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ABSTRACT
Instruction set simulation and real time operating system modeling
have become important issues for the design of distributed embed-
ded systems. This paper presents a holistic approach to simulate a
distributed, embedded system that includes target software, process-
ing units, and abstract RTOS within a virtual prototype environment.
The processing unit is modeled by an ISS, which is embedded in a
SystemC environment to allow the integration into a platform
model. In comparison to existing approaches, the RTOS is not
directly running on the ISS but outsourced and replaced by an RTOS
model. This step strongly reduces simulation time since the execu-
tion on the ISS is much more time consuming in contrast to the exe-
cution on the host processor. The results show the theoretical and
measured performance gain depending on the RTOS scheduler and
task switching.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems
I.6.4 [Simulation and Modeling]: Model Validation and Analysis

General Terms
Design, Performance

Keywords
Embedded Systems, RTOS Modeling, Instruction Set Simulation

1. INTRODUCTION
In recent years, the increasing complexity of electronic systems has
become a complex challenge for electronic systems designers. This
is particularly true for the development of embedded software. Since
the rate of embedded software within an embedded system is
steadily increasing, the role of real time operating systems (RTOS)
becomes more and more important. Additionally, the role of inter-
connection is also increasing, and application is distributed to sev-
eral processing elements (e.g. driver assistant applications in auto-

motive electronic systems). In this context, virtual prototypes,
including processing elements and RTOS, have become an estab-
lished design methodology to simulate and evaluate the entire sys-
tem at an early design phase. However, the development of virtual
prototypes is also a challenging task regarding the complexity and
heterogeneity of the entire system. Important attributes of virtual
prototypes are: sufficient abstraction to allow early system integra-
tion, high simulation accuracy, and a high simulation performance.

1.1 Virtual Prototype Simulation for Software 
Related Distributed Embedded Systems

A lot of work already exists which discusses embedded software
modeling and simulation with focus on RTOS models, instruction
set simulators (ISS), the common usage of ISS and RTOS models,
and the speedup of simulation platforms.

RTOS modeling is typically performed at high levels of abstrac-
tion to allow design space exploration of different RTOS strategies.
To evaluate the influence of these strategies onto the entire system,
abstract RTOS models have been developed for system level design
languages like SystemC [1] and SpecC [2]. RTOS modeling for sys-
tem level design is discussed for SpecC [17] and SystemC ([22],
[20], [18]). RTOS refinement strategies based on RTOS modeling is
also presented for SpecC [21] and SystemC [23]. The approach in
[19] shows RTOS modeling in connection with multi-processor
platforms. The authors of [24] present a proprietary approach for
embedded system co-simulation using an RTOS model. A SystemC
simulation model of a concrete ITRON based RTOS is presented in
[25]. What all these approaches have in common is that interrupts
and task switches can only be performed at manually specified pre-
emption points.

Instruction set simulation is widely used for embedded system
design. It allows executing embedded software applications on a
simulation model, the ISS, of the target processor. A well-known
open source ISS is the interpretive simulator Simplescalar [10]
which is presented in [11]. An ISS that bases on just-in-time cache
compiled simulation is, for example, introduced in [9]. To allow the
evaluation of the entire system, including the processing element as
well as the system environment, some approaches have been intro-
duced which discuss the integration of ISS into a SystemC simula-
tion framework ([12], [13] and [14]). Also, building multi-processor
platforms has been the topic of research. The authors of [15] and
[16] introduce a multi-processor approach using Simplescalar
within a SystemC framework.

The authors of [27] present a proprietary co-simulation approach
that combines an ISS with an RTOS model. This approach is based
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on virtual synchronization that is introduced in [28]. They replace
the RTOS by an RTOS model within the co-simulation backplane to
reduce the co-simulation overhead. In further work, the approach
has been improved to overcome some limitations by introducing
trace-driven virtual synchronization in [29]. In [30], a framework
has been presented which is based on the approach in [27] and
which uses the new simulation technique. The authors of [26] dis-
cuss a combined RTOS model/ISS approach. However, thread
switches are still executed on the ISS and consume several instruc-
tions on the ISS. Other RTOS functions are executed outside the
ISS, but each instruction has to be decoded additionally within the
program memory to determine RTOS-API calls. This additional
decoding effort slows down the simulation performance.

Lately, speeding up the simulation by annotating timing behavior
into high level system models has become an important research
topic. In contrast to the ISS approaches, the hardware is not directly
modeled, but is taken into account by annotating the corresponding
timing behavior. However, the key is to determine this timing as
accurately as possible. This task is difficult since not all of the tim-
ing behavior is predictable (e.g. dynamic timing aspects). Hybrid
approaches have partially overcome some limitations. The authors
of [5] present an approach for the instrumentation of timing behav-
ior by using the application profiling tool that is introduced in [6]. A
hybrid model that is for fast simulation by switching between native
code execution and ISS based simulation is introduced in [7]. The
authors of [4] present an approach which back-annotates statically
analyzed timing behavior into a simulation model and which consid-
ers the dynamic timing behavior by introducing correction code dur-
ing runtime. A similar approach, which determines the dynamic tim-
ing behavior by statistical models, is shown in [8].

2. MOTIVATION AND BASIC CONCEPT
This work combines the approaches of abstract real time operating
system modeling with instruction set simulation. The idea is to
remove the RTOS from the ISS and replace it by an abstract RTOS
model outside of the ISS. In contrast to the existing combined
approaches, this approach focuses on event-based simulation and
performs a cycle-accurate thread switch from outside the ISS,
although it uses an RTOS model instead of an RTOS. If a thread
switch occurs, the context is stored and switched to the scheduled
thread by pointer replacement. This consumes a minimum of time in
contrast to thread switching which is executed directly on the ISS
and which consumes several instructions. RTOS model and ISS
wrapper are implemented in SystemC at TLM level. Hence, further
system components can easily be integrated in contrast to proprie-
tary approaches. This allows evaluating RTOS strategies within the
context of the entire system. The approach has the following fea-
tures:

1. The concept offers a platform for design space exploration
concerning the RTOS, since it neither yet requires a decision
for a particular RTOS nor the porting of the application to the
RTOS. In contrast to RTOS model approaches at higher levels
of abstraction, this approach consideres the cycle-accurate
behavior of the application during evaluation. Furthermore, it
does not need the manual specification of preemption points
in the application code.

2. The approach facilitates the evaluation of multi-core RTOS
and the evaluation of load balancing strategies respectively. It

allows the user to build multiple ISSs, which communicate
with a single RTOS model.

3. Simulation performance is increased because no ISS instruc-
tions are consumed for thread switches, and RTOS functional-
ity is executed outside the ISS. For interpretive ISS,
instructions consume more simulation time on the ISS in con-
trast to the simulation host.

An important feature of the RTOS is the scheduling. Scheduling is
needed if running a multitasking application on a single processing
element. This paper will focus on the interaction of the scheduler
and the ISS and the idea for thread switching of the application
threads that are still running on the ISS. Figure 1 depicts the key
concept of this paper.

Figure 1.  Combination of RTOS model and ISS.

In our approach, the scheduler is modeled in SystemC and then exe-
cuted by the SystemC simulation kernel while the ISS kernel is exe-
cuting the applications. Both simulation environments exchange
data, such as thread switching information and synchronization.
Each application thread has a separate memory and register range. If
a thread switch occurs, the memory and register area is switched and
the ISS kernel executes the new task.

3. COMBINATION CONCEPT
In this section, our approach is described in more detail. Section 3.1
introduces the ISS. Implementation and experimental results are
based on the Simplescalar ISS ([10], [11]) and the ARM instruction
set. Section 3.1 gives an overview to the few changes that have been
made to integrate Simplescalar into the SystemC/ISS wrapper. Sec-
tion 3.2 gives a brief description of the RTOS model structure. This
section does not discuss RTOS modeling in detail, since our model
is comparable to the models referenced in Section 1.1. Please refer
to these papers to obtain further information about RTOS modeling.
Section 3.3 discusses the SystemC/ISS Wrapper. It is responsible for
the communication between the ISS and the RTOS model, including
the context switching between two threads. However, the synchroni-
zation of the co-simulation is already the object of several papers
referenced in Section 1.1 and therefore not in the scope of this paper.

3.1 Instruction Set Simulator
The ISS is directly integrated into a SystemC module. This is faster
than co-simulation via IPC or GDB RDI interfacing (cp. [12]). Fur-
thermore, multi-instantiation is possible for building multi-core/
multi-processor simulation models. Therefore, the porting of Simpl-
escalar into C++ is necessary: memory, registers and caches are
implemented by C++ classes. An interface for memory access
decouples the memory from the simulator. The class implementa-
tion allows multiple instances of the memory. Each application
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thread is assigned to a separate memory object. In the same way,
each application thread has a separate register object. The processor
kernel is implemented within a class and contains all kernel-specific
data structures and functions. All classes and Simplescalar compo-
nents are integrated into a common namespace. The new structure of
the Simplescalar is depicted in Figure 2.

Figure 2.  The new Simplescalar structure.

3.2 RTOS Model
The RTOS model is a scheduler implementation within a SystemC
module that includes two SystemC threads: schedule_thread and
run_thread. The schedule_thread determines the next schedule. It
supports priority-based time slicing using round-robin and rate
monotonic scheduling. The schedule for the application threads is
stored within a priority list. This list is then delivered to the Sys-
temC/ISS wrapper by the run_thread. Once a new schedule is avail-
able, the run_thread sends it and blocks until schedule execution of
the ISS is finished. This information is delivered by a method of the
ISS_wrapper class that will be introduced in Section 3.3. Figure 3
shows the SystemC RTOS model and the management structure of
the internal processor kernel and thread lists.

To support multi-core systems, an internal priority-based thread
list is applied for each processor kernel. If a new thread is created, it
is assigned to one processor kernel. Load balancing is not supported
until this point, but is planned for future applications, and can be
implemented without changes to the ISS_wrapper class and the data
structure of the thread list. 

Figure 3.  RTOS model with processor kernel and thread lists.

3.3 SystemC/ISS Wrapper
The SystemC/ISS wrapper is responsible for synchronization
between the ISS and SystemC simulation kernel and communication
between the RTOS model and ISS. It offers an interface to decouple
the wrapper from the RTOS model and supports a concept for add-
ing, removing, and switching threads at runtime.

3.3.1 Thread Abstraction
An application thread, which is executed by the ISS, is implemented
as an abstract representation, the thread abstraction, in the SystemC/

ISS wrapper. This thread abstraction includes the actual information
of its program or function depending on register and memory con-
tents. A thread abstraction object is applied for each application
thread. Table 1 shows the information and gives a short description.
Additional information that is required by the sim-outorder simula-
tor of Simplescalar is also stored in the thread class. 

Table 1. Information included in the thread abstraction class.

3.3.2 ISS Wrapper - RTOS Model Interface
This interface also provides abstract functions to handle thread cre-
ation, thread deletion, thread switching and the like. It decouples the
RTOS model and the ISS. The functions are activated by the RTOS
model and influence the execution of the ISS. Figure 4 shows the
structure of the ISS_wrapper with some of the interface methods.
The thread abstraction class and some internal functions from which
the ISS is called up are also depicted. 

Figure 4.  Wrapper structure and thread abstraction class.

Two important interface functions are dispatcher() and
add_thread(). The dispatcher() function is used by the
RTOS model to deliver the schedule information to the ISS_wrapper
class. The add_thread() function adds a new thread to the wrap-
per. Two cases are possible: the new thread is loaded into a new
address space or an existing address space. In the first possibility, a
new instance of register class and memory class is created. Other-
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wise, the new thread is loaded into an existing address space, which
is true for a child thread. The address by itself is delivered by the
function call. Additionally, the child thread needs its own stack. The
free stack has to be divided for all threads within one address space.
For the ARM instruction set, the new stack range is calculated as
follows:

(1)
DEFINITION 1. 

SBP: Stack base address of parent thread.
SBC: Stack base address of child thread.
SGP: Maximum stack size of parent thread.
SGC: Maximum stack size of child thread.
n: Number of child threads within this address space.

3.3.3 Context Switching
The ISS itself keeps references of pointer variables to the register,
memory, and data of the running thread. In case of a context switch,
the pointers are replaced by the pointers to the new thread, as shown
in Figure 5.

Figure 5.  Example of a context switch.
A context switch is handled differently depending on the kind of
simulator the ISS is based on. For cycle-true simulators like the
Simplescalar sim-outorder, a context switch is not allowed at all
times due to the internal ISS pipeline model. Some conditions may
delay a context switch, for instance, loading an instruction from the
cache. The processor blocks until the instruction is loaded, hence, a
context switch is forbidden during that time. Also, if the processor
runs in the speculative mode or performs a CISC operation, which is
divided into several micro operations, a task switch is forbidden. If
context switching is forbidden, the state of the current running
thread is returned by the switch_thread() method. Otherwise,
the state of the current running thread is stored and the state of the
new thread is returned. The algorithm of the switch_thread()
method is shown in Figure 6 as flow diagram.

Figure 6.  Flow diagram of the switch_thread() method.

3.3.4 Dynamic Thread Creation
To allow the application to dynamically create threads, the wrapper
implements a mechanism to notify the RTOS model about the new,

dynamically created thread. Simplescalar allows to recognize sys-
calls and to send them to the host operating system. In this
approach, dynamic thread creation is intercepted, the thread infor-
mation is sent to the RTOS model and added into the internal thread
list, and the add_thread() method is invoked.

3.4 Entire Simulation Model
Figure 7 shows the architecture of the entire simulation model. The
RTOS model calculates the schedule and tells the wrapper to switch
the context to the specified thread. Within the wrapper, the schedule
is received and the context is switched by bending the pointers to the
register, memory, and data variables. Please note that despite using
an abstract scheduler model running outside of the ISS, threads can
be implemented without manually specified preemption points. Fur-
thermore, thread interruption and context switching are cycle-accu-
rate.

Figure 7.  The entire simulation model.

Multi-processor/multi-core systems are supported by the SystemC/
ISS wrapper, the new Simplescalar structure, and the RTOS model.
To implement a multi-core system, multiple class-instances of the
ISS are possible within the wrapper.

4. RESULTS
The new approach has been implemented using Simplescalar with
ARM instruction set and has been compared with the implementa-
tion of the same simulator that executes the RTOS RTEMS [3].

4.1 Theoretical Results

4.1.1 Simulation Performance
The simulation speedup S of the combined approach is defined by
the following equation:

(2)

DEFINITION 2. 
STMODEL: Simulation runtime of the combined approach. 
STRTOS: Simulation runtime if the RTOS is executed by the ISS.

The variables are calculated by the two equations:

(3)

(4)
DEFINITION 3. 

P: The runtime of the application program.
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RMODEL: The runtime of the RTOS Model.
RRTOS: The runtime of the RTOS on the ISS.
I: The runtime of the idle-process of the RTOS on the ISS.

As a result, our approach has a speedup of:

(5)

4.1.2 Accuracy
Saving simulation time also means a loss of accuracy. Since the
RTOS is not executed by the ISS, its timing has to be annotated in
the RTOS model. The accuracy loss is:

(6)

DEFINITION 4. 
CNRTOS: Total clock cycle numbers if RTOS is executed at ISS.
CNModel: Total clock cycle numbers of the combined approach.

The total clock cycle number is the sum of application clock cycles
and RTOS clock cycles. To allow a higher accuracy of CNModel the
measured number of RTOS clock cycles is annotated in the model.

4.2 Experimental Results
We tested the approach for two scheduling algorithms: round robin
scheduling (RR) and priority-based rate monotonic scheduling
(RMS). The focus was to evaluate the experimental results with the
theoretical results. The application consists of two tasks for both
approaches. Figure 8 shows a comparison of the measured simula-
tion time of the combined RTOS model/ISS approach and the
RTEMS running on the ISS. The speedup is shown in relation to the
thread switch rate that is defined by:

(7)

DEFINITION 5. 
w: Thread switch rate per 10000 simulation cycles.
TSN: The total number of thread switches.
CN: The total cycle number.

Figure 8.  Comparison of simulation time with a varying thread 
switch rate for two threads and round robin scheduling.

The figure shows that the simulation time is steadily increasing for a
growing number of thread switches for the RTEMS-on-ISS
approach. Contrarily, the increasing number of thread switches has a
minimum effect for the RTOS model/ISS approach, even for very
big thread switch rates. This is because thread switches consume
much more time with the ISS by executing instruction than outside
the ISS by pointer replacement. The figure also shows the additional
boot time for the RTEMS, which is about 5.2 seconds and marginal
for long simulation times. The measured speedup of four different

numbers of w is shown in Figure 9 for RR and for RMS. For round
robin, a high speedup is only achieved for high thread switching
rates. In comparison, RMS has much higher costs and hence a better
speedup.

Figure 9.  Speedup for different thread switch rates and for 
different scheduling algorithms.

Table 2 compares the measured speedup with the speedup calculated
by equation (5). For this, we determined the RTOS clock cycle,
application clock cycle, and total clock cycle numbers. The values
were inserted in equation (5) assuming that a clock cycle has a con-
stant timing value. Furthermore, RMODEL<< RRTOS is assumed. 

Table 2. Comparison of experimental and theoretical results.

To take the timing of RTEMS into account, we annotated the run-
time of the RTOS into the RTOS model using the SystemC wait
statement. The cycle numbers for different RTEMS syscalls are
measured to determine the total number of RTOS cycles; their mean
value is presented in Table 3. Since the variance of the measured
values is very small, the annotation of the mean value is almost
accurate.

Table 3. Mean value of measured cycles for RTEMS syscalls.

Table 4 shows the accuracy loss in equation (6) for different num-
bers of simulation cycles. Although the accuracy loss is marginal for
our small application, it might be bigger for more complex applica-
tions. Nonetheless, this loss is still small with reference to the entire
application.

In summary, the experimental results show a speedup from
removing and replacing the RTOS scheduler by a RTOS scheduler
model. Further speedup is expected depending on idle task and more
expensive scheduling algorithms. Outsourcing further RTOS func-
tionality (e.g. interprocess communication, interrupt handling as
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well as load balancing algorithms for multi-core systems) will also
lead to an increase in performance. 

Table 4. Accuracy loss of the RTOS model.

5. CONCLUSION AND SUMMARY
This paper has presented an approach for combining abstract RTOS
models and instruction set simulation for distributed embedded soft-
ware. The simulation framework allows evaluating decisions with
reference to RTOS and scheduling strategies by taking the cycle-
accurate application behavior into account. Furthermore, multi-pro-
cessor/multi-core systems and the integration of the entire system
into the simulation framework are supported. The approach has been
implemented using Simplescalar and a scheduler model in SystemC.
The speedup has been shown in comparison to an ISS that executes
the RTOS scheduler.

Future work includes the outsourcing of further RTOS functional-
ity into the RTOS model, the implementation of load balancing
strategies, and their evaluation with reference to the target system.
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