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Abstract 
Modern embedded compute platforms increasingly contain both 
microprocessors and field-programmable gate arrays (FPGAs). 
The FPGAs may implement accelerators or other circuits to 
speedup performance. Many such circuits have been previously 
designed for acceleration via application-specific integrated 
circuits (ASICs). Redesigning an ASIC circuit for FPGA 
implementation involves several challenges. We describe a case 
study that highlights a common challenge related to memories. 
The study involves converting a pattern counting circuit 
architecture, based on a pipelined binary tree and originally 
designed for ASIC implementation, into a circuit suitable for 
FPGAs. The original ASIC-oriented circuit, when mapped to a 
Spartan 3e FPGA, could process 10 million patterns per second 
and handle up to 4,096 patterns. The redesigned circuit could 
instead process 100 million patterns per second and handle up to 
32,768 patterns, representing a 10x performance improvement 
and a 4x utilization improvement. The redesign involved 
partitioning large memories into smaller ones at the expense of 
redundant control logic. Through this and other case studies, 
design patterns may emerge that aid designers in redesigning 
ASIC circuits for FPGAs as well as in building new high-
performance and efficient circuits for FPGAs.  

Categories and Subject Descriptors 
C.4 [PERFORMANCE OF SYSTEMS]: Design studies and 
Performance attributes 

General Terms 
Performance, Design. 

Keywords 
ASIC, FPGA, redesigning circuit, memory, BRAM, pattern 
counting, design patterns, high-throughput design, stream.  

1. Introduction  
Implementing applications as circuits on ASICs, and increasingly 

on FPGAs, is widely known to provide substantial speedups 
versus implementation on microprocessors for a wide variety of 
applications. However, designing circuit architectures for FPGAs 
involves some important differences from ASICs. One well-
known difference involves the different off-chip/on-chip memory 
access time ratio, being large for ASICs, but often near 1 (or 
even less) for FPGAs, thus dramatically changing key 
architecture design criteria that typically involve going to great 
lengths to minimize off-chip memory accesses.  

Another difference involves the pre-existence of block 
RAMs on FPGAs versus synthesizing custom-sized hard-core 
RAMs on ASICs. Such pre-existence, coupled with limited 
numbers of ports on block RAMs, suggests that circuit 
architectures for FPGAs should divide on-chip data in a more 
equal and distributed manner than for ASICs, to enable the best 
utilization of block RAMs as well as of distributed RAM (RAM 
implemented using FPGA configurable logic blocks). Yet 
another difference, related to the previous one, is the lack of 
placement freedom when using FPGA hard-core units like block 
RAMs or multipliers. In ASICs, RAM and multiplier cores can 
generally be placed near the components that use those cores. In 
FPGAs, however, RAM and multiplier cores have fixed 
placements. While mapping a circuit to FPGA typically involves 
placing components using cores, near to the cores the component 
is using, the distribution of those cores throughout the FPGA 
often makes such close placement impossible. Distant placement 
in turn results in long connections that must be routed across the 
FPGA, quickly consuming switch matrix capacity. Thus, routing 
from FPGA hard cores can quickly lead to a congestion problem 
that slows a circuit due to long routes, or that result in 
excessively long synthesis runs that may not complete due to the 
difficulty or inability to route the circuit. 

We encountered the above problems in a project that 
involved mapping a previously-designed ASIC pattern counting 
circuit to an FPGA. While the circuit worked superbly as an 
ASIC implementation, the circuit could not be scaled to handle 
large numbers of patterns on an FPGA – the block RAM 
resources were quickly consumed, and the circuit’s performance 
slowed dramatically as sizes were increased to desired quantities, 
with the circuit eventually failing to map.  

Much work has been done on technology mapping problems 
specific to FPGAs as opposed to ASICs, e.g., 
[3][4][6][10][14][15]. Beraudo [3] replicates parts of circuits to 
improve performance – our approach also involves a form of 
replication, but at a higher-level.  

Work has also been done on creating custom computing 
circuits for FPGAs, often with knowledge of the FPGA’s 
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physical resources. Metzgen [12] constructed a high-performance 
ALU for the NIOS processor.  Patterson [13] created a DES 
encryption block targeted to particular FPGAs. Numerous other 
circuits for FPGAs have been developed, e.g., [2][7][8][9]. Many 
of these circuits target a specific FPGA device, using knowledge 
of available physical resources when creating the circuit.    

However, there has been little work on how to redesign 
existing ASIC circuits to FPGAs.  Most research has focused on 
creating new circuits for FPGAs, with little work done in trying 
to understand the differences between designing for ASICs 
versus FPGAs.   

In this paper, we provide a case study describing our efforts 
to redesign a pattern counting circuit for fast, efficient FPGA 
implementation. The contributions are twofold. First, we describe 
a fast and efficient pattern counting circuit that can process 100 
million patterns per second and that scales well to tens of 
thousands of target patterns. Counting patterns is a fundamental 
computing problem with a wide variety of applications, including 
networking, computer profiling, bioinformatics, and more, for 
which FPGAs provide outstanding speedups over 
microprocessors. Second, we describe how we improved 
performance and utilization by redesigning an ASIC circuit for 
an FPGA, which, along with future or other case studies, may 
lead to design patterns [5] to help guide circuit designers who 
target FPGAs.  

2. Pattern Counting and the ASIC-Oriented 
Pipelined Binary Tree Circuit 
Lysecky [11] introduced a high-throughput circuit for the pattern 
counting problem. The problem involves a bus over which 
unique bit patterns may appear. One example of such a bus is the 
address bus between a microprocessor and a memory, as shown 
in Figure 1. Given a set of pre-specified patterns of interest, 
known as target patterns, the problem is to count the number of 
times each target pattern appears on the bus. A goal is to have the 
pattern counter support the highest throughput possible. Possible 
applications of pattern counting include accurate profiling of an 
executing program, accurate profiling of network traffic in a 
network router, tallying huge databases of business transactions 
(e.g., counting the number of each item sold), counting word 
frequencies in large numbers of phone conversations, counting 
occurrences of particular sequences in biological data, and much 
more.  

Lysecky’s solution is based on a pipelined binary tree, 
illustrated in Figure 2. The target patterns are stored in the tree in 
breadth-first order. Thus, the first level (root) contains only one 
pattern, the second level contains two patterns, the third contains 
four patterns, the fourth contains eight patterns, and so on. Each 
level consists of control logic and a memory to store the patterns, 
and another memory of the same size (not shown in the figure) to 
maintain pattern counts. Each level operates concurrently, taking 

information from the previous level, and sending information to 
the next level.  

Level 1 receives the current pattern and compares with the 
target pattern. If equal, level 1’s logic increments the count 
associated with that target pattern. If less, the logic passes the 
pattern to level 2, informing level 2 to look in its left node 
(because in a binary tree, if the pattern is less than the root, then 
search proceeds down the left subtree) – in particular, by telling 
level 2 to look at address 0. If greater, level 1 tells level 2 to look 
in address 1. Level 2 then compares the pattern with the target 
pattern located in the address it received from level 1 (while level 
1 meanwhile processes the next incoming pattern). If equal, level 
2’s logic increments the count associated with that target pattern. 
If less, level 2 appends a 0 to the address, so if the address was 0, 
the new address is 00; if it was 1, the new address is 10. If 
greater, level 2 appends a 1 to the address, yielding either 01 or 
11. Subsequent levels operate similarly, either incrementing their 
count, or appending 0 or 1 to the address as they pass the address 
to the next level.  

The pipelined binary tree achieves single-clock-cycle 
throughput. The cycle length is mostly due to memory access. 
Wires between levels can be extremely compact using simple 
folding approaches that abut each level with the next. The 
original design, in UMC’s 0.18 technology, achieved GHz 
frequencies, and hence billion-patterns-per-second throughput. 
Size is efficient due to only minimal logic being required per 
level (an adder, a comparator, and a few gates), which is dwarfed 
by the memory size for large target pattern sets.  

In seeking to perform pattern counting on a Xilinx Spartan 3e 
1600 FPGA using Xilinx ISE tools [16], we used Lysecky’s 
binary tree circuit by coding it in structural VHDL. However, we 
found that the circuit, while working superbly for its target 
device of ASICs, failed to work as well on FPGAs. Figure 3 
shows that the clock frequency of the original binary tree design 
drops precipitously as the number of target patterns (i.e., binary 
tree size) is increased above 512, from nearly 100 MHz for the 
smaller trees, to below 10 MHz for the 4,096 pattern tree. The 
result is a large throughput decrease shown Figure 4 (note that 
the Y-axis is a log scale). The large drops are likely due to 
routing congestion caused by trying to connect the larger levels’ 

 
 

 
 
 

Figure 1: Example pattern counting scenario: Counting 
occurrences of an address on a CPU bus. 

 
 

 
 
 
 
 
 
 
 

 
Figure 2: Pattern counting with a pipelined binary tree. Each 

level operates concurrently, taking the pattern and address 
information from the previous level, and passing information to 

the next level.  
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logic to multiple block RAMs (each Spartan block RAM can 
hold 512 patterns). Beyond 4,096 patterns, the circuits failed to 
map to the FPGA. Figure 5 provides some insight into why, 
showing that the 4,096 pattern design utilizes nearly all the 
available block RAMs, but leaves most LUTs (lookup tables) 
unutilized.  

In the above design, every level uses a block RAM. Thus, 
there is underutilization within the block RAMs themselves for 
all levels smaller than 512 (levels 1 through 8), which is the size 
of a block RAM. We tried to have the smaller levels instead use 
distributed RAM, but doing so decreased the clock cycle by 50% 
or more.  

3. Hash Table Approach for Pattern 
Counting 
As the pipelined binary tree failed to synthesize well to FPGAs, 
we investigated an entirely different approach for pattern 

counting on FPGAs. We created a new design implementing a 
hash table. We implemented a custom hashing function to 
convert a pattern to an address via simple bit selection. In order 
to get a best-case analysis for the hash table, we used a perfect 
hash in our experiments, meaning the patterns used for each 
experimental run had a one-to-one mapping into the hash table.  
Upon finding a match, the corresponding count is incremented.  

This simple circuit is comprised mainly of a memory equal to 
the size of the number of patterns, with very little logic required 
for the hash function, incrementing, and conflict logic. While the 
circuit’s clock frequency is high, as shown in Figure 3, Figure 6 
shows that this circuit does not achieve the same throughput as 
the pipelined binary tree, starting below 10 million patterns per 
second. Furthermore, the circuit failed to map for more than 
8,192 patterns, due to block RAMs being consumed, as shown in 
Figure 7. The figure shows that block RAMs are exhausted at 
8,192 patterns while LUTs are almost entirely unutilized.  
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Figure 3: Clock frequency as a function of number of patterns, for the three different designs considered.    
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Figure 4: Throughput for the original binary tree. Note that Y-axis is a log scale, so throughput reduction is more than 10x.    
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4. Split Pipelined Binary Tree for Pattern 
Counting 
We thus re-examined the binary tree approach to determine if the 
tree structure could have better scaling and efficiency on FPGAs. 
We noted that the large memories seemed to be the source of the 
FPGA problem in both the original binary tree and the hash table 
circuits, causing clock frequency reductions in the former, and 
block RAM exhaustion in both. We thus sought to reduce the 
size of the largest single memory needed in the circuit.  

In the original binary tree circuit, each level required a 
memory twice the size of the previous level. Beyond a size of 
512, which is the size of a block RAM on the FPGA we were 
using, performance dropped for the binary tree approach.  

In the original binary tree circuit, after 512 patterns, the 
performance begins to slow.  We concluded that this drop in 
performance was largely due to increased wire lengths for a 
level’s logic to access the level’s block RAMs, e.g., the logic for 
a level with 2,048 patterns would be connected to 4 BRAMs. In 
the binary tree circuit, the logic associated with each level is 
small, while the BRAMs are spread over the entire FPGA.  The 
overall performance is further slowed by the fact that BRAMs 
must have single cycle access to the data.   

Our solution was to divide any level with a memory larger 
than 512 into sub-circuits consisting of logic having sub-
memories of 512 each. To avoid the situation of one block of 
logic connecting to multiple BRAMs, we replicated the logic at 
each level for each sub-memory, forming a sub-module. Each 
sub-module connects with the appropriate two sub-modules of 
the next level. Figure 8 shows the sub-module structure that is 

created in this split binary tree. For each additional level added to 
the tree, each sub-module will be connected to 2 sub-modules, 
each of 512 patterns. 

The sub-module solution maintains the simple connectivity 
among levels and the fully-pipelined nature of the design. This 
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Figure 8: Pattern counting with a pipelined split binary tree. Each 
level operates concurrently, taking the pattern and address 

information from the previous level, and passing information to 
the next level. Levels after n are composed of multiple logic and 

memory blocks.  In our experiments, n=8. 
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structure also has the added benefit of easing the routing of the 
tools. Once a pattern has been passed to a sub-tree, the pattern 
will stay in that sub-tree. This means that no communication is 
needed between sub-modules in the same level. The only 
communication required is with the parent module in the 
previous level and the two children in the next level.  This basic 
structure also gives the tool much greater flexibility in how to 
best to layout the circuit on the FPGA.  

The solution’s drawbacks include an increase in area due to 
redundant logic in each level, equaling approximately 15 slices 
per BRAM, and more power due to multiple sub-modules being 
active simultaneously in each level. We found neither drawback 
to be significant. Neither LUT utilization nor power was an issue 
in the earlier design, and thus those factors could tolerate 
increases without problem.  

Figure 9 shows throughput results for the split pipelined 
binary tree, compared with the previous two approaches. The 
split binary tree maintains a nearly constant throughput beyond 
512 patterns, to the maximum size that we experimented with, 
which was 32,786 patterns. Actually, the split binary tree 
experiences a 10% drop in throughput, which is not noticeable in 
the figure.  

Figure 10 shows block RAM and LUT utilizations. We 
noticed a surprising decrease in block RAM utilization above 
1,024 patterns. Upon investigation of the synthesis script outputs, 
we determined that this decrease was due to the synthesis tool 
making use of distributed RAM. We believe the use of 
distributed RAM (i.e., using CLBs for memory rather than block 
RAMs) was enabled by the smaller maximum memory size, 
which helped the synthesis tool place logic and memory near 
each other and thus to find acceptable routing solutions, even 
when using distributed RAM. It is not clear to us at this time why 
the tool could put the larger memories into distributed RAM 

without significant clock frequency reduction, but could not do 
so when we tried to use distributed RAM for the smaller 
memories of the original binary tree. However, of the different 
types implementations that we examined, the split-binary tree 
was the only implementation for which the synthesis tool used 
distributed memory.  In all the tests, we directed the synthesis 
tool to attempt to use the BRAMs. 

The largest tree we synthesized for the target Spartan device 
could hold 32,768 target patterns. Based on throughput and 
utilization, more patterns could likely have been successfully 
mapped (likely up to 65,536). However, as seen in Figure 11, the 
synthesis runtime for the 32,768 pattern circuit was 8 hours, 
which was the longest runtime we considered for this study.  

Thus, splitting the memory into smaller devices enables more 
efficient synthesis, stemming largely from the synthesis 
requirement that a logical memory have single cycle access even 
when implemented on multiple BRAMs.   

5. Other Memory Configurations 
Ideally, one circuit could be automatically mapped to different 
FPGAs, but as seen in the extent of the redesign involved in 
earlier sections, such automation could be challenging. We have 
shown how to map a high-throughput pattern counter to the 
memory implementation architecture of a Xilinx Spartan FPGA. 
However, Altera’s FPGAs use a different memory architecture.     

Xilinx Virtex and Spartan FPGAs contain on-chip memory 
blocks (BRAMs) that are all the same size on a single device 
(though the sizes may vary between different devices).  In 
contrast, Altera Stratix FPGAs [1] have on-chip memory 
(TriMatrix Memory) that is divided into three different types. 
MLAB is the smallest of the types with 640 bits per block, with 
up to 6,750 such blocks available on a device.  M9K is a 9 
kilobits memory block with up to 1,040 such blocks on a device.  
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The largest is the M144K block, which holds 144 kilobits and 
with up to 48 such blocks on a device.   

Thus, if using an Altera device for the pattern counter circuit, 
less splitting of memories may be necessary than when using a 
Xilinx device. The levels closer to the root in the circuit’s tree 
might use the smaller Altera memories, obviating the need for 
splitting of the circuit’s memories and introducing the redundant 
control logic to larger tree levels. Therefore, the best circuit 
design can vary quite significantly depending on what the 
resources that a particular device has.  

6. Conclusions 
We described a high-throughput pattern counter targeted to an 
FPGA. The pattern counter used a pipelined binary tree 
architecture that was previously developed for ASICs, but which 
exhibited severe throughput reductions for larger trees, and 
which failed to map beyond 4,096 patterns. We determined the 
problem to be related to use of large memories, and redesigned 
the architecture such that the maximum memory size was 512. 
The redesign required replicating logic, but logic was not the 
constraining factor in the design, and increases in logic sizes 
were negligible, approximately 15 slices per memory. 

This case study provides one example of how to design or 
redesign a circuit to account for specific FPGA-related issues, in 
this case the issue of memory size. Along with other case studies, 
design patterns may emerge to help guide designers who target 
FPGAs. We also show that the different FPGA designs will 
probably require different mapping strategies. An interesting 
avenue of future work is to develop methods to easily and 
effectively port circuits to different FPGAs the way that standard 
microprocessor binaries are easily ported to different 
microprocessors.  
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Figure 11: Synthesis times of the three designs.  
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