
Symbolic Voter Placement for
Dependability-Aware System Synthesis

Felix Reimann, Michael Glaß, Martin Lukasiewycz, Joachim Keinert,
Christian Haubelt, and Jürgen Teich

Hardware-Software-Co-Design, Department of Computer Science
University of Erlangen-Nuremberg, Germany

{felix.reimann, glass, martin.lukasiewycz, keinert, haubelt, teich}@cs.fau.de

ABSTRACT
This paper presents a system synthesis approach for de-
pendable embedded systems. The proposed approach sig-
nificantly extends previous work by automatically inserting
fault detection and fault toleration mechanisms into an im-
plementation. The main contributions of this paper are 1)
a dependability-aware system synthesis approach that auto-
matically performs a redundant task binding and placement
of voting structures to increase both, reliability and safety,
respectively, 2) an efficient dependability analysis approach
to evaluate lifetime reliability and safety, and 3) results from
synthesizing a Motion-JPEG decoder for an FPGA platform
using the proposed system synthesis approach. As a result,
a set of high-quality solutions of the decoder with maxi-
mized reliability, safety, performance, and simultaneously
minimized resource requirements is achieved.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided de-
sign (CAD); C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Reliability, Security

1. INTRODUCTION
Embedded systems typically consist of many intercon-

nected processing units, e.g., homogeneous or heterogeneous
MPSoCs, automotive and avionics ECU networks, etc. Since
they are operating under different radiation and varying
temperature conditions, a high dependability of such sys-
tem is needed. For example, high radiation can lead to a
charging of single transistors resulting in so called single
event upsets (SEU) and a fault of the circuit. Whether this
fault affects the circuit’s functionality permanently or tem-
porarily, depends on the device as well as on the location
of the fault, cf. [12]. If the SEU occurs in the configuration
memory cell of an FPGA, the configuration and, hence, the
functionality will be corrupted permanently until the next
reconfiguration is performed. On the other hand, transient
faults occur if the SEU only affects flip-flops.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

In this paper, we propose a new dependability optimizing
system synthesis approach that automatically performs a re-
dundant binding of tasks to increase reliability and inserts
fault detection mechanisms to improve the safety. The fault
detection and, if possible, fault toleration is done by voters
which are hardware resources or software tasks that aim to
find a majority of k identical values delivered by n redun-
dant task instances. Such voters are known as k-out-of-n-
majority voting structures and typically implemented as so
called duplex voter (2-out-of-2-majority) or the well known
Triple Modular Redundancy (TMR, 2-out-of-3-majority).

The entire proposed system synthesis approach is trans-
parent for the designer, i.e., the system specification given
by the designer should be as abstract as possible, while im-
plementation details are hidden and derived automatically
by an optimization process. The optimization process itself
is based on a symbolic multi-objective design space explo-
ration. In order to guide the exploration, an efficient depend-
ability analysis approach that evaluates reliability and safety
is proposed. At this, the Mean Time To Failure (MTTF) to
quantify lifetime reliability and the so called Mean Time To
Unsafe Failure (MTTUF) known from literature to quantify
the safety of a given implementation are used. As a result,
the proposed approach significantly extends previous work
by means of 1) automatically integrating fault detection and
correction mechanisms and 2) automatically evaluating not
only the reliability but also the safety of an implementation,
thus, leading to high-quality solutions. The effectiveness of
our proposed approach is shown by providing results from
automatically exploring the design space of a Motion-JPEG
decoder application and automatically synthesizing the so-
lutions for an FPGA platform.

The remainder of the paper is organized as follows: After
discussing related work in Sec. 2, Sec. 3 gives a motivating
example and a formal problem definition. The design space
exploration performing the redundant task binding and the
voter placement is presented in Sec. 4. Section 5 discusses
the dependability evaluation while results of the Motion-
JPEG decoder case study are presented in Sec. 6.

2. RELATED WORK
For the analysis and design of dependable embedded sys-

tems, several approaches have been presented.
Many dependability-aware design methodologies focus on

permanent faults. Approaches like [19, 21] aim to design de-
pendable embedded systems by adding redundancy. How-
ever, other important objectives, e.g., monetary costs, are
treated as constraints, leading in general to suboptimal so-
lutions. In [11], reliability is treated as an objective during
optimization in a system-level design using simple resource
multiplication. This leads to an enormous deterioration of

237

other objectives, i.e., costs. An approach that overcomes
these drawbacks by using resource reusage via multiple bind-
ing of tasks is presented in [6]. In [24], an approach also con-
sidering the influence of faults on subsequent fault rates due
to the impact of run-time rebinding on temperature profiles
is proposed.

On the other hand, several approaches target dependable
systems design by focusing on the tolerance of soft errors,
i.e., transient and intermittent faults. An approach that
unifies fault-tolerance via checkpointing and power manage-
ment through dynamic voltage scaling is introduced in [23].
In [10], fault-tolerant schedules with respect to hard and soft
timing constraints are synthesized using task re-execution.
The same authors propose another approach in [9], using
rollback recovery and active replication. Finally, in [15] an
approach trading energy for reliability is presented. Again,
task re-execution is used to recover from transient faults.

For all these approaches, fault detection is mandatory,
but not introduced automatically. Although [8] place TMR
structures, the approach is restricted to simplex or fully-
meshed TMR solutions, neglecting in safety in general and,
thus, neglecting the positive aspect of other voting struc-
tures on the dependability of the system. Hence, our ap-
proach differs from the above mentioned approaches by con-
sidering an automatic integration of combined fault detec-
tion and fault toleration mechanisms using arbitrary voter
structures into an embedded system. Note that the fault
detection introduced by our proposed approach can be in-
corporated by the above mentioned approaches relying, e.g.,
on task re-execution, in order to further improve system re-
liability. Moreover, the tradeoffs between the achieved relia-
bility, safety and other objectives typical for embedded sys-
tems, e.g., area and power consumption, throughput, etc.,
can be evaluated by our proposed approach automatically.
To the best of our knowledge, no other publications on au-
tomatically integrating fault detection and fault toleration
mechanisms with respect to many conflicting objectives into
a dependable system design exist.

3. PROBLEM FORMULATION
In this paper, the problem of including dependability-a-

wareness into system synthesis is targeted. This synthesis
determines a set of possible high-quality implementations for
a given system specification by a design space exploration ap-
proach. Afterwards, the designer chooses its preferred imple-
mentation that is synthesized automatically for the desired
platform.

In dependable system design, structural redundancy is an
important technique to improve the system characteristics
with respect to reliability and safety. The usage of voting
structures allows to detect and, if possible, tolerate transient
and permanent errors in case a fail-silent behavior cannot
be assumed. This is typically the case when dealing with
SoCs and MPSoCs. Consider Fig. 1 denoting different vot-
ing structures and their characteristics. With the simplex
structure having lowest cost, the duplex at increased cost
and the TMR at highest cost, the diagram in Fig. 1 shows
the need to consider reliability, safety, and cost together in
the optimization of dependable embedded systems.

For an automated flow, the introduced redundancy and
voting structures should be transparent for the designer but
part of the optimization. Thus, the dependability-awareness
is introduced at the highest design level where transparency
for the designer is still given and, therefore, is embedded in
the phase of design space exploration.

Figure 1: Voting structures and their corresponding
characteristics regarding reliability and safety. The
size of the points in the diagram corresponds to the
cost of the voting structure.

Figure 2: System specification of a Motion-JPEG
decoder consisting of the application, an excerpt of
the available architecture, and mapping edges from
tasks to resources.

In embedded system design, different objectives like, e.g.,
monetary cost, area and power consumption, or dependabil-
ity have to be considered. Thus, the carried out design space
exploration is a multi-objective optimization problem, that
aims to find a set of so called Pareto-optimal implementa-
tions. An implementation is Pareto-optimal, if it is better in
at least one objective when compared to any other feasible
implementation.

3.1 Specification
The used formal specification consists of the architecture,

the application, and the relation between these two views:

• The architecture is modeled by an architecture graph
ga(Va, Ea) and represents possible interconnected hard-
ware resources. The vertices r1, ..., r|Va| ∈ Va represent
the resources, e.g., CPUs, hardware accelerators, mem-
ories, or buses. The edges Ea model available commu-
nication links.

• The application is modeled by a task graph gt(Vt, Et)
that describes the behavior of the system. The vertices
t1, ..., t|Vt| ∈ Vt denote tasks whereas the directed edges
Et are data dependencies.

• The set of mapping edges Em indicates that a specific
task can be executed on a hardware resource. Each
mapping edge m1, ..., m|Em| ∈ Em is a directed edge
from a task to a resource.

An example of a system specification is shown in Fig. 2.

238

3.2 Implementation
An implementation is deduced from the specification and

consists of three main parts:

• The allocation α ⊆ Va represents the resources that
will actually be used in the implementation.

• The binding β ⊆ Em determines on which allocated
resource each task is executed. To enable redundancy,
multiple mapping edges of each task can be activated,
thus, creating several instances per task.

• The voter placement V ⊆ {v1, . . . , v|α|} determines
whether a voter is allocated.

With this knowledge, we define an implementation x as a
triple (α, β, V), with α being a feasible allocation, β being
a feasible binding and V being a feasible voter placement.
An allocation is feasible if there exists a feasible binding for
this allocation.

Definition 1. A binding is called feasible if it guarantees
that all data-dependent tasks are executed on the same or
adjacent resources to ensure a correct communication.

∀(t,et) ∈ Et ∃m = (t, r), em = (et, er) ∈ β :

r = er ∨ (r, er) ∈ Ea (1)

The problem of finding a feasible binding itself is known to
be NP -complete [13]. A voter placement is called feasible if
every task instance that needs a voting of its input data is
able to carry out the voting on an available voter.

4. OPTIMIZATION
The used design space optimization approach performs the

redundant task binding and voter placement. It is based on
the combination of a Pseudo-Boolean (PB) solver [2] and
a modern Multi-Objective Evolutionary Algorithm (MOEA)
[25]. A PB solver is based on a backtracking strategy and
efficiently solves Integer Linear Programs (ILPs) with an
empty objective function and binary variables. The task of
a PB solver is to find an x ∈ {0, 1}n that satisfies a set
of linear constraints with binary variables. A single linear
constraint is formulated as

aT x ◦ b (2)

with a ∈ Z
n, b ∈ Z and ◦ ∈ {<,≤,=,≥, >}. Commonly, the

backtracking strategy in PB solvers is guided by two vectors
ρ ∈ R

n and σ ∈ {0, 1}n defining the priority and desired
phase of a binary variable.

MOEAs are a population-based optimization approach tak-
ing advantage of the principles of biological evolution. The
optimization is done iteratively in two alternating steps, the
variation and selection. In the variation, new solutions, i.e.,
a new generation, is created from a set of existing solutions
in the population. This is done by crossover and mutation
operators. Correspondingly, the selection sorts out the worst
solutions to ensure a convergence to the optimal solutions.
The initial population is typically generated randomly.

Combining the PB solver with an MOEA allows the opti-
mization of the system considering multiple, also conflicting
and non-linear objectives. The main optimization flow is il-
lustrated in Fig. 3. This approach is known as SAT decoding
and has been presented in [13]. It is known to be superior to
common methods that are based on ILPs or MOEAs only.

To utilize this optimization approach, it is necessary to en-
code the problem of finding a feasible allocation and binding,
as well as the voter placement into an ILP by defining a set
of linear constraints.

Figure 3: SAT decoding: A combined MOEA and
PB solver optimization flow.

4.1 The ILP Model
To encode the constraints for a feasible implementation

as an ILP, binary variables for each resource and mapping
are introduced. The binary variable r of the correspond-
ing resource r is 1, if the resource is allocated (r ∈ α), and
0, otherwise. The binary variable m of the corresponding
mapping m is 1, if the mapping is active (m ∈ β), and 0,
otherwise. With the binary representation of the implemen-
tation, the constraints have to be formulated as follows1 :
∀t ∈ Vt :

3 ≥ P
m=(t,r)∈Em

m ≥ 1 (3a)

∀m = (t, r) ∈ Em :

r − m ≥ 0 (3b)

∀m = (t, r) ∈ Em ∧ (t,et) ∈ Et :

−m +
P

fm=(et,er)∈Em:
r=er∨(r,er)∈Ea

fm ≥ 0 (3c)

∀m = (t, r) ∈ Em ∧ (et, t) ∈ Et :

−m +
P

fm=(et,er)∈Em:
r=er∨(er,r)∈Ea

fm ≥ 0 (3d)

Fulfilling these constraints leads to a feasible implementation
according to Def. 1. Equation (3a) forces every task to be
bound at least once and at most three times. At this step,
the multiple binding of tasks, cf. [6], is performed. Equa-
tion (3b) ensures that whenever a task instance is bound to
a resource, the resource must be allocated. Equation (3c)
assures that for a task with a data-dependent successor, at
least one instance of the successor is bound to the same or
to an adjacent resource. Equation (3d) ensures the same for
data-dependent predecessors.

A voter vr is modeled using the binary variable vr and
is placed in the implementation as, e.g., dedicated voting
unit, extended hardware accelerator or logical operation in
processor such that it is usable by resource r. The voter
is allocated (vr ∈ V), if vr = 1. The vm variables are
used as indicators whether a task instance m needs a voting
operation of its input data. In this case, a logical voting op-
eration is carried out by the voter assigned to the resource
the task is bound to. Of course, other assignments to glob-
ally shared voters or improved voter strategies (cf. [14]) etc.
are encodable as well. The voter placement is performed by

1For a better representation, the generic constraints allow-
ing a k-out-of-n redundancy were constraint to a practical
relevant maximum of a 2-out-of-3 redundancy.

239

the following constraints:
∀m = (t, r) ∈ Em ∧ (et, t) ∈ Et :X

fm=(et,er)∈Em:
r=er∨(er,r)∈Ea

fm − 3 · vm + 2 · m ≤ 3 (3e)

X
fm=(et,er)∈Em:
r=er∨(er,r)∈Ea

fm − 2 · vm ≥ 0 (3f)

m − vm ≥ 0 (3g)

∀r ∈ Ea : X
m=(t,r)∈Em

vm − |Em| · vr ≤ 0 (3h)

Equation (3e) states that a voter is necessary if the task
instance m is active and at least two predecessor instances
exist. Equation (3f) and Eq. (3g) imply that a voter is not
necessary if less than two predecessors exist or the instance
is not active, respectively. Thus, these constraints ensure
that a logical voter becomes necessary if and only if the task
instance is used and has more than one predecessor instance.
The placement of the voter itself is ensured by Eq. (3h) that
allocates the voter for the resource if a logical voter is used
by a task instance on this resource.

5. DEPENDABILITY EVALUATION
This section shows that a reasonable dependability opti-

mization requires the evaluation of both, lifetime reliability
and safety. An algorithm for an efficient calculation of the
strongly-related measures Mean Time To Failure (MTTF)
to quantify lifetime reliability and Mean Time To Unsafe
Failure (MTTUF) [3] to quantify safety with respect to the
used voting structures is presented.

5.1 Reliability and Safety
The need to evaluate both, reliability and safety of a de-

pendable system, can be explained by reconsidering Fig. 1.
In case reliability is used as the only measure, the proba-
bility that at least one resource fails is greater in a duplex
structure than in a simplex structure. With a lower reli-
ability and higher costs, the duplex structure is, thus, a
sub-optimal implementation. Hence, the duplex structure
forms a barrier for common heuristic optimization methods
such that either the single bindings or the TMR structures
are local minima. This is illustrated in Fig. 4(a). Start-
ing the heuristic with single bindings only to keep the costs
of the implementation low, hinders the optimization to find
solutions with a high reliability. As a remedy, considering
also the safety, the duplex structure is no longer sub-optimal
and the mentioned drawbacks are cleared out, cf. Fig. 4(b).
Note that, in case only safety is used, the TMR structure
is a sub-optimal implementation. Thus, only a considera-
tion of both aspects of a dependable system can handle the
characteristics of different voting structures.

With safety, an additional objective is added to the de-
sign space exploration. However, adding another conflicting
objective is known to deteriorate the optimization process,
cf. [17]. On the other hand, additional objectives that har-
monize with each other have little impact on the optimiza-
tion complexity. Thus, we propose the usage of two closely
related measures to quantify reliability and safety. As shown
in Fig. 4, these two measures only diverge in some cases of
arbitrary voting structures like, e.g. the duplex voting strat-
egy. While the MTTF denotes the expected time of the sys-
tem to operate correctly, the MTTUF denotes the expected

(a) reliability (b) safety

Figure 4: Analysis of different voting structures.

time that the system operates until a hazardous failure hap-
pens that the system cannot detect. That hazardous failure
may result in a safety critical situation, thus, the MTTUF,
although strongly related to the MTTF, is a safety measure.

As stated, reliability and safety only diverge in some cases
of k-out-of-n-majority2 voting structures. Given the same
reliability Rr(t) for all components and Rv(t) for the voter,
the reliability of an k-out-of-n-system calculates as

Rk,n(t) = Rv(t)
nX

i=k

n

i

!
Rr(t)

i(1 −Rr(t))
n−i. (4)

Under the same conditions, the safety calculates as

Sk,n(t) = Rv(t)
nX

i=(n−k)+1

n

i

!
Rr(t)

i(1 −Rr(t))
n−i. (5)

Thus, in case of single binding and TMR voting structures,
reliability and safety are equal, while they differ in case of a
duplex structure.

5.2 Calculating MTTF and MTTUF
Given the reliability of a system R(t) and the safety S(t),

the MTTF calculates as
R∞
0
R(t)dt and the MTTUF asR∞

0
S(t)dt. To evaluate the reliability R(t) and safety S(t) of

a found feasible implementation (α, β), the reliability anal-
ysis approach presented in [6] is used. Since a fail-silent [16]
behavior is assumed in [6], an explicit introduction of the
voting structures is needed. To evaluate a system includ-
ing its implemented voting strategies, the structure func-
tion ϕ : {0, 1}|α|+|V | → {0, 1} with the Boolean vectors α =
(r1, . . . , r|α|) and V = (v1, . . . , v|V |) has to be calculated
and represented as a Binary Decision Diagram (BDD) [1].
ϕ evaluates to 1 if and only if the system is operating prop-
erly under the given set of properly working resources and
voters. Otherwise, ϕ evaluates to 0. Hereby, for each al-
located resource r ∈ α and voter v ∈ V , the corresponding
binary variables r = 1 and v = 1 indicate a proper operation
while r = 0 and v = 0 indicate a defect, respectively.

Using the techniques presented in [6, 18], ϕ can be used
to derive the reliability and safety, respectively, by the fol-
lowing recursive definition with Rr(t) being the specific re-
liability for a single component r:

ϕ(t) =Rr(t) · ϕ|r=1(t) + (1 −Rr(t)) · ϕ|r=0(t) (6)

In the following, the formula to calculate ϕ to evaluate the
system reliability R(t) = ϕ(t) as well as an formula to con-
struct ϕ to evaluate the safety of the system S(t) = ϕ(t) is
presented.

2k ≥ �n
2

240

5.2.1 Calculating ϕ for the Reliability Analysis
To calculate the structure function ϕ for the system re-

liability R(t), the same binary variable encoding for tasks,
mappings, resources, and voters as introduced in Sec. 4.1 are
used. By definition, the structure function ϕ evaluates to 1,
if and only if the system is working properly:

ϕGβ (α,V) = ∃β : ψGβ (α,V ,β) (7)

Equation (7) states that a system is working properly if
there still exists a feasible binding of tasks, encoded by
β = {0, 1}|β|, under a given set of properly working or defect
resources and voters.

ψGβ (α,V ,β) =
V

t∈Vt

" W
m=(t,r)∈Vβ

m

#
∧ (8a)V

m=(t,r)∈Vβ

m → r ∧ (8b)

V
(et,t)∈Et

V
m=(t,r)∈Vβ

m → C(m,et) (8c)

Equation (8a) and Eq. (8b) ensure the demands for a feasi-
ble system known from Sec. 4.1: There is at least one active
mapping of each task and a mapping can only be active if its
resource works properly with respect to α. A correct han-
dling of data dependencies and voting structures is ensured
by Eq. (8c). In particular, the function C used in Eq. (8c)
deals with the different voting structures that may or may
not be used:

C(m,et) =

8>>><>>>:
fm, if ¬vm ;

vr ∧ W
∀ em=(et,er),m′=(et,r′)∈Vβ :

em�=m′
(em,m),(m′,m)∈Eβ

fm ∧ m′, if vm .
(9)

In case no logical voting is needed, vm = 0, a task instance
needs an active task instance of each precedent task to work
properly. In case a logical voting is needed, vm = 1, a
majority or a consistent result has to be reached by prop-
erly working instances of the predecessor tasks and properly
working voter. Note, as introduced in Sec. 4.1, the presented
formulas are restricted to simplex, duplex and TMR struc-
tures, but can be extended to the general k-out-of-n case
easily.

5.2.2 Calculating ϕ for the Safety Analysis
For the calculation of ϕ for the system safety S(t), Eq. (7)

and Eq. (8) can be reused. The distinction between ϕ for
reliability and safety calculation takes part by modifying
Eq. (9) to

C(m,et) =

8>>><>>>:
fm, if ¬vm ;

vr ∧ V
∀ em=(et,er),m′=(et,r′)∈Vβ :

em�=m′
(em,m),(m′,m)∈Eβ

fm ∨ m′, if vm .
(10)

In case a voting is needed, vm = 1 ensures that as long as
one task instance is working correctly, the system will come
to a majority of correct results or will recognize a dissent
and, thus, can handle the failure to keep its safety property.

6. EXPERIMENTAL RESULTS
As a case-study, a system specification of a Motion-JPEG

decoder, cf. Fig. 2, is used.
The overall design-flow can be found in [7] and is outlined

as follows: The system specification is given as a SystemC

behavioral model. Each SystemC module corresponds to
a task in the task graph and can be transformed into soft-
ware modules by code transformation or can be transformed
into hardware accelerators (resources) by using a behavioral
synthesis tool. In the latter case, Forte’s Cynthesizer [4]
is used and allows a quick extraction of important charac-
teristics of the hardware accelerator like, e.g., throughput
or required area. For the desired Xilinx FPGA target plat-
form, resource needs in form of flip-flops, look-up tables, and
block RAMs are estimated. Using the specified behavioral
model and the estimation of the characteristics, a design
space exploration model can be derived automatically. The
design space exploration offers high quality solutions to the
designer, including reliability and safety optimization using
redundancy and voting techniques, automatically and fully
transparent. The designer chosen solution can be compiled
automatically using the behavioral model, the synthesized
hardware accelerators, and basic components from a library
using the Xilinx Embedded Development Kit (EDK) [22].

An important characteristic for this approach is the relia-
bility of the used components. For FPGA platforms, various
studies have been carried out to estimate failure rates, cf. [5,
20]. The synthesis of the SystemC models allows to estimate
the number of slices for each used hardware resource. With
a platform specific estimation, the number of configuration
bits lr for each hardware resource can be derived using the
number of slices and BRAMs needed. In [20], experimental
data has been presented that shows a relation between the
size of the design and reliability. Given this, the following
failure model can be used to derive the failure rate of each
resource r:

λr =
0.13 · lr
lplatform

(11)

The failure rate λr is calculated using a constant factor de-
pending on the radiation environment, the number of con-
figuration bits of the resource and the configuration bits of
the entire platform lplatform. At this, the lowest radiation

factor was used, cf. [20]. Thus, all important characteristics
are available for the automatic design space exploration of
the Motion-JPEG example.

The Motion-JPEG decoder specification consists of 8, 000
lines of SystemC code. For the exploration of the Motion-
JPEG example, an architecture template was created with
one MicroBlaze softcore processors, 56 FIFO communication
links and 57 modules generated by behavioral synthesis. The
complete specification includes 396 mapping edges for the
actors resulting in about 2.7 · 1057 possible implementation
alternatives.

The experiment was carried out on an Intel Pentium 4
3.20 GHz machine with 2GB RAM. For the set of high-qua-
lity implementations given in Fig. 5, about 7, 800 implemen-
tations were evaluated. The evaluation of one solution took
30 s, leading to an overall runtime of about 60 hours. Note
that the SystemC simulation is very runtime extensive com-
pared to the safety and reliability analysis, that takes about
24 ms per implementation.

A reference solution x0 without multiple task binding and,
thus, without voters was selected to quantify the amount of
additional costs as well as reliability and safety increase us-
ing the proposed approach. By estimation x0 uses 38, 922
LUTs, 14, 239 flip-flops and 99 BRAMs. Its MTTF as well
as the MTTUF is 4.81 hours. The expected delay is 12.61 ms
and the throughput is 81.07 fps. In the following table dif-
ferent solutions are compared to x0.

241

Figure 5: The high-quality solutions found by the
exploration. This projection of the optimal solutions
compares the safety of the implementations and
their costs on the FPGA using the needed LUTs.

ID LUTs flip-flops BRAM MTTF MTTUF
x1 +80 % +88% +3% +81% +81%
x2 +26 % +51% +24 % +69% +69%
x3 +28 % +61% -3% +18% +83%

The most reliable solution x1 with an MTTF and MTTUF
of 8.72 h comes with three TMR voting structures with one
of them voting the largest hardware accelerator. Thus, the
size of the implementation strongly increases. Since the vot-
ers are implemented in hardware, the delay increase of 3.1μs
(0.025 %) is negligible small. The solution x2 represents a
tradeoff between reliability and size. Instead of the redun-
dant binding of the biggest module, two smaller modules are
triplicated. Solution x3 represents a solution with a high
safety at relatively low costs. This is due to the usage of five
duplex voters. Note that even by inserting five voters in the
data path, the delay only increases by 58.9μs (0.47 %).

In order to evaluate the quality of our estimations used in
the design space exploration, several high-quality solutions
were selected and automatically implemented on a Xilinx
Virtex II FPGA platform. The actual FPGA resources in
form of LUTs and flip-flops are about 5% less than esti-
mated. The needed BRAMs are even about 43 % less than
estimated. This is due to post synthesis optimizations. The
actual delay is about 16% higher and, correspondingly, the
throughput is about 20% smaller. This is due to the used
performance analysis that does not consider the inherent
scheduling overhead. None the less, this values show that
the estimations made via the optimization including multi-
ple bound tasks and voting structures are acceptable.

7. CONCLUSION
In this paper, a system synthesis approach for dependable

embedded systems was presented. By a symbolic placement
of arbitrary voting structures, fault detection and fault tol-
eration mechanisms are automatically integrated into the
system implementations. A saving of additional costs is
forced by a multiple binding of tasks that allows for re-
source reusage. To evaluate the introduced dependability
and to allow an optimization together with other objectives
like, e.g., monetary costs, power consumption, or latency,
an efficient symbolic analysis approach was proposed that
quantifies lifetime reliability and safety. The effectiveness

and applicability of the proposed approach has been shown
by automatically optimizing and by synthesizing a Motion-
JPEG decoder.

8. REFERENCES
[1] R. E. Bryant. Graph-based algorithms for Boolean function

manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.
[2] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint

solver. In Proc. of DAC ’03, pages 830–835, New York, NY,
USA, 2003. ACM Press.

[3] T. DeLong, D. Smith, and B. Johnson. Dependability metrics
to assess safety-critical systems. IEEE Trans. on Reliability,
54(3):498–505, 2005.

[4] Forte Design Systems. Cynthesizer. http://www.forteds.com/.

[5] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, and J. Fabula.
Radiation characterization, and SEU mitigation, of the Virtex
FPGA for space-based reconfigurable computing. In Proc. of
NSREC ’00, pages 129–134, 2000.

[6] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and
J. Teich. Reliability-aware system synthesis. In Proc. of DATE
’07, pages 409–414, 2007.

[7] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr,
A. Deyhle, A. Hadert, and Jürgen Teich. A SystemC-based
design methodology for digital signal processing systems.
EURASIP Journal on Embedded Systems, 2007:1–22, Jan.
2007.

[8] A. Israr and S. A. Huss. Specification and design considerations
for reliable embedded systems. In Proc. of DATE ’08, pages
1111–1116, 2008.

[9] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of
fault-tolerant embedded systems with checkpointing and
replication. In Proc. of DELTA ’06, pages 440–447, 2006.

[10] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling of
fault-tolerant embedded systems with soft and hard timing
constraints. In Proc. of DATE ’08, pages 915–920, 2008.

[11] A. Jhumka, S. Klaus, and S. A. Huss. A dependability-driven
system-level design approach for embedded systems. In Proc. of
DATE ’05, pages 372–377, 2005.

[12] F. L. Kastensmidt, G. Neuberger, L. Carro, and R. Reis.
Designing and testing fault-tolerant techniques for
SRAM-based FPGAs. In Proc. of Computing Frontiers, 2004.

[13] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. Efficient
symbolic multi-objective design space exploration. In Proc. of
ASP-DAC ’08, pages 691–696, 2008.

[14] A. Patooghy, S. G. Miremadi, A. Javadtalab, M. Fazeli, and
N. Farazmand. A solution to single point of failure using voter
replication and disagreement detection. In Proc. of DASC ’06,
pages 171–176, 2006.

[15] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. Scheduling
and voltage scaling for energy/reliability trade-offs in
fault-tolerant time-triggered embedded systems. In Proc. of
CODES ’07, pages 233–238, 2007.

[16] D. Powell, G. Bonn, D. Seaton, P. Verissimo, and
F. Waeselynck. The Delta-4 approach to dependability in open
distributed computing systems. Symposium on Fault-Tolerant
Computing, pages 56–61, 1995.

[17] R. Purshouse and P. Fleming. On the evolutionary optimization
of many conflicting objectives. IEEE Trans. on Evolutionary
Computation, 11(6):770–784, 2007.

[18] A. Rauzy. New algorithms for fault tree analysis. Reliability
Eng. and System Safety, 40:202–211, 1993.

[19] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie.
Reliability-centric high-level synthesis. In Proc. of DATE ’05,
pages 1258–1263, 2005.

[20] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and
P. Graham. The reliability of FPGA circuit designs in the
presence of radiation induced configuration upsets. Proc. of
FCCM ’03, pages 133–142, 2003.

[21] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Reliability-aware cosynthesis for embedded systems. In Proc. of
ASAP ’04, pages 41–50, 2004.

[22] Xilinx. Embedded System Tools Reference Manual –
Embedded Development Kit EDK 8.1ia, Oct. 2005.

[23] Y. Zhang, R. Dick, and K. Chakrabarty. Energy-aware
deterministic fault tolerance in distributed real-time embedded
systems. In Proc. of DATE ’05, pages 372–377, 2005.

[24] C. Zhu, Z. P. Gu, R. P. Dick, and L. Shang. Reliable
multiprocessor system-on-chip synthesis. In Proc. of
CODES ’07, pages 239–244, 2007.

[25] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for multiobjective
optimization. In Proc. of EUROGEN ’02, pages 19–26, 2002.

242

