i+ 15]

rays to be accessed at different speeds.1 The last two types allow
references to the same array to have different speeds. In this case
accurate steady-state analysis becomes very difficult, since the dis-
tances2 between the references also change over time. In fact there
are only two modes—when the distance is short enough the refer-
ences can be considered to be overlapping, but when the distance
is long enough they behave just like separate references to different
arrays. And because the distance changes over time, we cannot de-
termine the parameter value that is optimal at all times throughout
the iterations.

We have analytically computed the PICA parameters w and T
for the first five types of loops. Due to the lack of space we present
only the analysis of type 4 loops, which are moderately complex al-
lowing multiple arrays with multiple references and are more gen-
eral than types 1 and 3.

4.2 Input
We consider innermost loops only, since prefetching for nested

loops may require much more complex prefetch functionality than
simple stride. Multi-dimensional arrays can be treated in our work
as they can be easily converted to single-dimensional arrays ac-
cessed with strides. In the steady state a write reference is equal
to two read references at the same speed in terms of data transfer.
Thus we consider only read accesses in the analysis. For static anal-
ysis we assume fully-associative caches and FIFO (First-In-First-
Out) replacement policy.

An array may be accessed by one or more references. We con-
sider references that are affine linear expressions of the iterator. The
production rate pi of a reference is the average number of cache
lines newly needed by the reference per iteration. This is the rate at
which the prefetch engine needs to produce data ideally. For exam-
ple, if iterator i is incremented by one, A is an 4-byte integer array,
and the data cache has 32-byte lines, a reference A[i + k1] will
need a new cache line every eight (= 32/4) iterations. Therefore
the production rate of this reference is p1 = 1/8. Another refer-
enceA[a i+k2], under the same conditions, will need a new cache
line every 32/(4a) iterations if a ≤ 8. If a > 8, this reference will
need a new cache line every iteration. Therefore the production rate
for this reference is p2 = min(a/8, 1). Constants, k1 and k2, do
not affect the production rates.

4.3 Array-Iteration Diagram
We use array-iteration diagram to capture the data access pattern

of references in a loop, in space and time, as illustrated in Figure 3.
The vertical axis represents the elements of arrays. The horizontal
axis represents time in terms of data transfer iterations. The du-
ration from 0 to Ip(= T) represents a tile of a loop. We define
production as bringing data from the memory into the cache for a
1Speed means coefficient of the iterator.
2Distance is defined as the difference of the constant terms when
the speeds are the same. With different speeds it is the difference
between two access functions.

27

ar
ra

y
el

em
en

ts

Iw Ip

d 1 iteration

DAP PCP

d 2

c i+k4

0t1t2

Array A

Array B

Δi

p i

p i+k3

p i

p i+k5

c i+k6

Previous Period

L/2

L/2

Figure 3: Array-iteration diagram for a type 4 example.

speculative use, performed by the prefetch engine, and consump-
tion as the use of data by the processor with no expected reuse of
the data in the near future. There are two sets of lines in the dia-
gram. The ones with slope p are production lines, for data prefetch.
The ones with slope c are consumption lines, representing the iter-
ations at which each line of array elements is last used by the pro-
cessor. Thus a line of array elements is present in the cache from
the production line until the consumption line. The area bounded
by the two lines (shaded area in the figure) represents the useful
cache lines at each iteration, and the largest height of the area at Iw

signifies that the number of useful cache lines is the maximum at
Iw. Iw is the data transfer iteration of the moment when the pro-
cessor is woken up, and divides a tile into two phases: DAP (Data
Accumulation Phase) and PCP (Production-Consumption Phase).

The ratio (γ) between production rate and consumption rate is
constant for every reference in a loop, and is determined by the ratio
of Iw and Ip. Since the amount of production during Ip should be
equal to the amount of consumption during (Ip−Iw), there is such
a relationship: ci/pi = Ip/(Ip − Iw) = γ > 1.

Optimal PICA prefetching schemes should meet the following
constraints. (Constraint 1) In order to maximize the processor idle
time stretch for the given data production and consumption rates,
we need to make the most use of the cache. This means that the
number of useful cache lines at Iw should be as close to the cache
size as possible. (Constraint 2) At the same time we have to make
sure that the cache evicts only those cache lines that have become
useless (or have been consumed by the processor). We refer to this
constraint as no eviction of useful cache lines. Since our assumption
is that the cache, whenever necessary, blindly evicts the oldest lines,
the utilization of the cache may have to be sacrificed to some degree
to satisfy this more important constraint.

4.4 Solutions
In a type 4 loop all the references have the same speed. Figure 3

illustrates the array-iteration diagram. There are two arrays and
two references accessing each array all at the same speed; all the
production lines have the same slope (p) and all the consumption
lines have the same slope (c). The distance between references of

an array is denoted as di, and d2 is greater than d1 as indicated in
the figure.

At Iw the number of useful lines is the maximum: d1 + d2 +
2p Iw. For the maximal use of the cache we would like this value
to be equal to the total number of cache lines; however, this can-
not be achieved unless d1 = d2. The problem occurs in the DAP
phase. In the DAP phase the question is whether all the di lines
reused from the previous tile can remain in the cache until Iw. Let
t1 be (−d1/p) and t2 be (−d2/p). All the useful cache lines at
Iw have been brought in between t2 and Iw iterations, and can be
classified as follows, where negative iterations mean iterations into
the previous tile.

• During t2 ∼ t1: p(t1 − t2) = d2 − d1 lines brought from array B

• During t1 ∼ 0: p(−t1) = d1 lines each from arrays A and B

• During 0 ∼ Iw: p Iw lines each from arrays A and B

It is obvious that all the lines brought after t1 will remain in
the cache until Iw, since there are only 2d1 + 2p Iw lines that are
read after t1, which is less than d1 + d2 + 2p Iw. However, in
order to make the (d2 − d1) lines from array B read between t2
and t1 remain in the cache until Iw, we have to make the same
number of lines from array A remain in the cache as well (the area
filled in yellow)—there is no distinction between the two arrays
from the cache’s perspective. This is why we cannot fully utilize
the cache at Iw; we have to keep (d2 − d1) useless lines from
array A as well. Thus the optimal value of Iw is given as Iw =
(L/N − maxi(di))/p = L/Np − maxi(di/p), where L is the
number of cache lines and N is the number of arrays in the loop.

To guarantee no eviction of useful cache lines in the PCP phase,
consider the ∆i iterations after Iw. During this time, 2p∆i new
lines are brought into the cache, causing the same number of lines
to be evicted. Since in the steady state the two arrays are symmet-
rical in that the cache holds the exactly same number of lines from
each array and they were brought in during the same time period.
Therefore the cache will evict the oldest p∆i lines from each ar-
ray. Since there are at least c∆i lines that have become useless by
then, all the evicted lines are indeed useless lines. This proves that
there is no eviction of useful cache lines, and therefore PICA can
be successfully applied to type 4 loops.

Type 5 is a combination of type 2 and type 4. While not shown
here, it is possible to show that the optimal Iw parameter for type
5 is Iw = L/

∑
i pi − maxi(di/pi), which is also the general

formula for all the five types.

4.5 Memory Speed
Suppose that a loop has N references to prefetch and let each

reference have production rate pi, which can be found analytically
from the optimized code. Then this loop makes on average

∑
i pi

line requests every iteration. Using cycle-per-line measure (CPL),
which is the average number of cycles that it takes to bring in one
line of data into the cache, the number of data transfer cycles per
iteration (D) is D = CPL

∑
i pi = Wline · rclk/(Wbus α)

∑
i pi,

where Wline and Wbus are the widths of the cache line and the
bus, respectively, rclk is the ratio of clocks between the bus and
the processor core, and α is a positive number between 0 and 1
representing the memory efficiency. The number of computation
cycles per iteration (C) can be found easily through simulation for
a perfect cache, or C = Ninstr · CPI, where Ninstr is the number
of instructions in the loop body and CPI is the cycle-per-instruction
of the processor. Then the relationship between Ip and Iw is as

28

Table 3: Calculation of optimal parameters
Type pi; di

∑
pi D C γ Iw w T

1 1/2, 1/2, 1/2 1.5 48 9 5.3 150 225 184
2 1/4, 1/2, 1 1.75 56 8 7 128 225 150
3 1; 64 1 32 8 4 217 217 289
4 1, 1; 32, 64 2 64 13 4.9 104 209 131
5 1/2, 1; 32, 64 1.5 48 14 3.4 142 213 200

follows.

γ = Ip/(Ip − Iw) = D/C = CPL
∑

i

pi/C

= Wline/Wbus · rclk/(α · C)
∑

i

pi

Memory-boundness means that this ratio should be greater than
1. Once the optimal value of Iw is determined, the two PICA
parameters w and T can be determined easily: w = Iw

∑
i pi,

T = Ip = Iw · γ/(γ − 1).

5. EXPERIMENTS
In our experiments we use our XScale processor simulator, which

has been validated against the 80200 XScale Evaluation Board [7]
to be accurate within 7% on average in cycle count measurement.
The prefetch engine is modeled in the simulator. We compile both
the original and the transformed code using the GCC compiler tar-
geted for the XScale architecture with -O3 option.

XScale L1 data cache is configured to be 32-way 32K bytes with
32-byte lines unless noted otherwise. We assume write-back, first-
in-first-out policy. We assume the processor-memory clock ratio
of 8.3 We use the energy models from previously published liter-
ature [3, 14]. Our XScale processor runs at 600MHz and can be
either Run state (450 mW active, 112.5 mW stall) or MyIdle state
(50 mW), the latter of which is an extension of the IDLE state with
prefetch, during which the data cache and the prefetch engine are
kept active. Every memory access (8-word transaction) consumes
additional energy of (9.46 + 32.5) nJ. Only dynamic power is con-
sidered in our experiments; however, including leakage power will
lead to greater power savings by our methods.

5.1 Validation of Analytical Model
We perform the validation comparing analysis-predicted results

against exploration-found results. Based on the problem classifica-
tion we generate a loop for each of the first five types. References
included in those loops are read-only. Table 3 lists the main param-
eters of the five loops and their predicted optimal values ofw and T
using our analytical model. Then we also perform extensive param-
eter exploration on T using simulation. The reason why we chose
to perform parameter exploration only on T and not on w is that
in many cases the optimal values of w can be found trivially—the
number of available cache lines minus, if any, the number of reused
lines—and does not vary much depending on the application (see
Table 3). For the validation experiments we use a smaller cache
with only 256 lines to reduce the search space for exploration. Out
of the 256 lines we assume that only 225 lines are available to the
PICA technique. But since we use the same values of w both in
the analysis and in the exploration, it does not invalidate our ex-

3Although 8 times slower bus and memory clock may seem too
slow for the processor running at 600 MHz, many Systems-on-
Chips have several IP cores heavily accessing the external memory,
reducing the effective bandwidth available to the processor and in-
creasing the effective clock ratio.

Table 4: Exploration vs. analysis results
Type T ∗ T E∗ E E0 (E − E∗)/E∗

1 175 184 0.577 0.596 1.106 3.3%
2 150 150 0.674 0.674 1.312 0.0%
3 250 289 0.383 0.399 0.884 4.2%
4 125 131 0.786 0.813 1.470 3.4%
5 175 200 0.594 0.623 1.121 4.9%

0.0

0.5

1.0

1.5

2.0

50 75 100 125 150 175 200 225 250 300 325

7168
6144
5120
4096
3072
2048
1024

T

E
 (m

J)

Figure 4: Energy for different T (type 5).

periments. To see the stead state effect we also vary the number of
iterations from 1024 to 7168.

Figure 4 plots the system energy consumption (in mJ), which is
the sum of processor energy and bus and memory energy, for differ-
ent values of T and iteration count (N) for type 5. Other results are
similar to the type 5 results, and runtime results are also similar to
energy results. Table 4 compares the exploration-found results with
analysis-predicted values for all the five cases. Through exploration
we first find the optimal parameters (T ∗) and their system energy
(E∗). Then the analytically computed parameters (T) are used in a
simulation to find the system energy for those parameters (E). E0

is the system energy without PICA. These comparisons are made
for N = 7168. In all these cases we observe that in the steady
state analytically found values are relatively close to experimen-
tally found values (the largest difference is 39 for type 3). More
importantly, the difference in the energy is very small, all less than
5%, and far less than the differences from E0. This demonstrates
that our analytical model can predict with accuracy the steady-state
optimal PICA parameters for the five classes of loops. For more
complicated loops (such as those with conditionals inside the loop
body) we can employ simulation-based exploration, even when our
analytical model can be used to determine the starting point as well
as to reduce the search space.

5.2 Benchmark Results
To demonstrate the usability of our enhanced PICA technique

we apply PICA to memory-bound kernels in various benchmarks.
We use kernels from DSPstone [15], SPEC 95 [16], and multimedia
applications. Unlike in our earlier work [3], thanks to the deadlock-
free mechanism we can apply PICA to any memory-bound loops,
creating a larger set of kernels available for our experiments. Also,
all the kernels we use fall into the first 5 types: type 1 (Swim3,
SNR), type 2 (Matrix), type 3 (LowPass, Compress, Wavelet), type
4 (LMS, Swim1, Swim2, Laplace, SOR), and type 5 (GSR). Mem-
ory accesses that are hard to prefetch, such as writes, irregular
memory accesses, and arrays that are already in the cache, are
ignored for the classification.4 For each kernel we optimize the

4The reported system energy does include all the memory accesses
(e.g., irregular memory accesses, writes). Also, the ratio between

29

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

(a) System energy reduction

0%

20%

40%

60%

80%

100%

120% CPU PFE

(b) Memory access profile

Figure 5: Kernel simulation results.

PICA parameters for system energy, using both analytic method
and exploration-based fine-tuning together. It took about 1 ∼ 2
hours of manual work to analyze each application and instrument
the code for PICA optimization, and the exploration-based fine-
tuning took typically less than one hour, thanks to the reduced
search space by our analytical method.

Figure 5 (a) shows the system energy reduction by our PICA
technique over when PICA is not used. The experimental results
indicate that (1) our PICA technique is applicable to many memory-
bound loops with consistent system energy improvement, (2) when
the parameters are fully optimized, using exploration our PICA
technique can reduce the system energy up to 42% compared to
without PICA.

While energy improvement depends on a number of factors in-
cluding γ (= D/C), cache size, and iteration count, Matrix kernel
suggests that γ is very important. In Matrix, where two 2D arrays
are multiplied, one array has to be accessed on the higher dimen-
sion. This greatly increases D since for every iteration at least one
line of cache has to be fetched from memory, which is very rare
in other applications. Thus if these memory accesses can be dele-
gated to the prefetch engine, CPU will be relieved of much of its
work and the processor energy, as well as the system energy, can
be reduced considerably.

Figure 5 (b) plots the memory access profile with our PICA tech-
nique, i.e., how many accesses are generated by the prefetch engine
(PFE) vs. by the CPU. The scale is normalized to the number of
memory accesses generated without PICA (measured in transac-
tions). Thus in the graph every total being near 100% means that
the total number of memory accesses generated is roughly the same
irrespective of PICA. With PICA, however, the more memory ac-
cesses the PFE does, the larger the energy saving will be. Indeed

prefetch engine-issued accesses vs. CPU-issued (e.g., irregular)
ones is shown in Figure 5 (b).

we see a strong correlation between energy reduction in (a) and the
PFE portion of memory access profile in (b).

6. CONCLUSION
Our enhanced PICA greatly improves robustness and applica-

bility of processor stall aggregation based power reduction tech-
niques. First our enhanced PICA can guarantees functional correct-
ness for any set of parameters. Second our enhanced PICA facili-
tates exploration-based parameter optimization, with which we can
fine tune optimal PICA parameters for any memory-bound loop,
thus greatly improving applicability of the technique. Finally, since
exploration based PICA parameter optimization may be time con-
suming, we developed static analysis for most common types of
loops, thus further improving on its applicability.

Being based on large scale prefetching, our work can provide the
basis to study the effect of cache pollution in large scale prefetch-
ing, which we intend to further optimize. We also plan to extend
our analytical framework to support multi-nested loops and more
complex programs.

7. REFERENCES
[1] K. Choi et al. Fine-grained dynamic voltage and frequency

scaling for precise energy and performance tradeoff based on
the ratio of off-chip access to on-chip computation times.
IEEE Trans. CAD, 24(1):18–28, 2005.

[2] M. Gowan et al. Power considerations in the design of the
alpha 21264 microprocessor. In DAC, pages 726–731, 1998.

[3] A. Shrivastava et al. Aggregating processor free time for
energy reduction. In CODES+ISSS, pages 154–159, 2005.

[4] A. Azevedo et al. Profile-based dynamic voltage scheduling
using program checkpoints. In DATE, page 168, 2002.

[5] T. Burd et al. Design issues for dynamic voltage scaling. In
ISLPED, pages 9–14. ACM, 2000.

[6] Intel Corporation. Intel XScale(R) Core: Developer’s
Manual. [Online]. Available:
http://www.intel.com/design/intelxscale/273473.htm.

[7] Intel Corporation. Intel 80200 Processor based on Intel
XScale Microarchitecture. [Online]. Available:
http://www.intel.com/design/iio/manuals/273411.htm.

[8] J. Rabaey and M. Pedram, editors. Low Power Design
Methodologies. Kluwer Academic Publishers, 1996.

[9] T. Mowry et al. Design and evaluation of a compiler
algorithm for prefetching. In ASPLOS, pages 62–73, 1992.

[10] S. VanderWiel et al. Data prefetch mechanisms. ACM
Computing Surveys, 32(2):174–199, 2000.

[11] E. Brockmeyer et al. Layer assignment techniques for low
energy in multi-layered memory organisations. In DATE,
pages 1070–1075, 2003.

[12] I. Issenin et al. Data reuse analysis technique for
software-controlled memory hierarchies. In DATE, pages
202–207, 2004.

[13] M. Kandemir et al. Compiler-directed scratch pad memory
hierarchy design and management. In DAC, pages 690–695,
2002.

[14] A. Shrivastava et al. Compilation techniques for energy
reduction in horizontally partitioned cache architectures. In
CASES, pages 90–96, 2005.

[15] V. Zivojnovic et al. DSPstone: A DSP-oriented
benchmarking methodology. In ICSPAT, 1994.

[16] SPEC 95. Standard Performance Evaluation Corporation.
http://www.spec.org/.

30

