Synthesis of Heterogeneous Pipelined Multiprocessor
Systems using ILP : JPEG Case Study

Haris Javaid

Sri Parameswaran

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
{harisj, sridevan}@cse.unsw.edu.au

ABSTRACT

Streaming applications can be implemented with a pipeline of proces-
sors. Each processor in the pipeline can be an Application Specific In-
struction Set Processor (ASIP) with the result being a heterogeneous
pipelined MPSoC system. Since ASIPs can be of differing configu-
rations, finding the optimal set of configurations for a multiprocessor
architecture is a difficult problem.

In this paper, we obtain an optimal system design for a set of pro-
cessors which execute a multimedia application. The variables in the
system are the presence or absence of different additional instructions
and differing cache configurations for each of the processors. The
problem is formulated as a 0-1 Integer Linear Programming (ILP)
problem. To reduce the complexity of the /LP formulation, inferior
ASIP configurations are efficiently pruned so that the solution could
be reached quickly. Given a system runtime constraint, the proposed
methodology finds a design with minimal area. We integrated this
design methodology into a commercial design flow, and performed a
case study upon the JPEG encoding application. We obtained 15 op-
timal designs subject to 15 different runtime constraints, each in less
than 100 seconds from more than 4.2 x 103 design points.

Categories and Subject Descriptors

C.1.3 [Other Architectural Styles]: Heterogeneous (hybrid) Sys-
tems, Pipeline Processors; C.4 [Performance of Systems]: Modeling
Techniques, Design Studies

General Terms

Algorithms, Design, Performance

Keywords

MPSoCs, Design Space Exploration, Integer Linear Programming

1. INTRODUCTION

Increased transistor density in modern chips has enabled multi-core
chips in embedded devices. MPSoCs facilitate parallel hardware with
partitioned software to attain performance gains and decrease power
consumption. MPSoCs are becoming a viable solution as it becomes
more difficult to increase clock speeds, and to continuously widen
instruction level parallelism.

MPSoCs can be either homogeneous or heterogeneous. Homoge-
neous MPSoCs use identical processing entities, where as Heteroge-
neous MPSoCs contain different processing elements. These process-
ing elements can include coprocessors, general purpose processors,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’08, October 19-24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

and application specific architectures such as ASICs or DSPs. Het-
erogeneity in MPSoCs allow the designed systems to occupy smaller
area footprint and consume less power by matching each of the pro-
cessing elements with the task assigned to them. To improve effi-
ciency while still allowing the flexibility of a processor, Application
Specific Instruction-set Processors (ASIPs) [1, 2, 4] could be used as
the basic building blocks of MPSoCs. An ASIP’s architecture and
instruction set can be matched to the needs of a specific application,
improving performance while minimizing area. ASIPs in an MPSoC
environment exploit both coarse- and fine-grained parallelism avail-
able within an application.

Heterogeneous pipelined multiprocessor architecture is a viable im-
plementation platform for streaming applications. In a pipelined ar-
chitecture, processing entities are connected in a pipelined structure
via queues. Each pipeline stage may contain one or more processing
elements which process the incoming data stream. The data stream
goes through each stage until the output is finally written by the last
pipeline stage. Pipelined architecture provides better performance
gains for streaming applications, as each of its stage can be cus-
tomized to suit a particular part of the application which is executed
by that pipeline stage processor(s) [17].

A JPEG encoder is described in this paper, which is implemented
with a multiprocessor system configured in a pipelined fashion. The
JPEG application is manually partitioned into standalone processes to
be executed on individual processors. Since ASIPs can be configured
in various ways, the problem of mapping a partitioned application
onto available ASIP configurations is examined. The designer spec-
ifies the runtime of the pipelined system, and the proposed design
methodology searches for the optimal design point which meets that
runtime constraint while minimizing the area.

The rest of the paper is organized as follows: Section 2 provides an
overview of the work already done in the MPSoC domain and Sec-
tion 3 specifies the details of the model used for the pipelined multi-
processor system. Section 4 explains the overall design methodology
to implement heterogeneous MPSoCs using ASIPs while Section 5
states the formulation of the mapping problem as a 0-1 ILP problem.
Our algorithm to prune the design space is discussed in Section 6.
Section 7 provides the experimental setup to validate the proposed
methodology with the results presented in Section 8. Finally, Sec-
tion 9 summarizes the paper.

2. RELATED WORK

Many multimedia applications have already been implemented onto
multiprocessor architectures. These include a real time video and
graphics management system [19] and an HDTV system [8]. Dif-
ferent techniques in multiprocessor architectures have been explored
to speed up applications. Kodaka et al. [13] used both coarse- and
fine-grained parallelism in a multiprocessor chip called OSCAR. OS-
CAR exploited task level parallelism, loop pipelining and instruction
level parallelism simultaneously. The work in [12] partitioned loops
into several pipeline stages and used an iterative algorithm to exploit
greater parallelism and reduced area in the designed system. Banerjee
et al. [7] used a Signal Flow Graph (SFG) to partition an application

to be implemented as a heterogeneous multiprocessor system. The
authors targeted scheduling of pipelined tasks on multiple proces-
sors, showing that macro pipelining based scheduling increases the
throughput rate to several times that of homogeneous multiprocessor
scheduling techniques.

Optimization of heterogeneous multiprocessor architectures has also
been widely explored. Different heuristics have been proposed to ef-
ficiently explore the design space of a heterogeneous multiprocessor
system. Sun et al. [20] examined multi-ASIP systems, integrating
custom instruction selection for ASIPs with assignment and schedul-
ing of tasks. An iterative algorithm was used to perform these two
steps simultaneously and find a multiprocessor system with minimum
runtime given an area budget for the custom instructions. Cong et
al. [9] explored partitioning of applications represented as cyclic di-
rected graphs onto a multiprocessor architecture with processors con-
nected in a pipeline. The approach used graph algorithms such as
labelling, clustering and packing to generate a multiprocessor system
with minimized latency and number of processors under throughput
constraints. The authors in [18] targeted implementation of streaming
applications onto heterogeneous pipelined multiprocessor systems us-
ing ASIPs as processors. The work presented a methodology to rapidly
explore the design space of such a multiprocessor architecture. The
authors used runtime X area as cost function to be minimized for the
overall system design, while exploring different ASIP configurations.

Integer Linear Programming (ILP) [10] is a widely used technique
in optimization of multiprocessor architectures. Schwiegershausen et
al. [15] presented a Mixed Integer Linear Programming (MILP) based
approach for optimization of heterogeneous multiprocessor systems,
but the presented approach becomes impractical as the number of
processor types increase. The authors in [11] also formulated the
synthesis of customized multiprocessor systems as an MILP prob-
lem considering pipelined execution of task graph onto available pro-
cessors. Kuang et al. [14] presented an ILP based approach for in-
tegrated hardware/software partitioning and pipelined scheduling of
partitioned tasks onto heterogeneous multiprocessor architecture.

The present work enhances current design methodologies for mul-
tiprocessor architectures by utilizing Integer Linear Programming tech-
nique to synthesize an optimal heterogeneous pipelined multiproces-
sor system. Our work differs from all of the above in the following
ways:

1. Design space exploration of a heterogeneous pipelined mul-
tiprocessor system (implementing a streaming application) is
formulated as a 0-1 ILP problem. To the best of our knowl-
edge, this work is the first to address design space exploration
as a 0-1 ILP problem in the context of heterogeneous pipelined
multiprocessor systems.

2. This work also combines strategic pruning of the design space
to rapidly and optimally solve the problem.

3. SYSTEM MODEL

This case study is aimed at semi-automated implementation of a
streaming application onto a heterogeneous pipelined multiprocessor
system. Processing entities in the multiprocessor system are con-
nected in a pipelined fashion to exploit task-level parallelism avail-
able in these applications [17]. Each pipeline stage of the system
contains an ASIP to execute some part of the targeted application.
The target application is partitioned into processes to be mapped onto
these ASIPs/pipeline stages. Input data is read by the first pipeline
stage and is processed by later stages until it is finally written out by
the last pipeline stage. Each ASIP can be customized to generate dif-
ferent processor configurations, which form the design space of this
case study. We focused on the rapid exploration of the generated de-
sign space and obtained optimal designs (for differing system runtime
constraints) using a 0-1 ILP solver for the pipelined system.

3.1 Application

We performed our case study on a freeware JPEG encoding algo-
rithm implemented in C. The JPEG algorithm divides an image into

Process 0,

Read RAW Image
Block

RGB to Y CbCr
Conversion

Level Shifting

Horizontal DCT

Quantization

.

Huffman Encoding

Write JPG File

(a)

Figure 1: (a) Major operations of JPEG algorithm as partitioned
into processes (b) Six processors configured in a pipeline with one
processor in each stage of pipeline.

macro blocks which are then processed one by one. The applica-
tion is manually partitioned into processes that can be mapped onto
processors/pipeline stages as standalone programs. It is first profiled
over a single processor system. Then, profiling information is used
to partition the application into processes to approximately balance
the workload of each process. In other words, input block rate of the
first process should be the same as output block rate of the last pro-
cess. Processes communicate with each other using queues (FIFOs)
which allow communication at a much higher bandwidth, devoid of
the contention of a typical shared bus architecture. Figure 1(a) shows
the major steps of a JPEG encoding algorithm which are partitioned
into a set of connected processes while Figure 1(b) implements a six
processor pipeline system to execute the mapped processes. The first
processor reads the raw image block and performs RGB to YCbCr
conversion. The second processor is assigned the level shifting pro-
cess. Similarly, other processors are allocated different tasks as shown
in Figure 1. Readers interested in further details are referred to [17].
Since input images to the pipelined system are processed at the macro
block level, time to process one macro block by a processor is referred
as latency of that processor. As can be seen, while one processor is
processing one macro block other processors will be busy processing
other macro blocks in a typical pipelined fashion, resulting in perfor-
mance gains.

3.2 Processor Configurations

Each processor in the multiprocessor implementation can be con-
figured in one of the configurations available for that processor. Pro-
cessor configurations differ by the additional instructions they contain
and by the sizes of their instruction and data caches. Since processes
have already been mapped onto processors in the pipeline, each pro-
cessor is customized according to the process being executed on it.
A commercial ASIP design tool from Tensilica Inc. [4] is used to
automatically generate these configurations from a base processor for
each of the processors in the pipelined system. We used the same base
processor for each stage of the pipeline (however, base processors can
be different for different pipeline stages and can be specified by the
designer). Table 1 depicts the details of the base processor which was
used in our experiments.

The processor configuration generation can also be controlled by
the designer using the overhead granularity value. One set of addi-

Speed 563 MHz
Pipeline Depth 5
Core Area 112048 gates
Instruction Width 8 bytes
PIF Interface 128 bytes
Load/Store Units 1
Other Features MACI16 & MULZ32 instructions, Boolean Registers,
Direct associativity of instruction & data cache
with 16 bytes line size

Table 1: Base Processor Configuration

tional instructions for a processor can be different from another set of
additional instructions for the same processor if their area overhead
differs by more than the specified overhead granularity. We used
a value of 5000 (gates) as overhead granularity and only changed
instruction and data cache sizes from 1KB to 32 KB to obtain cus-
tomized configurations of each processor. Area of a processor config-
uration includes base processor, additional instructions (if any), and
instruction and data cache sizes. Table 2 shows the number of config-
urations for each processor that were generated for the six-processor
pipelined system shown in Figure 1(b). DCT and Huffman Encoding
are computationally-intensive operations of the JPEG encoder which
will generally increase the number of additional instructions, thus in-
creasing the number of configurations for these two processors. The
total design space is a permutation of all these configurations.

3.3 Runtime Calculation
Shee et al. [18] used a runtime estimation technique to rapidly ex-
plore the design space of a pipelined heterogeneous system. The esti-
mation technique uses an equation to calculate pipelined system run-
time with one set of processor configurations as:

=

-1
R =R""(po) + L(p:)

+ (I = 1) X L(periticar) + R (pn—1)

(C))

Il
o

L refers to latency of a processor in a pipeline stage and R,
R/l [and N refer to initialization time of first processor, final-
ization time of last processor, number of macro blocks and number
of processors respectively. Using this equation, system runtime can
be estimated using latencies of individual processors instead of sim-
ulating the whole system with that particular set of processor con-
figurations. Processor latencies include inter-processor communica-
tion delays, but exclude read and write FIFO stalls. This means only
net communication time and processing time of one macro block is
used. As slower processors stall for the critical processor, FIFO stalls
should not be a part of the calculation of system runtime. We used
Equation 2 which is same as equation 1 but with several modifica-
tions.

N—-1
R =R""(po) + Y L'(p:)
1=0

+ (I — 1) X L(pcritical) + Rfinal(prl) (2)

where L(pi) = ZLj(qu)/(I -1

The reason for separating first latency L' from averaged latency
L (averaged over I-1 macro blocks except the first one) of a proces-
sor corresponds to the fact that there will be more instruction or data
cache misses while processing the first macro block. To make run-
time estimation more accurate, first latencies are recorded separately
and used for those processors which are non-critical. For the criti-
cal processor, averaged latency is used because once the pipeline is

Pipeline Stage Processor | Number of Configurations
Processor 0 144
Processor 1 144
Processor 2 396
Processor 3 144
Processor 4 252
Processor 5 144

Table 2: Number of configurations generated for each processor

filled, that is, every processor has processed first macro block then
next macro blocks will be output by the last pipeline stage after every
L clock cycles, which is the average latency of the critical pipeline
stage processor. Equation 2 can be used to estimate the system run-
time given one set of processor configurations.

To rapidly explore the whole design space, instead of simulating
every possible combination of processor configurations to get system
runtime, each processor’s configurations are simulated separately [16].
This is possible because computation time of a processor is separated
from FIFO stalls and only net communication time is recorded. A
3-tuple number (L', L, A) is recorded for each processor configura-
tion where A stands for area of that particular configuration. A 4-
tuple number (R™™t/RI ™l 11 [, A) is recorded to include initial-
ization/finalization time for each configuration of first and last pro-
cessor. The pipelined system will be simulated for K, times which
is the number of configurations for the processor having maximum
configurations from amongst all the processors as other processor’s
configurations are simulated at least once. System runtime for every
possible combination of processor configurations can be calculated
using Equation 2. As shown in Equation 3, area of the pipelined sys-
tem is the summation of the area cost of all processors where area
cost of each processor is measured in gates.

N—1
A= Y4 @)
i=0

Area of the pipelined system does not include area cost of FIFOs
that connect processors as the application is partitioned only once at
the start. The designer knows how much data (number of bytes) will
be transferred between two processors and can specify FIFO sizes and
their associated area costs. Since it will be a constant value, there is
no need to account for FIFO areas. In this work, we did not consider
the cost of processor memories.

4. OVERALL DESIGN METHODOLOGY

The overall design flow for implementation of pipelined heteroge-
neous multiprocessor systems is as follows: A pipeline of N pro-
cessors and partitioned processes of an application are given. The
processors are numbered Py, P1 to Py_1. Processor P; has a num-
ber of configurations numbered P; o, P; 1 to P; k,—1 where K is the
total number of configurations for processor P;. These configura-
tions are generated from the provided base processor, which is then
enhanced by additional instructions. The additional instructions vary
by greater than a given fixed value, overhead granularity, which is
specified in number of gates. For example, if overhead granularity =
5000 gates, then size of processor P; 1 >= FP; o + 5000 excluding
the size of caches. Each configuration F; ; is associated with a tu-
ple as described in Section 3.3. For example, Py o will be associated
with (Rf%t, L0, Lo,o, Ao,0). The design space consisting of pro-
cessor configurations is pruned efficiently as described in Section 6
by removing all inferior configurations subject to Rg, where Ry is
the given runtime constraint. One configuration of each processor
is selected so that the resulting pipelined system has minimum area
while its runtime is less than Rg4. The problem of mapping processes
onto processor configurations, and finding the best set of processor
configurations from the pruned design space is formulated as a 0-1
ILP problem, and solved using an ILP Solver which provides an op-
timal solution. Pruning the design space for different values of Rg4
and finding an optimal solution using an ILP Solver will reveal differ-

ent optimal design points with respect to Rq. These optimal design
points (which are obtained for multiple given runtime constraints) are
referred to as pseudo Pareto optimal points of the whole design space,
and are a truncated set of Pareto optimal points.

5. ILP FORMULATION

The mapping problem can be stated as follows: Given an appli-
cation partitioned into processes and processors with their configu-
rations, processes are mapped to processor configurations such that
system area is minimized while system runtime is less than designer’s
runtime. In the ILP formulation of the mapping problem, N denotes
the number of processors while K; denotes the total number of con-
figurations for processor . L%Y j and L; ; refers to L' and L of proces-
sor ¢ in configuration j respectively as explained before. The different
steps for ILP formulation of the mapping problem are:

5.1 Decision Variables
Basic decision variables are introduced to reflect mapping of a pro-
cess onto a processor configuration specified as:

1. x;,; equals 1 if configuration j of processor i is selected
2. ¢m,n equals I if processor m with configuration n is selected
as the critical processor of the pipelined system

The necessity for c;,; decision variables arises from the fact that there
can only be one critical processor which has the maximum averaged
latency amongst the selected processor configurations. This condition
is formulated as a constraint described in section 5.3.

5.2 Objective Function
The objective function is to minimize area of the multiprocessor
system given the system runtime is within the upper bound specified
by the designer which reflects the soft realtime constraint of streaming
applications. The objective function is stated below.

N-1K;-1

Minimize E E Ai %

i=0 ;=0
where A; ; stands for area of the processor ¢ with configuration j.
5.3 Constraints

The different constraints applicable to the pipelined multiprocessor
system are listed below:

1. For each processor exactly one configuration can be selected.

K;—1
E Ti,j5 = 1 Vi
Jj=0

2. Only one processor can be selected as critical pipeline stage
processor.

N-1K;—1

DD e

i=0 ;=0

3. A processor configuration already selected can be selected as
critical processor configuration.

Ci,j — Tij S 0 Vl,‘]

4. System runtime must be less than or equal to designer’s run-

time.
Ko—1 N-1K;—1
init
E Ro,j wo,; +) % Lijci;
=0 j5=0
N—-1K;—-1 Kn_1-1
final
+§:§:L,J$w+ § Ry~ 1,j TN~ 1, < Ra
=0 j=0

where R, refers to system runtime constraint.

5. A processor configuration is critical only if its averaged latency
L is maximum amongst the averaged latencies of all selected
processor configurations.

Ko—1 Ki—1

Z LO,]CO,] > Z Ll,JxLJ

where Max(L1,;) stands for maximum L amongst all config-
urations of processor 1 and cg is summation of all cg,; for pro-
cessor 0. If processor O is selected as the critical processor
then ¢ will be 1, zeroing the factor Maz(L1;) X [1 — ¢o]
and allowing the comparison that critical latency is greater than
the latency of processor 1. In other words, if processor O is
non-critical then the factor Zf:o(; ! Lo, jco,; dies down and the
above constraint is always evaluated as true. There will be N-1
constraints for each processor as it has to be compared against
every other processor. Thus, in total we have N(N-1) such con-
straints which ensure that critical processor is actually the one
with maximum averaged latency amongst the selected proces-
sor configurations.

6. PRUNING DESIGN SPACE

The 0-1 ILP formulation results in 2 x ZN ! K; decision variables
which can become large very quickly. Reducmg the design space
directly reduces the number of decision variables, which will help the
ILP solver to find the optimal design more quickly. The design space
is pruned to reduce the number of configurations of each processor.
The basic idea behind design space pruning arises from the runtime
constraint imposed on the final design. This constraint leads to the
fact that there will be some configurations of a processor that cannot
be part of the optimal system design and could be removed from the
design space. If the runtime constraint is greater than the highest
runtime supported by the design space, not even a single configuration
is removed. Similarly, for a runtime constraint less than the lowest
possible runtime supported, all the configurations are pruned resulting
in an empty design space.

Algorithm 1 depicts our approach to prune the design space. The
algorithm selects one processor P;, and goes through all of its con-
figurations while other processors are set to those configurations with
minimum execution times. Three different times namely Processing-
Time, CriticalProcessingTime and Latency are defined as follows:

MU,IE(LLJ') 1—60

Latency = L for all processors

Rt 1 L1 if first processor
ProcessingTime = { Rfmal 4 L1 if last processor
Lt other processors

Rinit 4 14 (I —1) x L if first processor
CriticalProcessingTime = { Rf"el 1 L1 4 (I — 1) x L if last processor
L'+(I-1)xL other processors

MinProcessingTime(P;), MinCriticalTime(P;) and MinLatency(P;) fu-
nctions return configuration of processor P; having minimum Pro-
cessingTime, CriticalProcessingTime and Latency respectively. It sho-
uld be noted that a configuration Py, of Py having minimum La-
tency might not have minimum ProcessingTime as well. Three arrays
min_proc_times, min_latencies and min_crit_times are used to store the
processor configurations according to the above criteria (lines 5-9).
For example, min_proc_times[0] corresponds to a configuration Py ;
which had minimum ProcessingTime amongst all configurations of
processor Po. Similarly, min_crit_times[0] corresponds to a configu-
ration Pp,; which had minimum CriticalProcessingTime amongst all
configurations of processor Fp.

The algorithm is illustrated here. Assume that processor 3 is se-
lected as the critical processor having the worst min_latency (line 11).
The algorithm goes through processor 1 configurations: all other pro-
cessors at this instant are set to configurations from min_proc_times

Algorithm 1 Algorithm to prune design space

1: Input: Py, Pi,...Px_1 where P, array contains tuples associated with
each configuration of processor P, and runtime constraint Ry

2:
Output: Inferior configurations in Py, P1,...Py—1 are removed

3:

4:

5: for i=0to N-I do

6: min_proc_times[i] = MinProcessingTime(FP;);

7 min_crit_times[i] = MinCritical Time(FP;);

8: min_latencies[i] = MinLatency(P;);

9: end for

10:

11: critical = Max(min_latencies) where critical refers to processor number

13: Leritical,ce = L(min_crit_times[critical]) where L returns value of L for
a given configuration

15: // Goes through every processor
16: for i=0to N-1 do

17: Initialize runtime_initial = 0;

18: for j=0to N-1 do

19: if j /=i and j /= critical then

20: runtime _initial += min_proc_times|[j];
21: end if

22: end for

23: // Goes through processor P;’s all configurations
24: for j=0to K;-1 do

25: Initialize runtime = runtime_initial;

26: if i == critical then

27: Use L; ; as critical latency to calculate runtime
28: else

29: if L»L'yj > Lcritical,cc then

30: Use L; ; as critical latency to calculate runtime
31: else

32: Use Leritical,ce s critical latency to calculate runtime
33: end if

34 end if

35: if runtime > Ry then

36: Delete configuration P; ;

37: end if

38: end for

39: end for

(line 20) while the critical processor is set to configuration from min_c-
rit_times (line 13). Any configuration of processor 1 that results in
runtime greater than R is excluded from the design space because all
other processor configurations have minimum possible times. There
exists no possibility that the current configuration of processor 1 may
have a combination with other processor configurations resulting in
runtime less than Rq — this configuration of processor 1 cannot be
a candidate for optimal system design and is deleted. The proposed
algorithm also looks for the possibility that a processor other than the
one having worst min_latency can be the critical processor in the fi-
nal optimal design (lines 29-33), as opposed to heuristic developed in
[18] where the critical processor is selected once at the start only. The
design space is efficiently pruned, thus reducing the complexity of the
ILP, but all the good configurations of each processor (with respect to
R;) are retained. It should be noted that the pruning algorithm di-
rectly depends on R, so, the percentage reduction in design space
and the number of decision variables for ILP formulation depends on
the specified value of R4. As the algorithm goes through each pro-
cessor’s configurations only once, its complexity is O(N X Kmaz)
where K,q. is the number of configurations for the processor having
maximum configurations from amongst all the processors.

7. EXPERIMENTAL SETUP

We used the Xtensa LX family of processors and Xtensa RB-2007.1
toolset from Tensilica Inc.[4] to design our multiprocessor system.
This toolset includes a C/C++ compiler that compiles C/C++ code
specifically for the targeted processor such as the one shown in Ta-
ble 1. Tensilica’s Instruction Set Simulator (ISS) is used to simulate
LX processors while Xtensa Modeling Protocol (XTMP) is used to
describe the multiprocessor system. XTMP provides an environment

to instantiate multiple processors and connect them to FIFOs, rapidly
setting up and simulating multiprocessor systems. XTMP uses ISS to
simulate the processors which can produce profiling data such as total
clock cycles, global stalls etc.

Queues were used to model communication between processors
where queues are simple FIFOs implemented in C. FIFO interface
includes push and pop functions that are used by the connected pro-
cessors to write to and read from a FIFO respectively. The Queue
interface provided by LX processors is used to connect each proces-
sor to a FIFO in the XTMP environment. Stalling logic is automat-
ically created for a processor with a queue interface, so a push to a
full FIFO or a pop from an empty FIFO results in a processor be-
ing stalled. Clock cycles spent while a processor is stalled due to the
queue interface are recorded as global stalls by ISS which can then be
used to calculate net execution time of a processor.

The RB-2007.1 toolset also includes Xtensa PRocessor Extension
Synthesis (XPRES), which generates customized processor directly
from the C/C++ code executed by the base processor. Analyzing the
C code, XPRES automatically generates new instructions and regis-
ter files specified in TIE (Tensilica Instruction Extension) language.
The newly generated instructions may consist of any combination of
fused operations, FLIX instructions [5], vector operations and spe-
cialized operations [6]. XPRES is used to create tailored processor
configurations using the overhead granularity parameter by automat-
ically generating multiple TIE files reflecting different customizations
of the base processor. The generated TIE files are readily compiled
through the TIE compiler and the source code does not need to be
modified to take advantage of customized versions of the base pro-
Cessor.

We used Ip_solve [3], a free software, to solve the formulated 0-1
ILP problem. Ip_solve reads an input file in LP format specifying the
ILP problem and outputs a text file specifying the values of decision
variables. Perl scripts generate processor configurations using Tensil-
ica’s ASIP tool and simulates them to record the tuples as described
in section 3.3. Other Perl scripts prune the design space, write input
file for Ip_solve and read the generated output file to retrieve the ac-
tual processor configurations. Time spent for these steps of the design
methodology is recorded to obtain the total time for the design space
exploration.

8. RESULTS & ANALYSIS

Figure 2 shows the design space exploration of the JPEG encoder
as implemented in this case study. The figures reflect only a small
part of the whole design space consisting of more than 4.2 x 103
system designs, impractical to be plotted. Figure 2(a) used 3,500,000
clock cycles as designer’s runtime constraint. As can be seen, a major
portion of the design space will be pruned by the proposed algorithm
helping the ILP solver to reach the optimal system design quickly.
Illustrated by the black line in each of the figures is the runtime con-
straint that was given. Blue circle in the figures show the optimal
design selected by the ILP solver. Figure 2(d) shows that there are
points even above the optimal result specifying a runtime more closer
to 2,700,000, but those designs have a greater footprint and are not
selected by the ILP solver.

Table 3 shows the actual runtimes and areas of the system designs
obtained from ILP solver for different values of R4. As can be seen
in column 4, optimal designs had different critical processors for dif-
ferent values of R4. This signifies the fact that any processor can be
critical in the final optimal design.

The designer can prune the design space and use ILP solver again
and again specifying different runtimes to obtain the pseudo Pareto
optimal points of the design space where processor configurations are
simulated only once. Figure 3 shows pseudo Pareto optimal points for
Rg ranging from 3,700,000 to 2,500,000 in steps of 100,000 clock
cycles which covers the whole design space. The last two pseudo
pareto points were obtained using 2,740,000 and 2,440,000 values
for R4 because there are no design points below 2,400,000.

Generation of processor configurations depicted in Table 2 took
8 minutes, while 19 hours were spent in simulation of the gener-

x 10

~ 3.6 @ 3.4
2 P —— 3
o [5}
) 3as
3 BT ————. S
o o
035 o
[
E £ 3.2
5 f—— 5
& | o——————n: .+ &4,
68 7 72 74 76 7 7.5 8
Area(Gates) X 10° Area(Gates) % 10°
(a) Rq = 3500000 (b) Rq = 3200000
6 6
_ 3.2x 10 _ 3x 10
(%) (%)
o <
[F e —— o *
5 31— 6‘ SO
X femm— 28
Sog — g | e— |
5] T 26 E
E£26 fee £ Qo ——
*g ol § K
T 24 —— T 24
7 7.5 8 8.5 9 7 7.5 8 8.5 9
Area(Gates) X 10° Area(Gates) x 10°

(¢) Rq = 2900000 (d) Rg = 2700000

Figure 2: Part of whole design space with different runtime con-
straints provided by the designer

Ry Actual Runtime | Actual Area | Critical Processor
(Clock Cycles) | (Clock Cycles) (Gates)
2700000 2673799 715938 Processor3
2900000 2896105 702065 Processor4
3200000 3193054 690843 Processor4
3500000 3442314 678432 Processor2

Table 3: Runtime and Area of optimal designs from ILP Solver

ated processor configurations on a quad core machine running at 2.15
GHz. It took 3 minutes on average to simulate one set of proces-
sor configurations. Thus, if we go through the whole design space
consisting of 4.2 x 10*® designs it would take years to get the simu-
lation results. Time spent in obtaining optimal results using /p_solve
are summarized in Table 4. These timings also include the time for
writing the input file for Ip_solve and reading generated output file to
retrieve the actual configuration of each processor. The advantage of

R4 (Clock Cycles) Full Search Pruned Search
3500000 3 sec 2 sec
3200000 17 min 96 sec
2900000 35 min 4 sec
2800000 no sol. (2 days) 3 sec
2700000 no sol. (2 days) 1 sec

Table 4: Time comparison of ILP solver

pruning the design space using the proposed algorithm is the reduced
space that the ILP solver has to search for an optimal solution. Re-
ducing designer’s runtime prunes a larger design space and ILP solver
finds the optimal design more quickly as depicted in row 5 and 6 of
Table 4. More importantly, pruning only removes configurations that
violate R4 constraint, ensuring the final design found by ILP solver
will actually be optimal.

9. CONCLUSION

In conclusion, we formulated the mapping problem of processes of
a partitioned application onto ASIP configurations forming a mul-
tiprocessor system where ASIPs are connected in a pipeline. We
showed that solving the mapping problem as a 0-1 ILP problem with a
design space pruning algorithm reveals each of the pseudo Pareto op-
timal designs in less than 100 seconds from a very large design space
consisting of more than 4.2 x 10'® system designs. We implemented
the whole design methodology in Perl and using commercial ASIP
design tool and a multiprocessor environment. We will extend our

a
o

Runtime(Clock Cycles)
r W W
5] (=) 1] + (=]

b
o

[
end

8 2.5 g 25
Area(Gates) 10t

5 T 7.h

Figure 3: Pseudo Pareto optimal points of the design space with
R, ranging from 3,700,000 to 2,400,000

work by developing new heuristics that can search the design space
faster, comparing their effectiveness with the results obtained using
the presented methodology.

10. REFERENCES

[1] Altera Nios Processor. Altera Corp. (http:/www.altera.com).

[2] ARC the leader in configurable processor technology. ARC International
(http://www.arc.com).

[3] Ip-solve. Available at: http://lpsolve.sourceforge.net/5.5/.

[4] Xtensa Processor. Tensilica Inc. (http://www.tensilica.com).

[5] Flix: Fast relief for performance-hungry embedded applications, 2005. Available
at: http://www.tensilica.com/pdf/FLIX_White_Paper_v2.pdf.

[6] XPRES Generated Specialized Operations, 2005. Available at:
http://tensilica.com/pdf/XPRES %201205.pdf.

[7] S. Banerjee, T. Hamada, P. Chau, and R. Fellman. Macro pipelining based schedul-
ing on high performance heterogeneous multiprocessor systems. Signal Processing,
1EEE Transactions on, 43(6):1468-1484, 1995.

[8] A. Beric, R. Sethuraman, C. Pinto, H. Peters, G. Veldman, P. van de Haar, and
M. Duranton. Heterogeneous multiprocessor for high definition video. Consumer
Electronics, 2006. ICCE *06. 2006 Digest of Technical Papers. International Con-
ference on, pages 401-402, 7-11 Jan. 2006.

[9] J. Cong, G. Han, and W. Jiang. Synthesis of an application-specific soft multipro-
cessor system. In FPGA '07: Proceedings of the 2007 ACM/SIGDA 15th interna-
tional symposium on Field programmable gate arrays, pages 99-107, New York,
NY, USA, 2007. ACM.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stien. Introduction to Algo-
rithms. MIT Press and MCGraw-Hill, Second edition, 2001.

[11] J. DeSouza-Batista and A. Parker. Optimal synthesis of application specific hetero-
geneous pipelined multiprocessors. Application Specific Array Processors, 1994.
Proceedings., International Conference on, pages 99-110, 22-24 Aug 1994.

[12] J.Jeon and K. Choi. Loop pipelining in hardware-software partitioning. In Asia and
South Pacific Design Automation Conference, pages 361-366, 1998.

[13] T. Kodaka, K. Kimura, and H. Kasahara. Multigrain parallel processing for jpeg
encoding on a single chip multiprocessor. In IWIA ’02: Proceedings of the In-
ternational Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems (IWIA’02), page 57, Washington, DC, USA,
2002. IEEE Computer Society.

[14] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao. Partitioning and pipelined scheduling of
embedded system using integer linear programming. In ICPADS 05: Proceedings
of the 11th International Conference on Parallel and Distributed Systems - Work-
shops (ICPADS’05), pages 37—41, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] M. Schwiegershausen and P. Pirsch. A formal approach for the optimization of het-
erogeneous multiprocessors for complex image processing schemes. In EURO-DAC
’95/EURO-VHDL ’95: Proceedings of the conference on European design automa-
tion, pages 8-13, Los Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[16] S.L.Shee. ADAPT: Architectural and Design Exploration for Application Specific
Instruction-set Processor Technologies. PhD thesis, School of CSE, University of
New South Wales, Sydney, September 2007.

[17] S. L. Shee, A. Erdos, and S. Parameswaran. Heterogeneous multiprocessor imple-
mentations for jpeg:: a case study. In CODES+ISSS ’06: Proceedings of the 4th in-
ternational conference on Hardware/software codesign and system synthesis, pages
217-222, New York, NY, USA, 2006. ACM.

[18] S. L. Shee and S. Parameswaran. Design methodology for pipelined heterogeneous
multiprocessor system. In DAC ’07: Proceedings of the 44th annual conference on
Design automation, pages 811-816, New York, NY, USA, 2007. ACM.

[19] M. Strik, A. Timmer, J. van Meerbergen, and G.-J. van Rootselaar. Heterogeneous
multiprocessor for the management of real-time video and graphics streams. Solid-
State Circuits, IEEE Journal of, 35(11):1722-1731, Nov 2000.

[20] FE. Sun, S. Ravi, A. Raghunathan, and N. K. Jha. Synthesis of application-specific
heterogeneous multiprocessor architectures using extensible processors. In VLSID
’05: Proceedings of the 18th International Conference on VLSI Design held jointly
with 4th International Conference on Embedded Systems Design, pages 551-556,
Washington, DC, USA, 2005. IEEE Computer Society.

