
A Time-Predictable System Initialization Design for
Huge-Capacity Flash-Memory Storage Systems

Chin-Hsien Wu∗

Department of Electronic Engineering
National Taiwan University of Science and Technology, Taipei, Taiwan

chwu@mail.ntust.edu.tw

ABSTRACT
The capacity of flash-memory storage systems grows at a
speed similar to many other storage systems. In order to
properly manage the product cost, vendors face serious chal-
lenges in system designs. How to provide an expected sys-
tem initialization time for huge-capacity flash-memory stor-
age systems has become an important research topic. In this
paper, a time-predictable system initialization design is pro-
posed for huge-capacity flash-memory storage systems. The
objective of the design is to provide an expected system
initialization time based on a coarse-grained flash transla-
tion layer. The time-predictable analysis of the design is
provided to discuss the relation between the size of main
memory and the system initialization time. The system ini-
tialization time can be also estimated and predicted by the
time-predictable analysis.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems; D.4.2 [Operating Sys-
tems]: Storage Management: Secondary storage; B.3.2 [
Memory Structures]: Mass storage

General Terms
Design, Management, Performance

Keywords
Flash Memory, Flash Translation Layer, Storage Systems,
Embedded Systems

1. INTRODUCTION

Flash-memory has become a popular alternative in storage
systems, due to its characteristics in non-volatility, shock-
resistance, and low power consumption. Because of recent

∗Supported in part by a research grant from the National
Science Council under Grant NSC 96-2218-E-011-011

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

technology breakthroughs, flash-memory storage systems are
much more affordable than ever. Similar to other storage
media, the capacity of flash-memory chips is doubled every
two years. Because of the cost management issues, vendors
face tremendous challenges in the design and implementa-
tion of block-device emulation software in flash management.
In particular, the system initialization time must be under
control so that related products remain competitive in the
markets.

In particular, the NAND Flash Translation Layer (NFTL)
is proposed and popularly adopted for the huge-capacity
flash-memory management [2, 3]. It provides a coarse-grained
address translation to map each given logical block address
(LBA) of an access to a physical address on flash-memory,
where the unit in reads and writes is a page, and the map-
ping is done at the block level (to be explained in a late sec-
tion). Although NFTL-like coarse-grained mapping designs
are fine with current products, they soon become improper
in the near future. It is because the rapid growing of the
capacity results in the significant increasing of the system
initialization time in flash-memory management. Such an
observation motivates this research.

In this paper, we propose a time-predictable system ini-
tialization design for huge-capacity flash-memory storage
systems. A coarse-grained flash translation layer is designed
for the time-predictable requirements. The coarse-grained
flash translation layer contains a coarse-grained translation
table that consists of coarse-grained slots. Because a coarse-
grained slot is to provide a large-chunk address mapping, lin-
ear searching in the chunk could be time expensive such that
a page map table is proposed to provide fast address map-
ping. The page map table can be stored in flash-memory
so that they can be retrieved quickly. Because the oper-
ation of the coarse-grained flash translation layer depends
on the coarse-grained translation table and the page map
table, the system initialization is to construct the transla-
tion table. After the construction of the translation table,
the page map table can be read from flash-memory by the
coarse-grained slots of the translation table. As a result, we
propose an efficient method to construct the coarse-grained
slots of the translation table, and especially a binary search
method is proposed. A time-predictable analysis is also pro-
vided to discuss the relation between the size of main mem-
ory and the system initialization time. According to the
time-predictable analysis, the system initialization time is
O(S ∗ log2N), where S is the number of chunks in flash-
memory and N is the number of pages in a chunk.

The rest of this paper is organized as follows: Section 2

13

provides an overview of flash-memory characteristics. Sec-
tion 3 is the related work. Section 4 is the motivation. Sec-
tion 5 presents the to-be-proposed time-predictable system
initialization design. Section 6 provides the system initial-
ization time estimation and measurement. Section 7 is the
conclusion.

2. FLASH-MEMORY CHARACTERISTICS

A NAND flash-memory chip consists of blocks, and each
block is of a fixed number of pages. A block is the smallest
unit for erase operations, while reads and writes are done in
pages. A page contains a user area and a spare area, where
the user area is for the storage of a logical block, and the
spare area stores ECC and other house-keeping information
(i.e., LBA). The typical sizes of the user area and spare area
of a page are 512B and 16B, respectively. The typical block
size of a NAND flash-memory chip is 16KB [4, 5]. Because
flash-memory is write-once, we do not overwrite data on
each update. Instead, data are written to free space, and the
old versions of data are invalidated and considered as dead.
Such an update strategy is called “out-place” or “write-once”
update. In other words, any existing data on flash-memory
could not be over-written (updated) unless its residing block
is erased. Pages that store live data and dead data are called
“valid pages” and “invalid pages”, respectively. After a num-
ber of page writes, free space on flash-memory would become
low. Activities that consist of a series of reads, writes, and
erases with the intention to reclaim free space will start. The
activities are called “garbage collection” and considered as
overheads in flash-memory management. The objective of
garbage collection is to recycle invalid pages scattered over
blocks such that they could become free pages after erasings.

User
data

.

.

.

Logical Block
Address

(array index)

Physical Block
Address

(block,page)

Physical Block Address
(block,page)

Access LBA = 3

Address Translation Table
(in main-memory) Flash memory

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
1,0
1,1
1,2
1,3

(0,3)
(0,1)

(0,6)
(0,4)
(4,7)
(1,0)
(2,1)
(1,2)
(1,3)

0
1
2
3
4
5
6
7
8
9
10
11

.

.

.

Spare
data

Spare data

LBA=3;
ECC=. . .;

Status=. . .;

Figure 1: A RAM-resident Translation Table

3. RELATED WORK

The block-device emulation approach encourages a quick
and popular deployment of flash-memory technology. Many
well-known and popular (disk) file systems can be used with
flash-memory block-emulated devices. Example of the block-
device emulation are FTL [16, 17, 18] and NFTL [2, 3]. FTL
adopts a page-level address translation mechanism (i.e., a
fine-grained address translation). The translation table in
Figure 1 is one kind of fine-grained address translation. The
LBA ”3” is mapped to the physical block address (PBA)
”(0,6)” by the translation table. Note that LBA’s are logi-
cal addresses of pages mentioned by the operating system,

and each PBA has two parts, i.e., the residing block number
and the page number in the block! On the contrary, NFTL
adopts a block-level address mechanism (for a coarse-grained
address translation).

The main problem of FTL is on large memory space re-
quirements for storing the address translation information
because of its fine-grained address translation design. As a
result, NFTL [2, 3] is proposed and popularly adopted for
the huge-capacity flash-memory management. NFTL repre-
sents a typical coarse-grained design of a flash translation
layer. NFTL is to map each given logical block address
(LBA) of an access to a physical address on flash-memory,
where the unit in reads and writes is a page, and the map-
ping is done at the block level. An LBA under NFTL is di-
vided into a virtual block address and a block offset, where
the virtual block address (VBA) is the quotient of the divi-
sion of the LBA by the number of pages per block, and the
block offset is the remainder of the division. Each VBA is
associated with a data block and a log block by indexing a
data block translation table and a log block translation ta-
ble. When a write request is issued, the content of the write
request is written to the page with the corresponding page
offset in the data block. Because flash-memory is write-once,
any subsequent writes of the same LBA are written to the
first free page in the corresponding log block. When all of
the pages of the log block are consumed, garbage collection
starts by copying the valid pages of the corresponding data
block and the log block into a new data block and then eras-
ing the two blocks for recycling. Figure 2 shows the resulted
data block and its log block when write requests to LBA’s
A = 100, B = 101, and F = 105 are done for 2 times, 8
times, and 1 time. Any further writes to A, B or F would
result in garbage collection, as shown in Figure 2. Some
NFTL-like flash translation layers [8, 9, 10, 11] are also pro-
posed such as BAST [9], FAST [9], N+K mapping scheme
[10], and AFTL [11]. They all adopt the block-level address
translation so that they have the same system initialization
time with NFTL.

 A (100)

A Data Block A Log Block

 B (101)

F (105)

A (100)

B (101)

B (101)

B (101)

B (101)

B (101)

B (101)

B (101)

The most-recent
content of the

write request of
LBA F=105

The most-recent
content of the

write request of
LBA B=101

The most-recent
content of the

write request of
LBA A=100

 A (100)

A New Data Block

 B (101)

F (105)

Figure 2: NFTL

4. MOTIVATION

Each spare area of the first page of each block can con-
tain enough house-keeping information for the construction
of the translation table (i.e., the data block translation ta-
ble and the log block translation table). As a result, when a
flash-memory storage system is mounted, all (of the spare ar-
eas) of the first pages of all blocks on the flash-memory would

14

be scanned. Consider a 32GB NAND flash-memory storage
system1: Let the page size be 1024 bytes, and each block
consists of 32 pages. For constructing the table of the block-
level address translation will scan 1,048,576 (32*1024*1024/32)
spare areas of the first pages of all blocks. Assume that the
access time of each spare area is about 30us [5]. It will take
about 30 secs to construct the translation table. Although
some research [6, 7] provides fast system initialization meth-
ods but they can’t guarantee a time-predictable system ini-
tialization so that a unpredictable system initialization time
could occur. Such an observation motivates this research.
We want to design a time-predictable system initialization
design and the design can also provide shorter system ini-
tialization time for various large-chunk address translation
layers such as NFTL, BAST, FAST, N+K mapping scheme,
and AFTL.

5. A TIME-PREDICTABLE SYSTEM INITIAL-

IZATION DESIGN

5.1 Overview

In this section, a time-predictable system initialization de-
sign is proposed for a coarse-grained flash translation layer.
The coarse-grained flash translation layer must maintain a
coarse-grained translation table (referred to CGTT) for the
address mapping of the logical block addresses (i.e., LBA’s)
to the physical addresses. The coarse-grained translation
table consists of coarse-grained slots. In section 5.2, two
data structures: a coarse-grained slot and a page map table
are defined for the efficient address translation of the logical
addresses to the physical addresses. The coarse-grained slot
can provide an address mapping for large chunks so that
fast system initialization time can be achieved by scanning
large chunks. Furthermore, because a coarse-grained slot is
to provide a large-chunk address mapping, linear searching
in the chunk could be time expensive so that the page map
table is proposed to provide fast address mapping. The page
map table can be stored in flash-memory so that they can
be retrieved quickly.

Because the operation of the coarse-grained flash trans-
lation layer depends on the coarse-grained translation table
and the page map table, the system initialization is to con-
struct CGTT. After the construction of CGTT, the page
map table can be obtained by the coarse-grained slots of
CGTT. In Section 5.3, we propose a method to construct
the coarse-grained slots of CGTT, and especially a binary
search method is proposed so that the system initialization
time can be O(S ∗ log2N), where S is the number of chunks
in flash-memory and N is the number of pages in a chunk.
In Section 5.4, a time-predictable analysis for the system
initialization time is provided and the relation between the
size of main memory and the system initialization time is
also discussed in detail.

5.2 Data Structure

5.2.1 A Coarse-Grained Slot

The coarse-grained translation table consists of coarse-
grained slots, where each slot can provide an address map-
ping for large chunks, called a segment (e.g., 1MB or above).

1A example in the market is the availability of 32Gbit flash-
memory chips (SAMSUNG K9NBG08U5A).

Each segment can be defined as a series of contiguous blocks
so that we can vary the size of a segment by changing the
number of blocks in a segment. Each coarse-grained slot can
be defined as a tuple (cg lba, cg pba, cg free1, cg free2,
cg seq), cg lba denotes the corresponding logical address of
the first page in the segment SEG whose physical address is
cg pba. cg free1 denotes an address of the first free page in
the segment SEG. cg free2 denotes an address of the last
free page in the segment SEG. Note that cg free2 will be
used and described in Section 5.2.2. When cg seq is true, it
denotes that all corresponding logical addresses of all con-
secutive written pages in the segment SEG are in sequential
order. The purpose of cg seq is to provide fast address map-
ping and will be described in Section 5.2.2. When a write re-
quest (LBA=α) is issued, the corresponding coarse-grained
slot slotcg can be retrieved by quickly index-searching the
address translation table.

According to the coarse-grained slots, an address map-
ping mechanism can be provided and faster system initial-
ization time can be achieved because of large-chunk address
mapping. Furthermore, because the garbage collection is to
recycle the invalid data, these coarse-grained slots can be
used to help the garbage collection distinguish valid data
and invalid data.

5.2.2 Page Map Table

A Segment

Free Space
(pages)

Page Map
Tables

An address of the
first free page

An address of
the last free page

cg_seq are written in the spare
areas of the written pages

Spare Area

2_ freecg

1_ freecg

cg_lba+12
cg_lba+13

cg_lba+11
cg_lba+14

cg_lba+11

11
12
13
11
14

.

.

.

The most-recent
page map table

Read the most-recent
page map table

cg_lba A logical address of
the first free page

Figure 3: A Page Map Table

A page map table is to help the fast address mapping from
the logical block addresses to the physical addresses because
a segment could be a large chunk and linear searching is too
time expensive. Each segment should have a corresponding
page map table that could be stored in the segment. The
page map table consist of entries and each entry contains an
offset from the starting logical address of the segment (i.e.,
cg lba). For example, as shown in Figure 3, a segment has
been written 5 pages and its most-recent page map table
can be read from the physical address ((cg free2)-1), where
cg free2 denotes an address of the last free page in the seg-
ment. Assume that the logical addresses of the 5 written
pages are cg lba+11, cg lba+12, cg lba+13, cg lba+11, and
cg lba+14. The first written page (i.e., cg lba+11) becomes
an invalid page after the fourth page (i.e., cg lba+11) is writ-
ten. When a read request (LBA=cg lba+11) is issued, we
can locate the most-recent page data (i.e., the fourth written
page) by the coarse-grained slots and the page map table.
Note that if cg seq is true, it means that all correspond-
ing logical addresses of all consecutive written pages in the
segment are in sequential order so that the page map table
will not be needed for address mapping. As a result, for
most read-only data (e.g., multimedia data or system data),

15

the space for the page map tables can be saved due to the
sequential logical addresses of all consecutive written pages.

The page map table should be maintained and updated
efficiently in the main memory and could be written back
to the flash-memory. The page map table is written in an
appending fashion to the corresponding segment upwardly
from cg free2 and is read from flash-memory if needed. As
a result, to maintain the page map table is an overhead
that could occupy free pages. For avoiding the page map
tables stored in flash-memory grow unexpectedly, the space
for the page map tables in each segment should be fixed and
the most-recent page map table is always stored at the end
of the pre-allocated space (where a cyclic buffer scheme is
adopted in the management of pre-allocated space).

5.3 System Initialization and Crash Recovery

Algorithm 1 Binary Search(int low, int high, SEG)

1: if (high < low) then
2: return no free pages
3: end if
4: int middle ← (low+high)/2;
5: if SEG[middle] is a free page and SEG[middle-1] is also

a free page then
6: call Binary Search(low, middle-1, SEG)
7: else if SEG[middle] is not a free page then
8: call Binary Search(mid+1, high, SEG)
9: else if SEG[middle] is a free page and SEG[middle-1]

is not a free page then
10: SEG[middle] is the first free page
11: the corresponding cg free1 can be set as the physical

address of SEG[middle]
12: end if

The operation of the coarse-grained flash translation layer
depends on the coarse-grained translation table (i.e., CGTT)
and the page map table. During the system initialization,
CGTT must be reconstructed. After the construction of
CGTT, the page map table can be obtained by the coarse-
grained slots (i.e., cg free2). CGTT consists of coarse-
grained slots, and each coarse-grained slot is a tuple (cg lba,
cg pba, cg free1, cg free2, cg seq). cg lba can be obtained
by parsing the spare area of the first page of each segment.
cg pba is the physical address of the first page of each seg-
ment. cg seq can be obtained by parsing the spare area of
the last written page (i.e., before the first free page) after
cg free1 is obtained. It is because that when every page
is written, cg seq is also written to the spare area of the
page and there are still undefined region in the spare area
for such purpose. cg free1 and cg free2 can be obtained
by locating the first free page and the last free page of each
segment. We propose a binary search to search the first free
page of each segment (i.e., cg free1). The pseudo code of
the binary search is shown in Algorithm 1. Assume that a
segment SEG is searched for the first free page and SEG[i]
denotes the i-th page. Note that cg free2 can be obtained
in the same way. If the space for the page map tables is
2 blocks (i.e., 64 pages), the time complexity for obtaining
cg free2 is (log2 64=6) page reads.

A crash recovery mechanism is proposed to avoid im-
proper/failed system initialization. Crashes must be de-
tected if any of them occurs during system initialization.
Some page map tables could be lost and they could not

A Segment

Free Space
(pages)

Page Map
Tables

An address of the
first free page

An address of
the last free page

2_ freecg

1_ freecg

cg_lba+12
cg_lba+13
cg_lba+11

cg_lba+14

cg_lba+11

11
12
13

empty
empty

.

.

.
empty

The most-recent
page map table

Read the most-recent
page map table

cg_lba A logical address of
the first free page

The most-recent page map
table can not reflect the

actual situation

The Crash
Recovery Point

Figure 4: Crash Recovery

be written to their corresponding segments when a crash
occurs. As shown in Figure 4, the most-recent page map
table that is read from flash-memory only records three
written pages (i.e., cg lba+11, cg lba+12 and cg lba+13).
However, the most-recent page map table can not reflect
the actual situation, where the fourth and the fifth written
pages (i.e., cg lba+11 and cg lba+14) have been written to
flash-memory. Due to a crash occurs, the most-recent page
map table becomes out-of-date. As a result, when the most-
recent page map table is read from flash-memory, the offset
of the first empty entry in the page map table can be used
to check if the corresponding page in the segment is free. If
the corresponding page is not free, it means that the page
map table is not the latest and a crash occurs. As a re-
sult, the crash recovery can construct fast and consistent
flash-memory storage systems by skipping the scanning of
the pages that have been recorded in the page table.

5.4 Time-Predictable Analysis

During the system initialization, CGTT must be recon-
structed and CGTT consists of coarse-grained slots. The
time-predictable analysis for the construction of CGTT would
be discussed in the section.

Each coarse-grained slot (cg lba, cg pba, cg free1, cg free2,
cg seq) provides an address mapping for each segment so
that each segment in flash-memory must be parsed to con-
struct the corresponding coarse-grained slot. cg lba can be
obtained by parsing the spare area of the first page of each
segment so that the time complexity is one page read. cg pba
is the physical address of the first page of each segment so
that it can be obtained immediately. cg free1 and cg free2
can be obtained by the binary search so that the time com-
plexity is O(log2N) page reads, where N denotes the number
of pages in a segment. After cg free1 is obtained, cg seq
can be obtained by parsing the spare area of the last written
page (i.e., before the first free page) and the time complex-
ity is one page read. Assume that there are S segments in
flash-memory, the total time complexity for the construction
of CGTT is as follows:

O(S ∗ (1 + 1 + log2N)) = O(S ∗ log2N) (1)

Let S be F/α, where F denotes the size of flash-memory
and α denotes the size of each segment. Let N be α/p, where
p is the size of each page (e.g., 1KB). As a result, Equation
1 can be as follows:

O(S ∗ log2N) = O(
F

α
∗ log2(

α

p
)) (2)

16

Let S = F/α be M/γ , where M denotes the size of main
memory (i.e., DRAM) that can be used and γ denotes the
size of each coarse-grained slot. That is, the number of seg-
ments is equal to the number of coarse-grained slots so that
each coarse-grained slot can handle each segment. The num-
ber of coarse-grained slots is limited to the size of main mem-
ory and the size of each coarse-grained slot. As a result, the
size of each segment can be defined as follows:

α = (F ∗ γ)/M (3)

According to Equation 2 and Equation 3, we have the
following observations about the size of main memory and
the system initialization time for CGTT. Assume that F
and p are constant parameters because the flash-memory
chips are hardware devices so that we can’t control them in
software design. γ is also a constant parameter because the
size of each coarse-grained slot is determined in advance.

• If M is decreased for CGTT, then α would be increased
so that the size of each segment would be increased.
That is, each coarse-grained slot should provide sophis-
ticated address mapping strategy and garbage collec-
tion management to handle the larger segment, and es-
pecially system performance for the address mapping
of the logical block addresses to the physical addresses
could be deteriorated. However, when α is increased,
the system initialization time for GCTT can be de-
creased quickly according to Equation 2.

• If M is increased for CGTT, then α would be decreased
so that the size of each segment would be decreased.
According to Equation 2, the system initialization time
for CGTT would be increased. However, each coarse-
grained slot can handle the smaller segment so that
address mapping performance and garbage collection
overhead can be improved.

As a result, according to the time-predictable analysis, we
can design a reasonable M so that the system initialization
time for CGTT can be also predictable and under control.

6. SYSTEM INITIALIZATION TIME ESTIMA-

TION AND MEASUREMENT

The size of flash-memory (F) 20GB
The size of each page (p) 1KB

The size of each coarse-grained slot (γ) 12B
The size of each block (β) 32 pages

Table 1: Constant Parameters

In the experiments, the size of flash-memory (F) was
20GB, the size of each page (p) was 1KB, the size of each
coarse-grained slot (γ) was 12 bytes, and the size of each
block was 32 pages (i.e., 32KB), as shown in Table 1. Ac-
cording to the parameters, the system initialization time
estimation (i.e., O(S ∗ log2N)) , S, α and N can be ob-
tained under different size of main memory (i.e., M), as
shown in Table 2. Compared to NFTL, NFTL would scan
655,360 (20*1024*1024/32) spare areas during the system
initialization. As shown in Table 2, when the size of main
memory was decreased to 0.75MB, our proposed method can

M (MB) S (segments) α (MB) N (pages) S ∗ log2N
(spare areas)

1.5 131,072 0.15625 160 959,700
0.75 65,536 0.3125 320 545,386
0.375 32,768 0.625 640 305,461
0.1875 16,384 1.25 1,280 169,115
0.09375 8,192 2.5 2,560 92,750
0.046875 4,096 5 5,120 50,471

Table 2: System Initialization Time Estimation un-
der Different Size of Main Memory

CPU Intel Celeron 750 MHz
RAM 320 MB

Operating System Windows XP
File System NTFS

Storage Capacity 20GB
Applications Web Applications, E-mail Clients,

MP3 Player, MSN Messenger,
Media Player, Programming, and

Virtual Memory Activities
Duration 1 week

Total Write/ 13,198,805 / 2,797,996 sectors
Read Requests
Different LBA’s 1,669,228

Table 3: Trace Characteristics

have faster system initialization time (i.e., 545,386 spare ar-
eas) than NFTL. We also measured the system initialization
time under the real trace characteristics. The characteris-
tics of the experimental trace over 20GB disk is summa-
rized in Table 3. In the trace, there were 13,198,805 and
2,797,996 sectors that were written and read, respectively,
where each sector was of 512B. We must point out that there
were 1,669,228 different LBA’s that were accessed. The trace
shows that many written data had spatial locality, where
each LBA was written for 7.9 times averagely. During the
collection of the trace, real applications were executed to
have realistic workloads in daily life.

Assume that the access time of each spare area of each
page was about 30us [5]. The system initialization time
estimation and measurement of the proposed method were
shown in Figure 5, where the system initialization time of
NFTL was also measured. The system initialization time es-
timation of the proposed method was calculated according
to Table 2. The system initialization time of the proposed
method and NFTL were measured under the experimental
trace in Table 3. The difference between the system initial-
ization time estimation and the system initialization time
measurement is that the measurement can skip any free seg-
ment that consists of all free pages. For example, when the
size of main memory was large such as 1.5MB, the mea-
surement could skip more free segments than the estimation
so that the measurement could be faster than the estima-
tion. As a result, we can observe that the system initializa-
tion time estimation was close to the system initialization
time measurement when the size of main memory was de-
creased. It shows that the time-predictable analysis of the
proposed method is corresponding to the real system initial-
ization time. Furthermore, the system initialization time
measurement was less than the system initialization time of
NFTL in all cases so that the proposed method can provide
a fast and predictable system initialization time.

As shown in Figure 5, when the size of main memory was

17

decreased, the number of segments was decreased and the
number of pages in a segment was increased. Because the
system initialization time was bounded in O(S ∗ log2N), the
number of segments was a dominant parameter. The sys-
tem initialization time would be decreased when the size of
main memory was decreased. Nevertheless, when the size of
main memory was decreased from 0.375MB to 0.046875MB,
the system initialization time was linearly reduced and no
significant improvement was observed. As a result, the size
of main memory should be set as a reasonable value so that
system initialization time and management overhead of each
segment can be under control.

0

5000

10000

15000

20000

25000

30000

35000

1.5 0.75 0.375 0.1875 0.09375 0.046875

Size of Main Memory (MB)

Sy
st

em
 I

ni
tia

liz
at

io
n

T
im

e
(m

s)

Estimation of the proposed method
Measurement of the proposed method
NFTL

Figure 5: System Initialization Time Estimation and
Measurement

7. CONCLUSION

A time-predictable system initialization design is proposed
for huge-capacity flash-memory storage systems. The time-
predictable system initialization design is based on a coarse-
grained flash translation layer. The operation of the coarse-
grained flash translation layer is based on a coarse-grained
translation table and page map tables. The coarse-grained
translation table consists of coarse-grained slots that can
provide large-chunk address mapping so that fast system ini-
tialization time can be achieved by scanning large chunks.
The page map table is to provide fast address mapping be-
cause linear searching in the large chunk could be time ex-
pensive. The system initialization is to construct the coarse-
grained slots of the translation table and page map tables.
The major contributions of this paper are summarized as
follows:

• We propose an efficient method to construct the coarse-
grained slots by binary searching. After the construc-
tion of the coarse-grained slots of the translation table,
the page map table can be read from flash-memory by
the coarse-grained slots.

• We propose a time-predictable analysis to predict the
system initialization time and discuss the relation be-
tween the size of main memory and the system initial-
ization time. According to the time-predictable anal-
ysis, the system initialization time is O(S ∗ log2N),
where S is the number of chunks in the flash memory
and N is the number of pages in a chunk.

• According to the system initialization time estimation,
we can really predict the system initialization time un-
der different size of main memory. As a result, the

system initialization time of the design is predictable
and under control.

For future research, we should further explore different
application characteristics and the designs of super-huge-
capacity flash-memory storage systems. Especially, how to
efficiently manage a large segment (chunk), and at the same
time, to provide a reliable and scalable flash translation layer
with time-predictable system initialization will become an
important research topic. Furthermore, for different em-
bedded application systems and different requirements for
embedded storages, a sophisticated customization of flash-
memory storage systems and tool development become im-
portant issues.

8. REFERENCES
[1] http://www.samsung.com/Products/Semiconductor/

NANDFlash/index.htm
[2] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A

Space-Efficient Flash Translation Layer for Compact-Flash
Systems,” IEEE Transactions on Consumer Electronics,
Vol. 48, No. 2, MAY 2002.

[3] U.S. Pat. No. 5,937,425 “FLASH FILE SYSTEM
OPTIMIZED FOR PAGE-MODE FLASH
TECHNOLOGIES”

[4] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,
“Introduction to Flash Memory,” Proceedings of The IEEE,
Vol. 91, No. 4, April 2003.

[5] Samsung Electronics. NAND flash-memory datasheet and
SmartMedia data book, 2006.

[6] C. H. Wu, T. W. Kuo, and L. P. Chang, “The Design of
Efficient Initialization and Crash Recovery for Log-based
File Systems over Flash Memory,’ ↪aě accepted and to
appear in ACM Transactions on Storage (ACM TOS).

[7] Keun Soo Yim, Jihong Kim, and Kern Koh, “A Fast
Start-Up Technique for Flash Memory Based Computing
Systems,” To appear in Proceedings of the ACM
Symposium on Applied Computing (SAC’05), Santa Fe,
USA, March 2005.

[8] Soo-Young Kim and Sung-In Jung, “A Log-based Flash
Translation Layer for Large NAND Flash Memory,”
ICACT, Feb 2006.

[9] Sang-Won Lee, Won-Kyoung Choi, and Dong-Joo Park,
“FAST: An Efficient Flash Trnaslation Layer for Flash
Memory,” EUC Workshop 2006.

[10] Chanik Park, Wonmoon Cheon, Yangsup Lee, Myoung-Soo
Jung, Wonhee Cho and Hanbin Yoon, “A Re-configurable
FTL (Flash Translation Layer) Architecture for NAND
Flash based Applications,” IEEE International Workshop
on Rapid System Prototyping, 2007.

[11] C. H. Wu and T. W. Kuo, “An Adaptive Two-Level
Management for the Flash Translation Layer in Embedded
Systems,” IEEE/ACM 2006 International Conference on
Computer-Aided Design (ICCAD), San Jose, USA,
November 5-9, 2006.

[12] D. Woodhouse, Red Hat, Inc. “JFFS: The Journalling
Flash File System”.

[13] Intel Corporation, “LFS File Manager Software: LFM”.

[14] Aleph One Company, “Yet Another Flash Filing System”.

[15] M. Rosenblum, and J. K. Ousterhout, “The Design and
Implementation of a Log-Structured File System,” ACM
Transactions on Computer Systems 10(1) (1992) pp.26-52.

[16] Intel Corporation, “Understanding the Flash Translation
Layer(FTL) Specification”.

[17] Intel Corporation, “Software Concerns of Implementing a
Resident Flash Disk”.

[18] Intel Corporation, “FTL Logger Exchanging Data with
FTL Systems”.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

