
Slack Analysis in the System Design Loop

Girish Venkataramani
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA

gvenkata@mathworks.com

Seth C. Goldstein
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
seth@cs.cmu.edu

ABSTRACT
We present a system-level technique to analyze the impact of de-
sign optimizations on system-level timing dependencies. This tech-
nique enables us to speed up the design cycle by substituting, in the
design the loop, the time-consuming simulation step with a fast
timing update routine. As a result, we can significantly reduce
the design time from on the order of hours/days to the order of
seconds/minutes. The update algorithm is defined on the Trans-
action Level Model (TLM) and can be used by any design flow
that invokes TLM-based optimizations. This algorithm has linear-
time complexity in the program size and experimental results in-
dicate that any loss of accuracy due to this technique is negligible
(< ±1%); the benefit is a reduction in total design cycle time from
several hours to a matter of seconds.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids

General Terms
Design, Measurement, Performance

Keywords
slack analysis, timing update, system design loop

1. INTRODUCTION
The objective of an Electronic System Level (ESL) design flow is

to map a high-level program specification to an equivalent hardware
implementation that satisfies design goals such as performance,
area and energy efficiency. The typical ESL toolflow, illustrated
in Fig. 1 (labeled “traditional design loop”), translates a high-level
program in to an Intermediate Representation (IR), on which high-
level synthesis (i.e., system partitioning and mapping) is applied.
The end result is a Register Transfer Level (RTL) specification that
can be synthesized by downstream tools. It is often the case that
the generated RTL does not meet design goals. Thus, engineers
will apply various design optimizations and re-run the loop itera-
tively until a satisfactory design is reached. This methodology is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

IR

traditional
design
loop

Simulation

Optimization

Optimization

Update of
Slack, GCP

High−level Spec

proposed loop

RTL

Front−end

Physical Design

High−level Synthesis

Figure 1: A system design loop takes a high-level program, gen-
erates an RTL implementation and iteratively improves the design
until goals are met. The traditional loop uses simulation, a time-
consuming step, to benchmark the design in each iteration. We
propose a new design loop methodology that captures system-level
timing dependencies in the IR and updates them as optimizations
are applied. While the traditional loop can take several hours or
days to converge, the proposed loop can converge within a matter
of seconds or minutes.

also commonly used for exploring the design space [16] when plat-
form tuning opportunities are available.

This design loop, however, is unscalable due to the time-consuming
process of simulation, which can take several hours or even days.
In this paper, we present a fast and accurate alternative to simu-
lation, as illustrated by the “proposed loop” in Fig. 1, by which
the design loop can converge in a matter of seconds. In this pro-
posed methodology, the first iteration follows the the traditional
approach—the design is synthesized and simulated and its perfor-
mance is benchmarked. However, we additionally instrument the
simulation to infer timing relations, called slack, between pairs of
transaction events in the system. Using slack, it is possible to con-
struct the system’s Global Critical Path (GCP), which represents the
principal bottleneck of system execution and is an indicator of over-
all performance [18]. We diverge from the traditional approach in
subsequent iterations—we replace the simulation step with a fast,
linear-time algorithm to update slack in response to circuit trans-
formations applied in a given iteration. The result of the update is
the new GCP that captures the effects of the optimization. The key
benefit is a significant reduction in total design time.

We incorporated this methodology in to the CASH compiler [2],
which synthesizes asynchronous RTL circuits from C programs.
The methodology was tested using three different optimizations,
slack matching [20], operation chaining [21] and heterogeneous

231

latch pipeline synthesis [19]. Together, the three optimizations ap-
ply on the order of thousands of circuit transformations meaning
that the design loop is also traversed as many times. Using the
proposed technique, we were able to reduce total design time from
several hours to a few seconds without sacrificing accuracy.

The next section presents related work. Section 3 presents a brief
background on the tool’s IR and how its timing is analyzed. Sec-
tion 4 describes the update algorithm. Experimental evaluation of
the methodology is presented in Section 5 and we conclude in Sec-
tion 6.

2. RELATED WORK
There are two primary research directions for dealing with the

benchmarking problem in the design loop. The first focuses on im-
proving simulation speed by eliminating gate-level simulations and
instead leveraging higher level simulation techniques [16]. While
this improves simuation time (at some loss of accuracy), it is still
not sufficient, if we want to traverse the design loop thousands of
times.

The second approach uses analytical techniques to estimate the
end-to-end performance. For example, it has been shown that the
initiation interval [15], also known as cycle time [1, 3, 14, 8, 5,
12], represents the iteration bound of a design. The end-to-end
execution time is directly proportional to the cycle time. In the
simplest case, the cycle time is defined as the latency of the largest
cycle in a system dependence graph. Computing the cycle time for
a deterministic system is known to have cubic complexity in the
design size; typically O(|E|3) [5], for a system graph, G = (V, E).
This is still expensive to compute if the design loop is traversed
hundreds or thousands of times. Khouri, et. al. [9] proposed a
design optimization loop based on computing the initiation interval
in each design loop iteration.

Our proposed approach departs significantly from these two prior
approaches. We initially rely on computing the cycle time based on
simulation. However, instead of representing cycle time as just a
scalar, it is represented as a vector of slack values (that collectively
compute cycle time) that is annotated on the nodes and edges of the
system dependence graph. When a transformation is applied, we
show that it is possible to compute the global change in cycle time
by propagating knowledge of the local change throughout the sys-
tem. This update algorithm has linear-time complexity, O(|E|) for
a deterministic system, and thus vastly speeds up the design loop.
To our knowledge, we are the first to break down cycle time into a
fine-grained quantity, slack. This, in turn, allows the development
of a slack update algorithm.

3. BACKGROUND
Before presenting our update algorithm, we will briefly review

some background related to model representations, computation of
the cycle time and using slack to annotate the execution model.

3.1 TLM Representation
We assume that the toolflow or hardware compiler uses a TLM-

based IR internally [4]. TLM is based on transactions, which repre-
sent data transfers between different sub-systems. A transaction is
dynamically scheduled and executed in accordance to a pre-defined
communication protocol. The TLM focuses on the semantics of
communication rather than the implementation of the underlying
communication and computation structures.

Each transaction is executed in phases as defined by the com-
munication protocol—the transaction is first initiated, data is then
transferred and finally the transaction is completed. Each phase

A
rdy

B

ack c
brdy

C

ack b a

3

rdy
ack b

ardy ack c

ardy

ack b

ack c

brdy

4

5

6

7
2

1

b

(a) (b)

Figure 2: Marked graph example: (a) Three sub-systems commu-
nicating using dynamic handshake signals rdy and ack using (b)
a given communication protocol that is described by the marked
graph.

is executed by exchanging control messages between participants.
We refer to these control messages as transaction events. Using
these concepts, a graph-based IR can be defined for the given TLM.
There are many examples of such execution models: Petri-Nets [10],
Marked Graphs [22], State Transition Graphs (STGs) [22], E-R
systems [3], Event Behavior Models [17].

An example of a marked graph is shown in Fig. 2. In (a), we
show the schematic of three sub-systems that communicate asyn-
chronously using handshake signals, rdy and ack. The commu-
nication protocol is modeled using the marked graph in (b). The
nodes in this graph represent an execution state in which certain
transaction events fire. The edges describe dependencies between
these events. Thus, for example, events rdyb↑ and ackb↑ (repre-
senting rising transitions on these control signals) can fire only after
rdya↑ and ackc↓ have fired. The solid circles are called tokens and
represent the current state of the system. A node is enabled if to-
kens are present on all its input edges. Once enabled, the node fires,
tokens from all the inputs are deleted and a new token is produced
on each output. Thus, in Fig. 2b, node labeled ’1’ is enabled. After
it fires, the token from edge (2,1) is deleted and a token on edge
(1,7) appears, thus enabling node ’7’.

The execution of the system is thus described by the execution of
its associated marked graph. If every node in the graph is reachable
(i.e., can be eventually enabled), then the graph is live. If no edge
can receive more than one token during execution, then the graph
is safe. In this paper, we assume all marked graphs are both live
and safe. Formally, we represent a live, safe, marked graph by
G = (V, E, M0), where v ∈ V is a node, and (u, v) ∈ E is an
edge. M0 ⊆ E is the set of edges that initially contain tokens at
the start of execution. There is a one-to-one mapping between a
marked graph edge and a transaction event.

3.2 Slack-based Timing Analysis
Timing analysis of the system model yields the cycle time of the

system [14]. We define a latency function, D : V 7→ R, where
D(v) specifies the difference in time between when v is enabled
and when the events associated with outputs of v fire. This is typi-
cally the propagation delay through the sub-system when process-
ing a transaction event. Let the latency of a cycle, C, in the marked
graph be δ(C) and let τ(C) represent the number of tokens in C
during the initial state. The cycle time of a marked graph, G, that
contains k cycles, and is defined as [14]:

CT (G) = MAX (
δ(C1)
τ(C1)

, . . . ,
δ(Ck)
τ(Ck)

) (2)

Eq-2 assumes that the marked graph is strongly connected and is
similar to the definition of the initiation interval [15]. It has been
shown that CT (G) is equivalent to the time separation (in steady
state) between consecutive firings of any node v ∈ V . Computing

232

P1 P2

e2

v f

v j

e1

v d

v c

C1
C 2

e2

v fj

e1

v c

(a) (b)

Figure 3: Effect of change in node delays are understood by an-
alyzing re-convergent paths. Slack is essentially an indicator of
difference in path delays at join point of re-convergent paths.

CT (G) typically has a complexity of O(|M0|2|E|), which is about
O(|E|3) in the worst case [14].

Slack is an alternative type of time-separation relationship [18].
Particularly, slack is defined as a time entity on every edge in G. It
refers to how early the event associated with the edge was produced
before it was actually used in the dependent transaction. If in the
kth iteration, an event on edge (u, v) fired at time tk

(u,v), then slack
for (u, v) in the kth iteration is defined as [17]:

Sk((u, v) ∈ E) = MAX(w,v)∈E (tk
(w,v)

) − tk
(u,v)

(3)

Slack for a given input is the time difference between its firing
time and the last arriving input’s firing time. In steady state, the
recurrence interval between two successive firings of an event is
CT (G). Thus, we can discard the iteration dimension from Eq-3
and refer to the steady state slack of (u, v) as S(u, v).

Slack is valuable in understanding which parts of the circuit are
most critical. In particular, the last arriving input is critical for firing
a given node and this input has zero slack. If we constructed a cycle
composed of only zero-slack edges, then the resulting cycle is the
principal system bottleneck and is also referred to as the Global
Critical Path (GCP) [18]. Together, GCP and slack are used to
analyze performance hotspots and are valuable in guiding design
optimizations [20, 6].

4. SLACK UPDATE ALGORITHM
The principal impediment to slack-based optimization and de-

sign exploration is that transforming a system changes its timing
properties and hence its slack values. In other words, once the cir-
cuit is changed, its slack values are obsolete. Computing it us-
ing Eq-2 has O(|E|3) complexity. In this section, we present a
linear-time algorithm to incrementally update slack in response to
a change in the system.

Problem Statement: Given a marked graph G and its slack set, S.
If the latency of a given node, vc ∈ V decreases by ∆ ∈ R, i.e.,
Dnew(vc) = D(vc)−∆, then find the new slack set, Snew.

Let us first understand the implications of the problem. If the
delay of a node, vc, decreases by a positive value, ∆, then it means
the latencies of at least the cycles containing vc will also decrease
by ∆. The cycle time, CT (G), will be affected (decrease) if and
only if vc is contained in the critical cycle. We observe that only
a subset of slack values are typically affected by the change in vc.
Thus, the core of our algorithm is discovering this subset.

The key insight to solving the update problem is the relation
between slack values and re-convergent paths. Consider the re-
convergent region in Fig. 3a between fork node, vf , and join node,

vj , such that there exists two paths, P1 and P2, between vf and
vj . The slack on the two input edges incident on the join point,
vj , is essentially the difference in the latencies of the two paths.
For example, if δ(P1) < δ(P2), then S(e1) = δ(P2) − δ(P1)
and S(e2) = 0. Observe that when two cycles intersect, as shown
in Fig. 3b, the intersection point (vfj in this case) is both the fork
and the join node and the same relations between slack and re-
convergent paths exist here too.

Let the delay of a node, vc, decrease by a positive value, ∆.
We can update slack of e1 and e2 by re-computing the path la-
tency difference. If δ(P1) < δ(P2) prior to the change, then the
latency difference decreases by ∆, and the new slack values are:
Snew(e1) = Sold(e1) −∆, Snew = 0, if ∆ ≤ (δ(P2) − δ(P1)).
In this case, the outputs of the vj will also fire earlier. We itera-
tively propagate its change by finding the re-convergent paths that
vj is a member of. On the other hand, if δ(P1) ≥ δ(P2), then a
non-critical path has become faster. The new slack values are then:
Snew(e1) = 0 and Snew(e2) = δ(P1)− δ(P2) + ∆. In this case,
there is no change in the firing time of vj . Thus, no further updates
are necessary.

A second observation is that when all the inputs of a given node,
v′ are dominated by the changed node, vc, then the change, ∆,
arrives along all paths to v′. In this case, there will be no change
in the slack values on the input edges of v′. For example, all paths
to vd in Fig. 3a contain vc, so there is no change in relative timing
and hence, no change in slack values.

The overall update strategy is to find all the re-convergent paths
affected by a change in vc, update their slack, and if this causes the
outputs of the join node to fire at a different time, then propagate
the updates to all the re-convergent paths that the join node is part
of, and repeat until a fixed point is reached. The algorithm to per-
form this update is presented in two parts. Initially, a static analysis
is performed to discover re-convergent path and dominator rela-
tionships between nodes. After every system transformation, we
use this information to propagate slack updates using iterative flow
analysis techniques.

4.1 Initial Setup: Computing toksmin

First, we determine the re-convergent path and dominator rela-
tionships between nodes. This information is statically known for
the graph and is unaffected by timing changes. Thus, we compute
the information once and use it every time slack needs to be up-
dated.

As discussed above, we need to update slack at the inputs of
a node, v′, only when the changed node, vc, is present along a
proper subset of the inputs. While this notion works for an acyclic
graph, it must be modified for a strongly connected graph, since
there is a path between every two nodes in the graph. In this case,
we use knowledge of tokens to determine when a timing change
arrives a v′. Particularly, for each input edge, (u, v′) ∈ E, we
count the total number of tokens on a path from vc to u. If there
are multiple paths between vc and u, we find the minimum number
of tokens along any path. The number of tokens from vc to v′ is an
indicator of the dominator relationship we seek. Consider the two
input edges, (u1, v

′) ∈ E and (u2, v
′) ∈ E. If minimum number

of tokens along any path from vc to u1 is equal to the tokens along
any path from vc to u2, then the timing change is carried forward
along both paths and the slack values relative to these inputs will
remain unchanged.

To enable slack update, we first find the minimum number of
tokens, called toksmin, along any path between every pair of nodes
in G. The problem of computing toksmin can be solved using
dataflow analysis techniques [13]. We define a lattice, T i, for each

233

Lattice:
T ∗ : |M0||V |

> : 〈|M0|, . . . , |M0|〉
⊥ : 〈0, . . . , 0〉

X u Y : MIN(X, Y), v ≡ ≤
Height(T ∗) = |M0| × |V |

Initialization: ∀ n ∈ V l

ntoks(n) = 〈|M0|, . . . , |M0|〉
Iteration: ∀ n ∈ V l

toks(Src(Edge(n))) = Min(p,n)∈El (ntoks(p))

ntoks(n) = fn (toks(Src(Edge(n))))

Solution: ∀ v1, v2 ∈ V
toksmin(v1, v2) = toks(v2)[v1]

Figure 4: The iterative dataflow lattice framework for computing
toksmin(v1, v2), the minimum number of tokens along any path
from v1 to v2.

node, vi ∈ V . For every other node, vk ∈ V , the lattice value in T i

specifies the minimum number of tokens from vi to vk. Thus the
domain of lattice values are T i = 〈0, 1, · · · , |M0|〉, for a marked
graph, G = (V, E, M0). The > member of T i is |M0|, the ⊥
member is 0 and the meet operation, u , is the MIN function.
Thus, the partial order relation, v , is less than or equal, ≤.

We create a larger lattice, T ∗, by combining the lattices, T i, for
every node vi ∈ V . A value of this lattice is a positional set, LV =
〈lv1 , lv2 , . . . , lv|V |〉. At a given node, v′, a member, say LV [i] =
lvi , of this combined lattice represents the the minimum number of
tokens between vi to v′. The u operation for this combined lattice
is defined as an element-wise meet.

Now, we will define a framework for computing the toksmin.
Since tokens are associated with edges rather than nodes, we trans-
form G to a new graph, Gl = (V l, El), over which the lattice is
defined. For each edge, (u, v) ∈ E, we introduce a node in the new
graph, n ∈ V l. Let the mapping functions, n = Node(u, v) and
(u, v) = Edge(n) maintain this one-to-one correspondence be-
tween the graphs. There exists an edge, (n, m) ∈ El, if and only
if Dst(Edge(n)) = Src(Edge(m)). Now, we define the lattice
flow function for each node in this new graph: fn(lvj).

incrn =

1, if Edge(n) ∈ M0

0, otherwise.

fn(lvj) =

incrn, if vj = Src(Edge(n))
max(|M0|, lvj + incrn), otherwise.

fn(V) = 〈fn(lv1), . . . , fn(lv|V |)〉

The lattice, shown in Fig. 4, has a finite descending chain whose
height is given by Height(T ∗). Since the flow function, fn is
monotonic, the iterative framework in Fig. 4 is guaranteed to con-
verge. After convergence, the minimum number of tokens along
any path between v1 and v2, is given by toksmin(v1, v2).

4.2 Slack Update
We perform slack update using iterative flow analysis—we start

with the changed node, vc, and push the change quantity, ∆, along
all its output edges. Each destination node receives the changes
along its input nodes, performs a local analysis to determine the
net quantity to be pushed to its successors, and so on until we have
updated all nodes. We define path dominance at a node v′ using
dom(v′), which represents all the input paths that can propagate
the timing change from vc:

mintoks(v′) = min(u,v′)∈E (toksmin(vc, u))
dom(v′) = {∀ (u, v′) ∈ E | toksmin(vc, u) = mintoks(v′)}

If all inputs belong to the set, dom(v′), then v′ is similar to node
vd in Fig. 3a. In this case, no update to slack is necessary and no
changes are propagated downstream. When there exists some in-
puts that are not members of dom(v′), then an update to slack is
required, which might be propagated downstream. Changes propa-
gated by a node to its downstream outputs are tracked by offerout.
At v′, the value offerout(v

′) is a function of offerout(u), where
(u, v′) ∈ dom(v′). We use these “offered” changes from the dom-
inator paths in determining new slack.

In(v′) = {∀ (u, v′) ∈ E}
slackdom = min(u,v′)∈dom(v′)(Sold(u, v′))

slackother = min(u,v′) 6∈dom(v′)(Sold(u, v′))
deficit(v′) = max(slackother(v′)− slackdom(v′), 0)

The minimum slack along dominated and non-dominated paths
is given by slackdom and slackother respectively. The deficit(v′)
entity tells us whether the critical input to v′ prior to the change
in vc was dominated by a path originating from vc. If so, then
deficit(v′) tells us how much later the critical input is arriving at
v′. If not, then deficit(v′) = 0.

offerin(v′) = min(u,v′)∈dom(v′) (offerout(u))

decrdom(v′) =

−∆, if v′ = vc,
min (deficit(v′)− offerin(v′), 0) otherwise.

decrother(b) = min (offerin(v′), deficit(v′))
offer(u, v′) = offerout(u) − offerin(v′)

Snew(u, v′) =

8<: Sold(u, v′) − decrdom(v′) + offer(u, v′),
if (u, v′) ∈ dom(v′),

Sold(u, v′) − decrother(v′), otherwise.
offerout(v′) = offerin(v′) − decrdom(v′)

Next, we compute the decrease in slack for both the dominated
and non-dominated input edges. For the former, this is the nega-
tive of ∆, if v′ is the node whose delay is changing; otherwise, it
is whatever remains from offer(v′) after balancing the prior timing
deficit. If there was no timing deficit, then the decrease in slack
is negative, implying that this offer of slack will simply accumu-
late on the input edge. For the non-dominated inputs, the decrease
in slack is solely due to changes propagated along the dominated
paths. If the critical input prior to the change was from the the non-
dominated paths, then there is no change in slack; if not, it is the
minimum of the slack deficit or what is offered along dominated
paths.

Finally, the changes that are propagated downstream to the node’s
outputs is the difference between the changes propagated by domi-
nated inputs upstream, given by offerin(v′) and the amount used to
offset existing deficits, given by decrdom(v′). We apply this flow
function to each node in G, starting with vc. At each node, the set
of equations above determine not only the new values of slack at
their inputs but also the changes propagated downstream, offerout,
enables us to compute the flow function on the node’s outputs.

Now we discuss the algorithmic complexity. Initially, we com-
pute toksmin once using the dataflow analysis described in Sec-
tion 4.1. In the worst case, we would have to descend the entire
lattice; thus, its complexity is O(|M0||V |). Then, in each iteration,
when a circuit transformation changes the delay of a given node
in G, we simply invoke the update algorithm described above to
compute the new values of slack. This algorithm computes a flow
function on each node in G at most once. Many nodes in G may
not be affected by the change and, in this case, they will not be
touched by the algorithm. In the worst-case, we would visit each
node once, leading to a linear update complexity of O(|V |) in each
iteration.

In terms of space complexity, a real value representing slack
is associated with each edge in G. Additionally, for every node,

234

Figure 5: Accuracy of the update algorithm after slack matching.
A value of zero indicates full accuracy.

v ∈ V , we maintain a list of integers, where each positional entry,
j, corresponds to the toksmin(v, vj) relation between v and vj .
During the application of the update algorithm, we also keep track
of the change propagated at the outputs of each node, offerout(v).
All other variables used in the equations above are temporaries and
can be discarded after their use. Thus, the overall space complexity
is O(|V |2).

5. EXPERIMENTAL RESULTS
This section demonstrates the usefulness of this update algorithm

by incorporating it in the design loop of the CASH compiler [2],
which takes as input, C programs, and synthesizes equivalent asyn-
chronous circuits, in which each pipeline stage performs a word-
level ALU operation and communication between stages is sched-
uled by four-phase bundled data protocol [7]. The compiler’s IR
is a fine-grained TLM representation similar to the marked graphs
described in Section 3. All results presented in this section are ob-
tained by synthesizing the generated circuits to the STMicro [180nm/2V]
standard cell library; Synopsys design compiler was used for phys-
ical design.

CASH implements several performance, power and area trans-
formations to improve the energy and area efficiency of the cir-
cuits. All these optimizations are based on either optimizing the
GCP to improve cycle time or slowing down non-critical regions
to improve energy efficiency without sacrificing performance. We
picked three optimizations that use the notion of slack and cycle
time and applied them in different sequences while updating slack
in-between to analyze the impact of the algorithm. The three opti-
mizations are: (a) slack matching [20], which improves loop per-
formance by balancing any skewed re-convergent pipeline loops;
(b) heterogeneous latch selection [19], a module selection problem
to assign fast latches to critical pipeline stages and slower, energy
efficient latches to non-critical stages; (c) operation chaining [21],
which eliminates pipeline controllers and pipeline latches by com-
bining the combinational logic from several dependent pipeline stages
into a single stage.

We ran these optimizations on kernels from the Mediabench suite [11].
All three optimizations are iterative in nature, and typically perform
hundreds to thousands of circuit transformations in all. The trans-
formations range from inserting new pipeline stages (slack match-
ing), eliminating existing ones (operation chaining) and changing
the propagation delay through others (heterogeneous latch selec-
tion). Every transformation affects slack values on multiple edges
in the marked graph and can potentially affect the overall cycle time
as well. Overall, the average performance across all benchmarks

improves by about 2x, and the circuit architecture looks quite dif-
ferent from what we started with. We show in this section that
despite this magnitude of change, use of the slack update algorithm
to re-compute the timing properties between transformations dra-
matically improves design cycle time without unduly sacrificing
quality.

5.1 Absolute Accuracy
To measure the absolute accuracy of the update, we applied slack

matching on the adpcm_d benchmark [11]. It inserts 24 new
pipeline stages that translates to 96 new nodes in the marked graph
IR. The algorithm updates slack after inserting each stage and in
the end (i.e., after 96 invocations of the algorithm), we performed
a complete re-analysis of timing and compared the updated values
with the actual values. The comparison is depicted in the form of
an accuracy histogram in Fig. 5. The X-axis represents the accu-
racy of the update as a percentage ratio of the difference between
updated and actual slack values to the actual values. The Y-axis
indicates the fraction of transaction events (or IR edges) that were
observed to have a given accuracy value.

The results indicate that for about 70% of the transaction events,
the updated slack is exactly equal to the actual slack. The inaccu-
racies in update stem from two sources: (a) the analysis algorithm
in Section 4 is defined for a well-behaved, deterministic system
in steady state. If the system exhibits conditional behavior and/or
non-determinism, then the exact value of cycle time, CT (G), is
statically undefined. In these cases, we use profiling to bias our
analysis to favor the most frequently executed paths, leading to dis-
crepancies in actual values; (b) when a pipeline stage is inserted,
certain new nodes are created and the delay through others changes.
The exact physical layer delays are unknown at the TLM level at
which the algorithm operates; instead, a best estimate is used. After
physical synthesis, these estimates may not match the actual delays
leading to inaccuracies. Still, the results are encouraging: for more
than 85% of the transaction events, the updated values were within
a ± 10% error ratio.

5.2 Design Loop Experiments
Next, we performed three sets of experiments where the three op-

timizations are applied in different sequences. For each sequence,
we perform two experimental runs: in the first run, we re-compute
(using simulation) timing properties after each optimization; in the
second run, the slack update algorithm is used to compute new tim-
ing properties. At the end of the sequence, we compare end-to-end
performance between the two runs to see if use of the update al-
gorithm sacrifices performance. This comparison, shown in Fig. 6,
lists 15 frequently executed kernels from the Mediabench suite on
the X-axis and the Y-axis shows the end-to-end execution latency
ratio between the runs. A value of one indicates that performance
after the optimization sequence is the same for both runs; a value
greater than one implies update algorithm achieves better results
than using re-analysis. The three optimization sequences are:

1. SM-ASU: Slack Matching (SM) followed by heterogeneous
latch selection (ASU).

2. ASU-SM: Next, ASU followed by SM.

3. SM-ASU-OC: Finally, SM followed by ASU, followed by
operation chaining (OC). There were on the order of thou-
sands of transformations in this sequence.

These experiments yielded the following significant observations:

235

Figure 6: Differences in performance between full re-computation
of timing versus using the slack update algorithm, for each of three
sequences of optimizations. A value close to one is most desirable,
indicating virtually no difference in performance.

1. The end-to-end runtime of the design loop to apply each of
the three sequences in the first run (re-computation of slack)
ranged from a few hours (for the smaller kernels) to a whole
day (for the larger ones). The main bottleneck is simulation.
On the other hand, each invocation of the fast, linear-time
update algorithm completes in a matter of seconds even on
the largest benchmarks.

2. The difference in performance between the two runs is less
than ± 1%. Differences, wherever observed, stemmed from
unpredictability of physical layer timing.

These experiments bolster our confidence in the use of slack up-
date as an effective approach to maintaining system timing proper-
ties within the design loop. The main impediments to its accuracy
are the unpredictability of transistor-level timing after application
of a given circuit transformation. This is a problem that plagues
most system design approaches and discussions on it are beyond
the scope of this paper. In summary, we re-emphasize our em-
pirical findings: design and optimization time was reduced from
several hours to a few seconds at the cost of less than 1% in system
performance.

6. CONCLUSIONS
State-of-the-art system design flows take an iterative approach

to improving system performance and efficiency. An inherent dif-
ficulty in such a flow is the need to re-calibrate system-level timing
after each iteration of the design loop. Simulation is prohibitively
slow if the design loop is to be traversed thousands of times.

We propose modifying the design loop methodology by substi-
tuting simulation with a new slack update algorithm. The algorithm
leverages knowledge of graph topology to quickly update slack in
response to changes introduced by circuit transformations. The al-
gorithm uses an initial setup phase, which has quadratic-time com-
plexity, but its invocation within the design loop to update slack has
linear-time complexity in program size.

The impact of this light-weight algorithm in the design loop is
very encouraging. While total design and optimization time is re-
duced from hours to seconds, the accuracy of the update algorithm
is very precise resulting in less than 1% error after having invoked
the algorithm more than a thousand times. We believe that the up-
date algorithm can form an important part of tomorrow’s system
design flows.

7. REFERENCES
[1] P. Beerel, M. Davies, et al. Slack matching asynchronous

designs. In ASYNC, pp. 30–39, March 2006.
[2] M. Budiu, G. Venkataramani, et al. Spatial computation. In

ASPLOS, pp. 14–26, October 2004.
[3] S. M. Burns. Performance Analysis and Optimization of

Asynchronous Circuits. PhD thesis, California Institute of
Technology, 1991.

[4] L. Cai and D. Gajski. Transaction level modeling: an
overview. In CODES+ISSS, pp. 19–24, 2003.

[5] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms. TODAES, 9(4):385–418,
2004.

[6] B. Fields, R. Bodík, et al. Slack: Maximizing performance
under technological constraints. In ISCA, pp. 47–58, 2002.

[7] S. Furber and P. Day. Four-phase micropipeline latch control
circuits. TVLSI, 4-2:247–253, 1996.

[8] K. Ito and K. K. Parhi. Determining the minimum iteration
period of an algorithm. J. VLSI Signal Process. Syst.,
11(3):229–244, 1995.

[9] K. S. Khouri, G. Lakshminarayana, et al. High-level
synthesis of low-power control-flow intensive circuits.
TCAD, 18(12):1715–1729, 1999.

[10] M. Kishinevsky, J. Cortadella, et al. Asynchronous interface
specification, analysis and synthesis. In DAC, pp. 2–7, 1998.

[11] C. Lee, M. Potkonjak, et al. MediaBench: a tool for
evaluating and synthesizing multimedia and communications
systems. In MICRO, pp. 330–335, 1997.

[12] P. McGee and S. Nowick. Efficient performance analysis of
asynchronous systems based on periodicity. In
CODES+ISSS, September 2005.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. 1997.

[14] C. D. Nielsen and M. Kishinevsky. Performance analysis
based on timing simulation. In DAC, pp. 70–76, 1994.

[15] B. R. Rau and C. D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing. In MICRO, pp. 183–198,
1981.

[16] F. Vahid and T. Givargis. Platform tuning for embedded
systems design. TOC, 34(3):112–114, 2001.

[17] G. Venkataramani. System-level Timing Analysis and
Optimizations for Hardware Compilation. PhD thesis,
Carnegie Mellon University, October 2007.

[18] G. Venkataramani, M. Budiu, et al. Global critical path: a
tool for system-level timing analysis. In DAC, pp. 783–786,
2007.

[19] G. Venkataramani, T. Chelcea, et al. Heterogeneous
latch-based asynchronous pipelines. In ASYNC, 2008.

[20] G. Venkataramani and S. C. Goldstein. Leveraging protocol
knowledge in slack matching. In ICCAD, pp. 724–729, 2006.

[21] G. Venkataramani and S. C. Goldstein. Operation chaining
asynchronous pipelined circuits. In ICCAD, 2007.

[22] A. Yakovlev, L. Lavagno, et al. A unified signal transition
graph model for asynchronous control circuit synthesis. In
ICCAD, pp. 104–111, 1992.

236

