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ABSTRACT
Synchronous languages like Esterel have been widely adopted for
designing reactive systems in safety-critical domains such as avion-
ics. Specifications written in Esterel are based on the underlying
“synchrony hypothesis”, where the computation/communication as-
sociated with the processing of all events occurring within the same
“clock tick” are assumed to happen instantaneously (or in zero
time). In reality, Esterel specifications get compiled to implemen-
tations (such as C code) which do not satisfy the perfect synchrony
assumption. Hence, platform-specific timing analysis of such im-
plementations is an important research topic. Interest in this area
has lately been renewed with the recent advances in Worst-case Ex-
ecution Time (WCET) analysis techniques. In this paper we per-
form WCET analysis on sequential C code and exploit the struc-
ture of the code generated from Esterel specifications to obtain
tight WCET estimates. Such estimates can validate Esterel-level
assumptions on the instantaneous processing of signals or events
that occur together. More importantly, they can be used to identify
parts of the specification which might pose as timing/performance
bottlenecks with respect to the underlying platform. This is done
by exploiting traceability links between Esterel specifications and
the generated C code, which map the time-critical computations
at the C-level back to the Esterel-level. This not only allows a
designer to optimize or simplify Esterel specifications, but also
choose/configure suitable implementation platforms. We show the
results of our WCET analysis on a set of standard Esterel bench-
marks and illustrate the utility of our model-code traceability tech-
nique using an Esterel specification of a reflex game application.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms
Design, Languages, Performance

Keywords
Esterel, Synchronous programming, WCET analysis

1. INTRODUCTION
For safety-critical domains, synchronous programming [1] has

always been considered a clean formalism for programming reac-
tive systems, which exhibit a high degree of concurrency but call
for deterministic and predictable execution. Languages based on
this paradigm – such as Esterel [7], Lustre [11] and Signal [2] –
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Figure 1: WCET analysis framework for Esterel specifications.

assume that time is partitioned into discrete instants or clock ticks
and the computation/communication for processing all events that
occur within one clock tick happen instantaneously (i.e. in zero
time). The resulting semantics — with concurrent threads run-
ning in lockstep — take care of all scheduling issues, thereby sim-
plifying the task of programming and making such specifications
amenable to formal verification/certification. In reality, specifica-
tions in synchronous languages are compiled to implementations
in high-level languages such as C, which in turn are compiled for
a target platform. Such implementations clearly do not follow the
perfect synchrony hypothesis and the time associated with different
computation/communication tasks depend on the implementation
platform. However, a real-life implementation can be said to follow
the synchrony hypothesis if all events that are logically assumed to
be processed instantaneously are processed before the next set of
events arrive. Hence, for the synchrony hypothesis to hold, the es-
timated Worst-case Execution Time (WCET) associated with the
processing of events should be less than the minimum separation
time between the arrival of sets of events (that are assumed to be
processed instantaneously).

Currently, a systematic design process is missing in the context
of synchronous languages when the target platform is a general-
purpose processor. As a result, compiling synchronous language
specifications directly into hardware [4] – where the synchrony hy-
pothesis is easier to validate and debug – is currently the most pop-
ular design flow. This has primarily been due to the lack of mature
software timing analysis techniques for general-purpose processor
architectures. However, recent advances in Worst-case Execution
Time (WCET) analysis techniques and the availability of industry-
strength tools (see [18]) has renewed the interest in synchronous
language-based design flows targeting general-purpose platforms
(e.g., see [10]).

In this paper we propose WCET analysis techniques – which
exploit the special structure of the C-code generated from Esterel
specifications – to obtain tight estimates on the WCET of compu-
tations that are logically assumed take zero time. Not only can this
help to validate the synchrony hypothesis without introducing un-
due pessimism in the WCET estimates, our technique can also be
used to feed the results of the analysis back to the specification us-
ing code-model traceability links. Such feedback can be used to
identify potential bottlenecks in the specification, which can then
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be used to debug the specification or configure the implementation
platform. An overview of our methodology appears in Figure 1.

Our Contributions. Our main technical contributions include (i)
light-weight techniques for systematically identifying and remov-
ing infeasible program paths (paths which do not appear in the ex-
ecution trace for any program input) in the C-code generated from
Esterel, thereby leading to tighter WCET estimates, and (ii) tech-
niques for bidirectional traceability between the executable code
(obtained from compiling the generated C code for a specific in-
struction set architecture) and the Esterel specification. For both
these tasks we have used the well-known Columbia Esterel Com-
piler (CEC) [9]. However, our proposed techniques are very gen-
eral in nature. The main novelty of our work stems from two ob-
servations. First, the identification and removal of infeasible paths
in the generated code can exploit the syntax and the semantics of
the source Esterel specification. This simplifies the problem to
a large extent, especially when compared to arbitrary C code for
which the infeasible path detection problem is intractable. Second,
WCET analysis for arbitrary programs is not (and can never be) a
fully automated process. It requires substantial user intervention
in the form of providing loop-bounds and infeasible path annota-
tions. However, the solution to the WCET analysis problem in the
context of Esterel is very close to a fully automated one; we dis-
cuss the automation issues in Section 4. We have implemented the
framework shown in Figure 1 by integrating the Columbia Esterel
Compiler with the Chronos WCET analyzer [12] that allows de-
tailed processor modeling (e.g., cache, in-order and out-of-order
pipeline, branch prediction).

Related Work. There is an existing body of work which seek
to use new special-purpose processors for executing specifications
written in synchronous languages like Esterel (e.g., see [6]). We
believe that in the real world, specifications written in modeling
languages like Esterel will get compiled to C/Java code and get
executed on off-the-shelf processors. Thus, it is meaningful to de-
velop/deploy software timing analysis methods for this purpose.

Analysis and debugging of timing properties of synchronous lan-
guage specifications (targeting general-purpose processors) has been
somewhat ignored until recently. High-level timing analysis of Es-
terel programs have been studied in [5, 16], where the problem was
to compute the number of transitions in the underlying automata
(encoding an Esterel specification) in response to different input
events. In other words, the high-level timing analysis problem is
concerned with the number of Esterel clock ticks, rather than the
execution time of code within a clock tick. The timing analysis
problem where the states of the automata have been annotated with
WCET estimates has been discussed in [13].

Low level WCET analysis for a single Esterel tick is solved in
[6] for a special Esterel processor, where the instruction set and
micro-architecture are different from a general-purpose processor.
The problem addressed in [15] is the closest to what we study in
this paper. Here, the problem of infeasible paths in the generated
code is mentioned and timing analysis of the whole Esterel pro-
gram is studied. Though the work can also be used for estimating
the maximum computation in a clock tick, the methodology is re-
stricted, since it requires two separate codes to be generated from
the synchronous program — one on which the WCET analysis is
performed, and one which guides the analysis. Further, the prob-
lem of bidirectional traceability or performance debugging of Es-
terel specifications – even though mentioned – was not studied on
non-trivial Esterel benchmarks by including traceability links in an
Esterel compiler. Finally, very recently, [10] reports preliminary
results and plans to integrate an industry-strength WCET analyzer

with the SCADE tool-suite from Esterel Technologies. The frame-
work we propose here follows a similar line of work and to the
best of our knowledge is the first systematic study on performance
debugging of Esterel specifications targeting general-purpose pro-
cessor architectures.

2. OVERVIEW OF ESTEREL
Esterel is a synchronous language where all computation and

communication, unless explicitly paused (using a pause instruc-
tion), happen instantaneously. A run of a program consists of steps
or reactions in response to ticks of a global clock. With each clock
tick, a reaction computes the values of output signals and a new
state from the input signals and the current state of the program.
Such a reaction completes (in zero time) if it does not contain any
pause, or else it delays the instructions following the pause un-
til the next clock tick. Hence, the program “emit A; emit B;
pause; emit C; pause; emit D” emits the signals A and
B at the first tick, C at the second tick, and D at the third tick. If
p and q are Esterel statements, then p ‖ q is the parallel com-
position where p and q are executed concurrently with signals be-
tween p and q being transmitted instantaneously. Hence, emit A
‖ present A then emit B; pause; emit C will emit
A and B at the first tick, followed by C at the second tick. Further
details of the syntax and semantics of Esterel may be found in [7]
(or from the references in [1]).

Compiling Esterel. Various techniques exist for compiling Esterel
into C programs [14]. Based on the intermediate representation
used, they can be categorized into automata-based, netlist-based,
and control flow graph-based approaches. In this paper, we will fo-
cus our discussion on the control flow graph-based Esterel compila-
tion, which normally produce fast and small C code. As mentioned
before, we have integrated our work into the control flow graph-
based code generation of the Columbia Esterel Compiler (CEC)
[9]. CEC first parses an Esterel program to build an abstract syn-
tax tree (AST), which is then used to generate a variant of the so-
called Graph Code (GRC) [14] through a syntax directed transla-
tion. The GRC is then transformed into a sequential control flow
graph (SCFG), via a set of intermediate representations like pro-
gram dependence graph (PDG), and concurrent control flow graph
(CCFG). In CEC, these intermediate steps ensure that the concur-
rent control flow in GRC is sequentialized with the minimum num-
ber of context switches, while obeying the control/data dependen-
cies in original the Esterel program. Finally, sequential C code can
be directly generated from the SCFG.

3. OVERVIEW OF WCET ANALYSIS
We now give a brief overview of WCET analysis techniques for

sequential programs. WCET analysis of a program involves finding
the “longest" execution trace in the program’s control flow graph
(CFG). Recall that the nodes of a CFG are the basic blocks (max-
imal code fragments which are executed without control transfer),
and the edges denote control transfer between basic blocks. Thus,
a path in a control flow graph is simply a sequence of basic blocks,
and an execution trace is a path executed for some program input.
WCET analysis tries to find the maximum time the program takes
to execute for any input. Figure 2(a) shows an example program
and its control-flow graph.

Static analysis based WCET estimation proceeds by finding the
longest path in the program’s control flow graph, satisfying certain
loop bounds (e.g., in the example of Figure 2(a) the loop bound
for the only loop is 10). The execution time estimate of each basic
block is found by micro-architectural modeling where we develop
timing models of the processor micro-architecture (e.g., pipeline,
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Figure 2: Example control flow graphs.

cache, branch prediction) to find the WCET of a sequence of in-
structions.

With the knowledge of WCET of the basic blocks, finding the
WCET of the whole program is reduced to an optimization prob-
lem. Here, we maximize the program execution time without enu-
merating the execution traces of the program. This is done by ex-
pressing linear constraints on the execution counts of any node/edge
of the control flow graph. We then maximize an objective func-
tion representing the program execution time subject to these lin-
ear constraints. Since the execution counts of control flow graph
nodes/edges are integers, we can employ Integer Linear Program-
ming (ILP) technology. Formally, let B be the set of basic blocks
of a program. The program’s WCET is given as:

maximize
∑

B∈B
NB ∗ cB

where NB is an ILP variable denoting the execution count of basic
block B and cB is a constant denoting the WCET estimate of basic
block B. The linear constraints on NB are developed from the flow
equations based on the control flow graph. Thus for basic block B,

∑

B′→B

EB′→B = NB =
∑

B→B′′
EB→B′′

where EB′→B (EB→B′′ ) is an ILP variable denoting the number
of times control flows through the control flow graph edge B′ → B
(B → B′′). Additional linear constraints capture the loop-bounds
(e.g., in Figure 2(a) we need to add the constraint E5→2 ≤ 10).

The core WCET estimation method outlined in the preceding is
neither accurate nor automated. The cause of imprecision comes
from the fact that many paths in the control flow graph might be
infeasible, that is not appearing in the execution trace for any input.
For example, in Figure 2(a) it is not possible for basic block 4 to ex-
ecute in successive loop iterations. Thus, an infeasible path may be
taken as the longest path leading to undue WCET overestimation.
The lack of automation in the WCET analysis method comes from
the onus on the user to provide constraints encoding such infeasible
path information as well as loop bound information.

4. ANALYSIS OF GENERATED CODE
We compile a given Esterel program into C and calculate the

WCET of the C code via a platform-aware WCET analyzer. For-
tunately, for C code generated from Esterel specifications, the user
can largely avoid the problems with precision and automation of
the WCET analysis. In this case, we analyze a C function called
the tick-function which encodes all possible computations within
a clock tick allowed by the Esterel specification. Since the tick-
function is loop-free (Esterel allows no loops within a clock tick),

this leads to an acyclic CFG and hence there is no need to pro-
vide loop bounds to the WCET analyzer. Thus, each basic block
is executed at most once, and ILP-based WCET analysis produces
a 0-1 assignment for the execution count of each basic block. Fur-
thermore, we use the structure of the generated code to efficiently
detect/exploit common infeasible path patterns (leading to tighter
WCET estimates).

4.1 Infeasible Path Patterns
We observe that the automatically generated C code (from Es-

terel) often contains certain infeasible path patterns which may be
less frequent in hand-written C code. Thus, low-overhead auto-
matic methods for detecting/exploiting infeasible path information
can substantially reduce the WCET of such automatically gener-
ated C code. Central to our approach is the notion of conflicting
pairs [17] — pairs of (assignment, branch) or (branch, branch)
statements which may not appear together in an execution trace.
Simply put, an assignment a on a variable x conflicts with a branch
edge e (a branch edge refers to a branch condition being evalu-
ated to either true or false) testing the same variable x if and only if
(i) the test on x in e never succeeds with the value assigned in a, and
(ii) there exists at least one path in the control flow graph between
a and e which does not modify variable x. Similarly, a branch edge
e1 testing a variable x conflicts with another branch edge e2 testing
the same variable x if and only if (i) the conditions on x in e1 and
e2 can never succeed together, and (ii) there exists at least one path
in the control flow graph between e1 and e2 which does not modify
variable x. Figure 2(b) shows an example acyclic CFG and certain
infeasible path patterns in it. We show examples of (assignment,
branch) as well as (branch, branch) conflicting pairs.

The notion of conflicting pairs is simple and easy-to-compute.
Clearly, it will not allow us to detect infeasible paths of the form
x=5; z=x; if (z > 5)... However, as we see in the fol-
lowing, in automatically generated C code from Esterel — the no-
tion of conflicting pairs captures many common infeasible path pat-
terns. Based on our study of C programs generated via Esterel com-
pilation to sequential control flow graphs, we found the following
four common sources of infeasible paths. For each of these four
sources, in Figure 3 we show example Esterel program fragments
(labeled with line numbers) and the corresponding C code (labeled
with basic block numbers) generated by the default code genera-
tion mechanism in the Columbia Esterel Compiler [9]. The four
infeasible path pattern types are as follows.

1. Emit and test signals. The corresponding infeasible paths are
also present at the C level, e.g., the conflicts due to assignment and
test on signal A (B1 and B2 → B4) in the first program fragment
in Figure 3. Besides, in an Esterel clock tick, the same signal may
be tested in different concurrent threads. As a result, in the gener-
ated C program, multiple identical tests on the same variable will
result in paths with (branch, branch) conflicts.
2. Sequentialization of concurrency in a tick. To generate sequen-
tial C code from a concurrent Esterel program, data dependencies
and context switches between concurrent threads must be captured.
In CEC, this is handled by inserting new control variables and cor-
responding test nodes in the generated C code. In the first program
fragment (Figure 3), the variable _DPSCUT_V AR2 captures the
state of the first thread before a context switch, and is used as a
conditional guard when the thread resumes execution. Such as-
signments and tests (may be at multiple places in the same clock
tick) on the guard variable will introduce conflicting pairs.
3. Termination and preemption. The multi-threaded Esterel pro-
gram follows the “wait for all threads to terminate” and “winner
takes all” behaviors for thread completion and thrown exceptions

175



Example1 (Type 1 & 2) Example2 (Type 3)  Example3 (Type 4) 
Esterel Generated C code Esterel Generated C code Esterel Generated C code 

L1:   emit A; 
L2:   present B then 
L3:       emit C; 
L4:   end present 
        … 
L5:   || 
        … 
L6:   present A then  
L7:      emit B; 
L8:   else  
L9:      emit D; 
L10:  end present 

B1:  A = 1; 
B1: _DPSCUT_VAR2 = 0; 
… 
B2: if (A)    
B3:    B = 1; 
      else 
B4:    D = 1; 
      … 
B5:  if (_DPSCUT_VAR2) 
       { … } 
       else { 
B6:     if (B)  C = 1; 
        } 

… 
L1:  trap T in 
       [ 
L2:  emit A; 
L3:  exit T; 
        … 
L4:   || 
L5:   emit B; 
L6:   pause; 
        … 
        ] 
L7:   emit C 

… 
B1:  A = 1; 
B1:  _term_17 &= -(1 << 2); //exit T 
B1:  B = 1; 
B1:  _term_17 &= -(1 << 1); //pause 
       … 
B2:  switch (~_term_17) { 
B3:      case 0: … break; 
B4:      case 1: …             //pause 
B4:                  break;  
B5:      case 3: … C = 1;  //exit T 
B5:                  break;  
            … 

L1:    loop 
L2:        emit A0; 
L3:        pause; 
L4:        emit A1;  
L5:        pause; 
L6:    end 
L7:    || 
L8:    loop 
L9:        emit B0;  
L10:      pause; 
L11:      emit B1;  
L12:      pause; 
L13:  end 

B1:  if (_state_3) { 
B2:     A0 = 1;  _state_3 = 0; 
       }      
       else { 
B3:      A1 = 1;  _state_3 = 
1; 
       } 
B4:  if (_state_6) { 
B5:    B0 = 1;  _state_6 = 0; 
       }  
       else { 
B6:    B1 = 1;  _state_6 = 1; 
       } 

Figure 3: Example infeasible path patterns in generated C code.

([9]). In the C code generated from CEC, this is handled by set-
ting and testing the values of newly introduced guard variables (e.g.
variable _term_17 as in the second example in Figure 3). These
guard variables are assigned to non-negative integer values during
the execution of each thread (0 for thread terminating, 1 for paus-
ing, 2 and higher for throwing and exception). Such assignments
and the tests on these guard variables introduce possible infeasible
paths.
4. Encoding tick transitions. In Esterel, a global automata is de-
fined on the sequence of ticks to be executed in each thread, via the
use of “pause” and “await” statements. In the generated C code,
this automata is encoded through a set of state variables. Setting
and testing these state variables introduce infeasible paths since cer-
tain combinations of states are not allowed in the automata. For ex-
ample, in the third program fragment, given the initial value [0,0],
the combinations of values to ([_state_3, _state_6]) can only be
[0,0] or [1,1] — which prevents the paths corresponding to assign-
ments [0,1] or [1,0] in getting executed. We found that this kind
of infeasible paths may not necessarily be captured via conflicting
pairs.

4.2 Infeasible Path Elimination
We now discuss methods to detect/exploit conflicting pairs in the

ILP-based WCET analysis of the acyclic tick-function code gener-
ated from Esterel. First, we compute all conflicting pairs of (as-
signment, branch) and (branch, branch) statements in the acyclic
control flow graph of the generated tick-function code. This is done
in O((|N |+ |E|) ∗ |E|) time where |N | and |E| are the number of
nodes and edges in the control flow graph of the tick function. For
every branch edge we may need to test (i) all other branch edges,
and (ii) all other nodes containing assignment statements.

Even after the conflicting pairs are detected, we cannot directly
use them in our ILP-based WCET analysis. Suppose we find that
an assignment to a variable x in block i conflicts with a branch
edge j → k (edge between basic block j and basic block k) on
variable x. A straightforward encoding of this conflicting pair as
a linear constraint would be Ni + Ej→k ≤ 1 where Ni (Ej→k)
is the 0-1 execution count of block i (edge j → k). The above
constraint means that block i and edge j → k cannot be executed
together. However, a conflicting pair captures a pair of statements
which cannot be executed together provided the variable resulting
in the conflict is not modified in between the execution of these two
statements. For example, in Figure 2(b), the assignment to vari-
able x in block 0 conflicts with the test of x along the branch edge
3 → 4. However, this (assignment, branch) pair is conflicting (i.e.,
it cannot appear together in an execution trace) only if x is not mod-
ified in between the execution of block 0 and edge 3 → 4. In other
words, for this conflicting pair to be valid, basic block 1 (which
modifies the value of x) must not be executed in between. This
leads to the constraint

N0 + E3→4 − N1 ≤ 1

Formally, we can encode conflicting pairs as linear constraints on
the 0-1 execution counts of nodes/edges in the control flow graph.
Consider an (assignment, branch) conflicting pair involving an as-
signment to a variable x appearing in basic block i and a branch
edge j → k testing the same variable x. We first define the follow-
ing quantity

invalid(i, j → k) = {p|reach(i, p)∧reach(p, k)∧assign(p, x)}
where reach(i, p) is true if there is a path from basic block i to ba-
sic block p, reach(p, k) is true if there is a path from basic block p
to basic block k, and assign(p, x) is true if x is modified in the ba-
sic block Bp. Thus, if any basic block in the set invalid(i, j → k)
is executed, the conflict between the assignment on x in block i
and the test on x in edge j → k is no longer valid (simply be-
cause variable x gets modified). This can be encoded as the linear
constraint

Ni + Ej→k −
∑

p∈invalid(i,j→k)

Np ≤ 1

where Ni (Np) is the execution count of basic block i (p) andEj→k

is the execution count of edge j → k.
For (branch, branch) conflicting pairs, we also define a similar

quantity invalid(i → j, k → l), where (i → j, k → l) is a
conflicting pair of branch edges on a variable x, and invalid(i →
j, k → l) captures all basic blocks modifying x, and appearing in
a path from i → j to k → l. We can then encode this conflicting
pair as a linear constraint

Ei→j + Ek→l −
∑

p∈invalid(i→j,k→l)

Np ≤ 1

Note that we detect all the conflicting pairs automatically and
corresponding to each such pair, the above linear constraint is au-
tomatically added to the ILP formulation of the WCET analysis
problem (thereby leading to a tighter WCET estimate). Among
the four infeasible path pattern types discussed in Section 4.1, the
first three patterns of infeasible paths can be easily detected us-
ing (minor extensions of) our conflicting pair-based infeasible path
detection technique. However, the last type of infeasible paths –
caused by the encoding of state variables – is difficult to identify.
To handle this kind of paths, we allow the programmer to provide
infeasible path annotations at the Esterel level and automatically
translate them into basic block level linear constraints to refine the
WCET estimate. This is elaborated in the next section.

5. BACKWARDS TRACEABILITY
If the WCET estimate produced for the C-level tick function is

greater than a pre-defined clock tick length, we have a violation of
the synchrony hypothesis. It is then useful to show the program-
mer the Esterel statements executed corresponding to the WCET
estimate. To provide such backwards traceability, a C-Esterel map-
ping is built during code compilation (Figure 1). This mapping is
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Benchmark # of Esterel # of C # of conflicting pairs runtime WCET (cycles) reduction
lines lines (assgn, branch) (branch, branch) w/o inf. w/ inf.

runner 55 253 22 20 7.2s 2996 2724 9.1%
reflex 96 378 65 40 12.4s 4776 3910 18.1%
abcd 101 827 527 1296 27.2s 9881 7955 19.5%
mejia 555 2598 1225 4737 1m57s 18257 15983 12.5%
wristwatch 1088 1755 806 4869 2m26s 23320 17271 25.9%
mca200 7269 10894 845 2873 15m25s 63660 52016 18.3%

Table 1: WCET analysis results.

used to generate the Esterel-level critical path (statements executed
when the WCET is realized) from the C-level critical path produced
by the WCET analyzer. By visualizing these Esterel statements, the
programmer can perform optimization/modification of the Esterel
specification.

Assembly to C mapping. State-of-the-art WCET analysis tools
typically perform the analysis on assembly code (which obtained
by disassembling the program binary) rather than source code. This
is to take into account the effect of compiler optimizations for ac-
curate timing estimation. For an ILP-based WCET analyzer, the
WCET estimate is given via basic block counts, where each basic
block is a sequence of assembly instructions. Our first step towards
maintaining backwards traceability is to provide a mapping from
assembly to C code. This can be easily achieved by disassembling
the C object file using the objdump command, which produces the
link between assembly instructions and the corresponding C code.

C to Esterel mapping. To enable a mapping from the C-level
WCET path back to the Esterel level, we maintain traceability links
while compiling Esterel to C. In order to impose minimum over-
heads on the Esterel to C compilation, we only need to maintain
C to Esterel mapping for a subset of Esterel statements. We only
trace the Esterel statements that are eventually translated into C
statements (such as data and signal processing, conditional state-
ment, preemption statements, etc.) and affect the execution time of
the generated C program. For Esterel statements that only affect the
control flow of the C code and produce no explicit execution costs,
we do not need to monitor them during the compilation process.

When an Esterel program is compiled to C, it is first translated
to an intermediate representation (IR), e.g., the abstract syntax tree
(AST). During the AST construction, we maintain a mapping from
Esterel line numbers to the IR node ids; this is done only for the Es-
terel statements we want to trace. Subsequently the AST is trans-
formed into C via changes in control flow due to sequentializa-
tion of Esterel’s concurrency. However, the computation/predicate
nodes of the AST that we trace are retained in the C control flow
graph. Hence, we can map the AST nodes to statements in the C
control flow graph. By composing the Esterel to AST and the AST
to C mappings, we get a mapping from Esterel program line num-
bers to C program line numbers.

Mapping back the longest path. Recall that the ILP-based WCET
analysis (as discussed in the preceding section) only reports the
WCET estimate; it does not produce the corresponding longest path
(also called the critical path). However, the control flow graph of
the Esterel tick function is a directed acyclic graph or DAG and
each basic block is executed at most once. C statements executed
in the critical path of the tick function can be reconstructed easily
from the 0-1 assignments of the basic block counts via the assem-
bly to C mapping (any C statement appearing in a basic block with
execution count 1 must lie on the critical path). Finally, via our
C to Esterel mapping, the Esterel statements corresponding to the
WCET can be obtained. However, since infeasible path detection
methods are incomplete, the reported critical path may, in princi-

ple, still be an infeasible path. Hence, we allow the programmer
to provide infeasible path annotations at the Esterel level. These
are automatically translated into ILP constraints on the execution
counts of the C program’s basic blocks via our traceability links
between Esterel, C and the assembly code.

What kind of infeasible path annotations can be provided at the
Esterel level? Esterel allows the programmer to explicitly define
# (exclusion) and => (implication) relations on signals. These
are constraints on the environment of the Esterel specification (e.g.,
signals x and y never happen in the same tick) which are auto-
matically translated to ILP constraints for tighter WCET analysis.
We have also extended the #, => relations to Esterel statements
and predicates. In particular, we have defined two relational op-
erators, ## (conflict) and <=> (coexist), between Esterel state-
ments/predicates (represented using their line numbers) that we
trace when building the C-Esterel mapping. These annotations
can be automatically translated into ILP constraints as follows. A
conflict annotation A##B is translated into the linear constraint
NA + NB ≤ 1 and a coexist annotation A <=> B is translated
into the linear constraint NA = NB , where NA(NB) is the ex-
ecution count of the basic block that contains A(B) if A(B) is a
statement, or the execution count of the corresponding branch edge
(evaluating to true) if A(B) is a predicate.

6. EXPERIMENTS
In this section, we present some implementation details and ex-

perimental results to evaluate our proposed analysis framework.
We compiled Esterel programs into C using the default code gen-
eration mechanism in the Columbia Esterel Compiler (CEC) [9].
We instrumented CEC so that during the compilation a C-Esterel
mapping is created. We used Chronos [12], an ILP-based WCET
analyzer, to calculate the WCET of the tick function in the gen-
erated C code. For the WCET analysis, the default architectural
configuration of the tool was used, which assumes a direct mapped
L1 instruction cache, dynamic 2-level branch predictor, 5-staged
pipeline, and an instruction dispatch queue size of 4. For infeasi-
ble path detection, we implemented the infeasible path detection
method as discussed in Section 4.1, which automatically detects
(assignment, branch) and (branch, branch) conflicting-pair infor-
mation from the program’s CFG. The generated constraints were
provided to the WCET analyzer for tighter WCET analysis.

We used benchmarks from Estbench Esterel Benchmark Suite
[8], including a runner’s behavioral description (runner), a simple
combination lock (abcd) and the well-known Wristwatch example
from the Esterel distribution. We also studied the reflex game ex-
ample [3], which we discuss in details as a case study.

Table 1 summarizes our WCET analysis results. For each pro-
gram, we show the code size of the Esterel specification and the
generated C program. The number of conflicting pairs automati-
cally detected by the infeasible path detection algorithm are also
listed. The runtime column shows the running time of the entire
WCET analysis, including infeasible path detection, ILP constraint
generation, and ILP solving. Finally, the calculated WCET values
with and without the infeasible path detection for each benchmark
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1    module reflex_game  
      …   
7    relation ..., READY # STOP 
      …   
14  every COIN do      
      … 
22      [ 
23          copymodule AVERAGE 
24    ||  
              …  
38                trap END_MEASURE in  
39                [ 
40                   every READY do 
41                       emit RING_BELL  
42                   end  
43        || 
            …    
52        do 
53 do 
54      every MS do 

55          TIME:=TIME+1 
56             end 
57 upto STOP; 
58 emit DISPLAY; 
59 emit INC_AVE(TIME) 
60         watching LIMIT_TIME MS 
61         time out exit ERROR end; 
62         emit GO_OFF; 
63         exit END_MEASURE 
64      ]  %trap END_MEASURE 
                ... 
 
87  module AVERAGE 
      … 
91      every immediate INC_AVE do 
92         TOTAL := TOTAL + ?INC_AVE 
93         NUM := NUM +1; 
94         emit AVE_VALUE (TOTAL/NUM) 
95      end 
      … 

Figure 4: Esterel-level critical path of the reflex game

is presented. We can see a WCET reduction varying from 9.1% up
to 25.9% resulting from infeasible path detection. A tighter WCET
value improves the accuracy of the synchrony hypothesis valida-
tion, and provides system engineers with more flexibility in term
of design choices. Moreover, with infeasible path detection in-built
into the WCET analysis, we can construct a feasible critical path in
C — which can then be mapped back to the Esterel level.

Case Study. We illustrate our timing analysis framework using
the well-known reflex game example [3]. A user can start a game
session by inserting one COIN to a machine. To test his reflex time,
once the user is ready (by pressing the READY button), he needs
to press STOP as quickly as possible after the machine generates
a GO_ON signal to turn on a light. This is repeated three times
and finally the average reflex time will be calculated and displayed
before game is over. Figure 4 shows an Esterel fragment of the
game controller. The complete Esterel specification of the game
can be found in [3] (game version 1).

We used CEC to compile the reflex game program. We instru-
mented CEC to produce a C-Esterel mapping as discussed earlier.
Automated infeasible path detection (Sec. 4) and ILP-based WCET
analysis were performed on the generated C code. Once the crit-
ical path was computed at the C level, we identified the critical
path at the Esterel level via backwards traceability (Sec. 5). Fig-
ure 5 shows a CFG fragment of the reflex game example, where
assembly code level basic blocks in the critical path (blocks which
have an execution count of 1) computed by our WCET analyzer
are highlighted. Figure 5 also shows the corresponding C code
fragment, through the assembly to C mapping. Finally, via the C to
Esterel mapping, the corresponding Esterel statements executed in
the worst case path are obtained. Thus, the C code fragment shown
in Figure 5 corresponds to Esterel lines 40-42, 58-63 in Figure 4.

The entire Esterel level critical path is shown using shaded lines
in Figure 4. It corresponds to the user pressing READY and
STOP buttons simultaneously after the machine generates a GO_ON
signal. In such a case, the machine rings a bell (emit RING_BELL)
to indicate that the READY button is pressed wrongly (it should
only be pressed before each time the user wants to start a reflex
time measurement). At the same time, to handle the STOP but-
ton, the machine calculates and displays the average reflex time,
generates a GO_OFF signal to turn off the light, exits from the
current measurement and enters the next measurement (or finishes
after three runs). Now, in the Esterel specification, we find the user
annotation that the input signals READY and STOP cannot hap-
pen within the same tick (line 7). Hence our reported critical path
is not a feasible one. Using the mechanism discussed in Section
5, such user annotations are automatically converted to (branch,
branch) conflicting pair information, i.e., tests on READY and
STOP cannot both be true. Naturally, this yields a tighter WCET
estimate.

b35

b36

b37

b58

b59 b60

b35:  if (READY) {
b36:    RING_BELL = 1;
b36:  }
b37:  …
…
b58:  if (STOP) {
b59:    DISPLAY = 1;
b59:    GO_OFF = 1;
b59:    _term_79 &= -(1 << 2);
b59:    (INC_AVE_v = TIME),   

(INC_AVE = 1);
b59:   }
b60:   else {…

Figure 5: C-level critical path of the reflex game

7. CONCLUDING REMARKS
In this paper, we have used WCET analysis of generated C code

from Esterel specifications to validate the synchrony hypothesis.
If the maximum computation in a clock tick is found to exceed
the clock tick period, we map the longest or critical path in the
C code back to Esterel for performance debugging/optimization of
the specification. We are currently in the process of applying our
analysis/debugging methodology to other synchronous languages.
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