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ABSTRACT 
Various commercial programmable compute platforms have their 
processor architecture enhanced with field-programmable gate 
arrays (FPGAs). In a common usage scenario, an application 
loads custom processors into the FPGA to speed up application 
execution compared to processor-only execution. Transient 
applications, changing application workloads, and limited FPGA 
capacity have led to a new problem of operating-system-
controlled dynamic management of the loading of coprocessors 
into the FPGAs for best overall performance or energy. We define 
the Dynamic Coprocessor Management problem and provide a 
mapping to an online optimization problem known as Metrical 
Task Systems. We introduce a robust heuristic, called the fading 
cumulative benefit (FCBenefit) heuristic, that outperforms other 
heuristics, including a previously developed one for MTS. For 
two distinct application sets, we generate numerous workloads 
and show that the FCBenefit heuristic provides best results across 
all considered workloads. In our simulations, the heuristic’s 
results were within 9% of the offline optimal for performance, 
and within 3% for energy.  The heuristic may be applicable to a 
wide variety of dynamic architecture management problems.  

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Adaptable architectures, 
heterogeneous systems.  

General Terms 
Algorithm, Performance, Design. 

Keywords 
FPGAs, dynamic optimization, runtime configuration, 
coprocessing, acceleration, online algorithms.  

1. INTRODUCTION 
Much research during the past decade has investigated the 
benefits of architectures supporting field-programmable gate 
arrays (FPGAs) as supplements to processors [5][15]. Several 
commercial computing platforms now supplement processors 

with FPGAs, at the system level [8][20], board level [10][17][22], 
and even integrated within a single chip [1][25]. As an example, 
the SGI Altix machine includes dozens of Itanium processors 
coupled with several Xilinx Virtex FPGAs, all having nearly 
equal access to the memory system. Benefits of FPGAs include 
speedups, due primarily to parallelism from the process level 
down to the bit level, of 10x-1000x for certain applications 
[13][15], such as for image processing, encryption, particle 
simulation, and other data-intensive parallelizable computations. 
Such applications may be accelerated using coprocessors 
executing on the FPGA that replace processor execution of 
critical code regions; the processor instead transfers control to the 
FPGA coprocessors and then waits for results. 

Figure 1 shows a general reconfiguration architecture.  
Configuration data can be transferred to an FPGA by a 
specialized configuration controller. FPGA and CPU can 
communicate through the memory. 

In most commercial products today containing FPGAs, such 
as TV set top boxes, medical devices, giant LED displays, or 
cellular base stations, the FPGA’s coprocessing role is 
predetermined and thus static during the product’s lifetime. Even 
in the case of dynamically reconfigurable systems, in which 
coprocessors are swapped in and out of the FPGA as an 
application executes to provide the illusion of a logically larger 
FPGA, the swapping schedule is usually statically determined. 
With the advent of FPGAs in general-purpose compute platforms, 
FPGAs become a resource that can be dynamically managed, akin 
to managing the contents of a cache memory. In particular, an 
application targeting an FPGA-enhanced compute platform may 
be written to optionally load and utilize a coprocessor on an 
FPGA. When the application attempts to run on the platform, if 
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Figure 1: General reconfiguration architecture. 
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the application’s coprocessor is not already resident in the FPGA, 
the platform’s operating system may dynamically determine 
whether to run the application without the coprocessor, or to incur 
the overhead of loading the coprocessor into the FPGA (possibly 
replacing existing coprocessors to make room), a problem we 
refer to as dynamic coprocessor management.  

A factor governing such management is the non-negligible 
time and energy cost involved in loading a coprocessor. The cost 
must be outweighed by the benefit for the current and/or future 
executions of the application. Another factor is the impact of such 
loading on other applications whose coprocessors are already 
resident in the FPGA, since removing other coprocessors to make 
space can have a negative impact on future executions of other 
applications. Without a priori knowledge of future application 
workloads, an OS must make decisions based on incomplete 
information, forming what is known as an online computing 
problem. 

 Figure 2 provides a simple example. At the current time 
(indicated by the arrow), the CPU has executed application a1 
twice and application a3 once, and coprocessors c1 and c3 for 
applications a1 and a3 are resident in the FPGA. The current 
application to execute is a2. The future applications that will 
execute are unknown, though they are shown in the figure. The 
problem is thus to decide whether to load a2’s coprocessor c2 into 
the FPGA, and if so, which of c1 or c3 to remove to make room, 
without knowledge of the future applications. If c2 provides little 
speedup or its loading time is very large, it could be better to not 
load c2 and instead to execute a2 on the CPU, so that c1 and c3 
remain resident for the future executions of a1 and a3.   

The main contribution of this paper is the development of an 
online heuristic, the fading cumulative benefit heuristic, that 
achieves effective dynamic coprocessor management. The 
heuristic outperforms other heuristics we developed, as well as a 
previous heuristic developed for the online optimization problem 
known as Metrical Task Systems. The heuristic may be applicable 
to a variety of dynamic architecture management problems. The 
paper first defines the problem, introduces various heuristics, and 
describes experiments. The experiments show the fading 
cumulative benefit heuristic to consistently outperform other 
heuristics, and to be robust in the presence of different application 
workload scenarios.  

2. PROBLEM DEFINITION 
We assume that applications written for a particular compute 
platform (e.g., for an SGI Altix machine) can include a custom 
coprocessor design for the platform’s FPGA. The application may 
run entirely on the platform’s processor, or it may run using the 
coprocessor on the FPGA to speed up the application’s execution. 
Throughout most of this paper, we refer to processor, FPGA, and 
coprocessor in the singular. However, such reference includes 
situations where the platform contains multiple processors on 
which a single application may run, where the platform contains 
multiple FPGAs that are logically treated as one large FPGA, and 
where multiple coprocessors exist for a single application (which 
we collectively refer to as one coprocessor for the application). 
Such reference also includes the situation where a coprocessor 
entirely executes an application.  Presently, programming systems 
with FPGA coprocessors uses techniques custom to each 
platform. Standardized techniques are an area of research [11].  

We define the dynamic coprocessor management problem as 
follows. Given are: 

� An application set A= {a1, a2, a3, ...an} containing the n 
application types that will run on the platform.  

� A set of execution times Tp={tp1, tp2, tp3,…, tpn} 
containing the execution time of each application type i 
on the platform’s processor  only.   

� A set of execution times Tc={tc1, tc2, tc3,…,tcn} for 
each application type i when the application’s 
coprocessor is FPGA-resident (meaning the coprocessor 
is in the FPGA) and utilized. These times include any 
additional communication times introduced by dividing 
an application between processor and FPGA, excluding 
reconfiguration time.  

� A set of energies Ep={ep1, ep2, ep3,…, epn} giving the 
energy for each application type running on the 
platform’s processor only.  

� A set of energies Ec={ec1, ec2,  ec3,…, ecn} giving the 
energy for each application type running when the 
application’s coprocessor is FPGA-resident.  

� A set of sizes S={s1 ,s2, s3,…, sn} giving the size of each 
application type’s coprocessor in terms of equivalent 
gates in the FPGA.  

� The total size capacity SF of the FPGA, in equivalent 
gates. 

� The time for reconfiguration TR per gate of the FPGA, 
from which the total coprocessor loading time, written as 
loading time(i)=TR*si, can be computed for a 
coprocessor of a given size. Unloading a coprocessor 
takes negligible time, as it consists merely of invalidating 
an FPGA region.  

� The energy for reconfiguration ER per gate of the FPGA, 
from which loading energy(i)=ER*si can be computed 
for a coprocessor of a given size.  

The dynamic input to the problem is an application queue Q, 
such as <a2, a1, a4, a2, a1, a1….> that lists and orders the 
application instances that run on the platform.  

The dynamic coprocessor management (DCM) problem for 
time is defined as an online problem: For each application in the 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Dynamic coprocessor management. Given the 
sequence of past applications and current queue of pending 
applications, but without knowledge of future applications, 

determine whether to load the current application’s non-resident 
coprocessor and which resident coprocessor(s) to remove (if 

necessary), such that total execution time (including loading time) 
of the entire sequence (including the future) is minimized. 
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application queue, using only knowledge of prior and current 
applications in the queue, determine whether to load that 
application’s coprocessor, such that time for the entire queue 
(including future applications) is minimized.  When a coprocessor 
is in the FPGA, we refer to the coprocessor as being FPGA 
resident. The current application is the application that at a given 
time is to be executed next and for which the coprocessor load 
determination must be made. Thus, the solution to the DCM 
problem consists of a coprocessor management decision for each 
application instance in the queue. Each decision is either: load, 
don’t load, or already loaded. For a decision to load, the decision 
also lists any coprocessors that are to be unloaded to make room 
for the new coprocessor being loaded.  

An analogous DCM problem can be defined for energy 
minimization.  

We assume that tci < tpi; if not, then application i is removed 
from consideration by the DCM problem for time minimization 
(likewise for eci and epi for energy minimization).  

Limitations: The above problem definition has some 
limitations. Application execution time on a platform’s processor 
or processors may vary depending on what other applications are 
simultaneously executing.  An application may have several 
possible coprocessor configurations that tradeoff size and 
performance. Future work may consider multiple simultaneously 
executing applications and multiple coprocessor options per 
application. Today’s FPGAs are not reconfigurable at the 
granularity of gates, but rather have coarser regions (e.g., stripes) 
that can be independently reconfigured. FPGA capacity is not 
solely characterized by (equivalent) gates, but also involves hard-
core resources like multipliers, block RAM, and input/output pins. 
Future work may deal with more device-specific reconfiguration 
and capacity details. The problem formulation requires that an 
application be pre-characterized on the platform’s processor and 
FPGA; ideally, such pre-characterization would not be required. 
Finally, the present formulation does not consider the possibility 
of running the application during reconfiguration, an 
improvement also left for future work.  

3. HEURISTICS 

3.1 Offline optimal 
To determine the offline optimal solution, which will serve as the 
golden standard to which the online heuristics will be compared, 
we first map the problem to a known online problem called 
Metrical Task Systems (MTS). The MTS problem, defined by 
Borodin [7] is a well-known formulation of a class of online 
problems. The problem involves a task system (S,d) for 
processing sequences of tasks. S is a set representing states, and d 
is a cost matrix where d(i, j) is the cost of changing from state i to 
state j, assumed to satisfy the triangle inequality, and assumed to 
have 0s on the diagonal. In a metrical system, state transition 
costs are symmetric, i.e., d(i, j) equals d(j, i). The cost of 
processing a task depends on the system state, and thus a task can 
be viewed as a vector T=(T(1), T(2), ..., T(j)), where T(j) is the 
(possibly infinite) cost of processing the task while in state j. A 
schedule for a sequence T1, T2,…, Tk of tasks is a sequence s1, 
s2,…,sk of states where si is the state in which Ti is processed. 
The cost of a schedule is the sum of all task processing costs and 
the state transition costs incurred. An on-line scheduling 
algorithm is one that chooses si only knowing T1T2…Ti. 

We can map the dynamic coprocessor management (DCM) 
problem to the MTS problem as follows. DCM’s platform 
represents MTS’s system. An MTS system can be configured to 
any state in a set of states S. Thus, in DCM, each possible subset 
of coprocessors in the FPGA results in a unique system 
configuration state (including the situation of no coprocessors in 
the FPGA), and hence represents MTS’s set of states S. All 
possible subsets of the set of coprocessors could be large, but in 
practice is significantly reduced due to FPGA constraints 
(otherwise, if FPGA constraints are lax, the DCM problem is 
greatly simplified).  Nevertheless, all possible subsets have 
factorial complexity, namely all possible subsets of the 
coprocessors, or 2n.  

For the problem mapping, each application’s execution time 
must be specified for each system state. Because each 
application’s execution time depends only on whether or not its 
coprocessor is FPGA resident, computing the time is linear with 
respect to the number of applications. The rest of the mapping 
follows straightforwardly.  

An optimal solution to the MTS problem can be obtained 
using a dynamic programming algorithm, as described in [7]. We 
omit details here. The time complexity is O(m2) for each 
application in the application queue Q, or O(Km2) for the entire 
sequence, where m is the number of configurations and K is the 
total length of the input sequence. Note that the number of 
configurations m could be very large if coprocessors are small 
relative to FPGA capacity, approaching 2n (all possible 
combinations of coprocessors in the FPGA).  

3.2 A greedy heuristic 
A greedy heuristic can be defined that, given a current 
application, always loads the application’s coprocessor into the 
FPGA before executing the application. When the FPGA is full, 
the heuristic swaps out the lowest-speedup coprocessors until the 
FPGA capacity is sufficient for the current coprocessor. A 
coprocessor’s speedup is defined as tpi / tci, representing the 
speedup obtained when implementing an application with a 
coprocessor versus without, ignoring the coprocessor’s loading 
time. The time complexity for the greedy heuristic for a current 
application includes O(log n) to insert the new coprocessor’s 
speedup into a sorted list of resident coprocessor speedups, plus 
time proportional to the number of coprocessors that must be 
swapped out, which is typically a small constant (but conceivably 
could be n).  

3.3 The work function heuristic 
The work function heuristic, defined in [7] for the metrical task 
system problem, is similar to the offline optimal dynamic 
programming algorithm, but only applies to an application 
sequence up to and including the current application in the queue 
only. The algorithm incrementally updates the table used in 
dynamic programming as each application is encountered. The 
time complexity of the heuristic for the current application is 
O(m2), where m is the number of configurations. 

3.4 The cumulative benefit heuristic 
We improved on the greedy heuristic as follows. The heuristic 
maintains a cumulative benefit table, containing one entry per 
application i. Initially, all entries are 0. When processing a current 
application i in the queue, the heuristic updates the cumulative 
benefit table for entry i using the following equation: cbenefit(i) = 

73



cbenefit(i) + (tpi – tci). In other words, the cbenefit(i) entry 
maintains the cumulative time that using a coprocessor would 
have saved up until this point in the application queue had that 
coprocessor been used for every execution of application i.  

The heuristic uses the cumulative benefit to determine 
whether or not to load the current application’s coprocessor. In 
particular, the heuristic chooses to load a coprocessor if the 
inequality cbenefit(i) >  loading_time(i) is satisfied. This 
approach follows a common solution to the well-known online 
computing problem known as the ski-rental problem [12]. In that 
classic problem, a skier must decide whether to rent or purchase 
skis, not knowing how many times he will ski in the future. 
Renting is cheaper if he will ski infrequently, but purchasing is 
cheaper if he will ski frequently. A well-known solution with 
many desirable online properties is to rent until the cumulative 
amount spent renting equals the cost of purchasing, at which point 
a purchase is made. The skier is thus guaranteed to never pay 
more the 2x the cost of a purchase, and this approach works well 
for various frequency scenarios. The ski-rental and DCM 
problems differ, but the intuition behind the use of the above 
inequality satisfaction is similar.  

If the FPGA lacks current capacity for coprocessor, the 
heuristic searches for a subset CP of FPGA-resident coprocessors 
such that removing CP yields sufficient FPGA capacity for the 
current coprocessor. The subset must satisfy the constraint that 
cbenefit(i) – loading_time(i) > cbenefit(CP). This constraint seeks 
to avoid swapping out a coprocessor deemed to be of greater 
benefit than the current coprocessor. Finding the best subset CP – 
where best is defined as yielding the greatest difference between 
the left and right sides of the constraint equation above, as 
yielding the smallest size capable of making room for the 
coprocessor, or some combination thereof – is a hard problem. 
We currently use a greedy heuristic for finding CP. The heuristic 
adds to CP the FPGA-resident coprocessor having the smallest 
current benefit, and continues to add such coprocessors until the 
size of CP’s coprocessors equals or exceeds the size of the current 
coprocessor, or until cbenefit(i) – loading_time(i) <= 
cbenefit(CP). In the former case, the current coprocessor is loaded 
and the coprocessors in CP are unloaded. In the latter case, the 
heuristic decides not to load the coprocessor, because doing so 
would require removing coprocessors deemed to be of greater 
benefit (and adding more coprocessors to CP would only further 
increase CP’s benefit). The time complexity for a current 
application is O(n), where n is the number of different 
coprocessors. 

3.5 Fading cumulative benefit heuristic 
Real application sequences tend to exhibit temporal locality – 
recently-executed applications are more likely to execute again in 
the near future than are applications that executed long ago. The 
cumulative benefit heuristic does not account for such locality. 
One way to account for temporal locality is to apply a “fading 
process” to the cumulative benefits table. At every step in the 
application queue, the process multiplies all entries in the table by 
a fading factor f, where 0 < f < 1. Thus, if an application that 
executed long ago has not executed recently, its cumulative 
benefit value will approach 0, making it more likely to be 
replaced by a currently-executing application. Recently executed 
applications would not have been faded as much, and such 
executions would serve to “refresh” the cumulative benefit value 
too.  

The choice of a good value for f depends in part on the 
overhead of reconfiguration. If reconfiguration overhead is very 
small, fading should be more aggressive (meaning a small f) 
because reconfigurations can be done freely without much impact, 
and thus current applications should be strongly preferred. On the 
other hand, if reconfiguration overhead is very large, fading 
should be more conservative (meaning a large f) to be sure that an 
earlier executed application really hasn’t executed for a long time 
before incurring the high cost of replacing its coprocessor. We 
thus define f to be proportional to the relative overhead of 
reconfiguration time versus average application execution time on 
the processor, namely f = min{TR*SF/(∑tpi/n), 1}.  

When considering the current application, a fading process is 
performed for each coprocessor: cbenefit(j) = cbenefit(j)*f for 
each j. Then, for the current application i, the benefit table is 
updated as before, cbenefit(i) = cbenefit(i) + (tpi – tci). The 
replacement policy is the same as the cumulative benefit heuristic.  

Because this heuristic adjusts the benefit values via fading, we 
refer to it as the fading cumulative benefit heuristic (FCBenefit). 
The time complexity for a current application is O(n). 

Figure 3 shows an example: There are four coprocessors (c1, 
c2, c3, c4). On the left is the benefit table, listing the coprocessors 
and their benefits; on the right is the FPGA and resident 
coprocessors. The shaded area is the vacant area in the FPGA.  

When application c4 arrives, there is a fading phase. 
cbenefit(i)=cbenefit(i)*f for all coprocessors. Because tp4-
tc4=100, cbenefit(c4)=cbenefit(c4)+(tp4-tc4)=140, and loading 
time(c4) = 40, then the current cbenefit(c4) = 140-40=100 
    Since the coprocessor with the least benefit in the FPGA is c3, 
we swap out c3. Now, the current benefit is reduced to 75 by 
subtracting cbenefit(c3). But, coprocessor c4 still cannot be 
swapped in, because c4 is still too big. Since the current benefit is 
larger than cbenefit(c2), we can further swap out coprocessor c2, 
which makes room to place coprocessor c4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Coprocessor replacement policy in the fading 
cumulative benefit heuristic.  The fading factor f is 0.5, tp4-tc4 

is 100 cycles, loading time(c4) is 40 cycles.  
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The fading cumulative benefit heuristic is shown in Figure 4. 
If we want to optimize energy rather than performance, we can 
use a similar algorithm to optimize energy instead of time. 

4. EXPERIMENTS 

4.1 Framework 
We developed a simulator in C++ to test our heuristics, and 
applied the simulator to two benchmark sets. For each benchmark 
set, to evaluate the algorithms across a spectrum of application 
sequence scenarios, we created a generator capable of creating 
three categories of application sequences: 

� Random: Applications are randomly inserted into the 
sequence. 
� Biased:  A small number of applications appear most of 

the time. We defined two percentages A and B, and then 
generated the sequence such that A percent of the 
applications executed B percent of the time. For our 
experiments, we used A=20% and B=80%.    

� Periodic: We defined a length T, and generated a random 
subsequence of length T that then repeats.  For our 
experiments, we used T=15.   

Each sequence’s length was 1,000. For all experiments, because 
sequences involve some random ordering, we generated 50 
sequences, and report the average. For this work, execution time 
data does not include the time to run the heuristics themselves. 
For our experiments, the FCBenefit heuristic’s runtimes were 
negligible relative to the benchmark and reconfiguration times. 
With tens of coprocessors, the heuristic required approximately 
1,000 microprocessor cycles, compared to hundreds of thousands 
or millions of cycles of runtime for each a benchmark. The greedy 
and cumulative benefit heuristics’ runtimes were similarly 
negligible. The WorkFunction heuristic’s runtimes were also 

negligible due to our selected FPGA capacities only supporting a 
small number of coprocessors, making the number of possible 
configurations m, which determines the heuristic’s runtime, small. 
Future work may incorporate heuristic runtime into execution 
time data using different benchmark runtimes and 
microprocessor/FPGA platforms where the heuristic runtimes 
may be non-negligible.  

4.2 Benchmarks 
Powerstone/EEMBC benchmarks: We obtained data from Stitt 
[23] and other sources for nine embedded system benchmarks 
from the Powerstone and EEMBC benchmark suites. The data is 
from earlier experiments seeking to show the energy advantages 
of partitioning applications among microprocessor and FPGA. 
The data included execution time, power, and size data for each 
benchmark, running on a microprocessor alone, or partitioned to 
use a coprocessor on a particular Xilinx FPGA device. Figure 5 
shows the time and size data that we used.  Benchmark execution 
time on a microprocessor (a 100 MHz MIPS processor) alone 
averaged 5,498 milliseconds, reduced to 2,225 milliseconds when 
using an FPGA, for an average speedup of 2.5x. The number of 
equivalent gates used on the FPGA per benchmark was 3,105, and 
we set the total FPGA capacity to 7,000 gates, such that 
coprocessor swapping would be required (a very large FPGA that 
can hold all or most coprocessors does not require much dynamic 
coprocessor management).  The magnitudes of these numbers are 
somewhat arbitrary due to each benchmark internally being 
iterated a constant number of times and due to running on older 
microprocessor and FPGA technologies; however, the relative 
values of the numbers are useful for purposes of testing our 
heuristics.  

RAW benchmarks: We obtained data from the RAW 
benchmark suite [2]. The suite consists of twelve programs and 37 
benchmarks for comparing, validating and improving 
reconfigurable computing systems. We randomly chose the 
bheap15, bubble64, des4, fft4, Jacobi8x8, life32x6, matmult4x4, 
merge8, nqueens16, ssp16, and spm16 benchmarks for our 
experiments. Microprocessor runtimes were in the tens of 
milliseconds. Runtimes on FPGAs (the partitioning for these 
benchmarks consisted of implementing the benchmark entirely on 
FPGAs) averaged 10x. (Again, the execution time magnitude is 
somewhat arbitrary due to using older microprocessor and FPGA 
technologies.  FPGA gate counts per benchmark averaged 48,000, 
and the total FPGA capacity was set to 60,000. Thus, these 

Fading cumulative benefit heuristic() 
/*fading factor is proportional to reconfiguration time*/ 
f = min{TR*SF/(∑tpi/n), 1}                            
For each application in Q, assuming application type is i 
        For each application type j 
            cbenefit(j)=cbenefit(j)*f   /*fading process*/       
        End for                              
        cbenefit(i)=cbenefit(i)+(tpi-tci)    /*update benefit table*/ 
        If coprocessor i is already in FPGA 
            Run the program with coprocessor 
        Else  /* coprocessor i is not in the FPGA*/ 
            If coprocessor i can be put in FPGA  
                    and cbenefit(i) > TR*si 
                Put coprocessor i in FPGA and run the program 
            Else   /* no space for coprocessor i*/ 
                If cbenefit(i)-TR*si > cbenefit(CP)  
                        and such coprocessors set CP exists 
                    Swap coprocessors CP out 
                    Put coprocessor i in and run the program 
                Else   /*no such coprocessors CP exists */ 
                    Run the program without coprocessor i 
                End if 
            End if 
        End if 
End for 

Figure 4:  Fading cumulative benefit heuristic. 

 
 
 
 
 
 
 
 
 
 

Figure 5:  Information on EEMBC (upper case) and 
Powerstone (lower case) benchmarks. Original time is on a 

microprocessor only. New time is after partitioning frequent 
kernels to FPGA. Size is FPGA gates for those kernels.  

Benchmark Orig Time 
(ms)

New time 
(ms)

Size 
(gates)

AIFIRF01 805 340 5770
BITMNP01 3,490 238 3393
IDCTRN01 1,500 70 2991
TTSPKR01 703 449 2759

insert 27 4 1889
binary 29 9 2232

matmul 254 26 4513
g3fax 41,974 18,836 2122
brev 701 52 2274

Average: 5,498 2,225 3,105
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benchmarks required less execution time and exhibited more 
speedup than the Powerstone/EEMBC benchmarks, while using 
more gates and thus requiring more reconfiguration time.  

4.3 Evaluation  
Execution time: Figure 6 and  Figure 7 provide results of running 
the various heuristics for the two benchmark suites, for the three 
styles of application sequences, for full-FPGA reconfiguration 
times ranging from 10 ms to 500 ms (thus, reconfiguration times 
per gate are computed by dividing the full-FPGA reconfiguration 
time by the total FPGA capacity). We used a range to account for 
a wide variety of present and future FPGA reconfiguration 
technologies. As can be seen, the fading cumulative benefit 
heuristic (FCBenefit) achieves results closest to optimal in nearly 
every scenario. In a few scenarios, the WorkFunction heuristic 
outperforms FCBenefit, but only very slightly; and the 
WorkFunction performs rather poorly in a couple scenarios. On 
average, FCBenefit comes within 9.2% of the offline optimal.  
FCBenefit outperforms the non-fading cumulative benefit 
heuristic (Cbenefit) when reconfiguration times are small, due to 
FCBenefit reconfiguring more frequently, because FCBenefit puts 
more weight on recent applications when reconfiguration time is 
small and thus when reconfigurations should be made more 
frequently. The WorkFunction heuristic performs poorly when 
reconfiguration times are large. When reconfiguration times are 
large, a heuristic should make fewer reconfigurations, but 
WorkFunction does not adjust decisions based on reconfiguration 
time, instead evenly considering the entire application sequence 
history.  

Energy: Figure 8 shows energy results for the Powerstone 
benchmarks. Again, FCBenefit outperformed the other heuristics. 
FCBenefit was on average within 2.9% of the offline optimal. 
Similar results obtained for the RAW benchmarks are omitted.  

Number of reconfigurations: We also recorded the number 
of reconfigurations incurred by each algorithm, summarized for 
the Powerstone/EEMBC benchmark suite in Figure 9. Observing 
the number of reconfigurations provides insight into each 
algorithm’s behavior. The FCBenefit heuristic tends to match the 
offline optimal algorithm’s number, sometimes slightly different. 
WorkFunction often performed many more reconfigurations, 
while still remaining competitive in total execution time. Greedy 
of course performed the most reconfigurations. Cbenefit heuristic 
usually makes much fewer reconfigurations when reconfiguration 
time is low, because doesn’t put enough weight on the current 
application. 

5. RELATED WORK 
Reconfiguration management for real-time embedded systems has 
been studied in several previous works. Balarin [3] presents a 
survey of real-time embedded system scheduling, which classifies 
the problem into static scheduling and dynamic scheduling. Lu 
[19] describes a static task scheduling algorithm to reorder tasks 
to save power in a system whose components are reconfigurable 
in the sense of having multiple power states. Hauck [14] proposed 
configuration prefetching techniques to minimize reconfiguration 
overhead. The idea is to load the next configuration context 
before it is required. Horta [16] presented a partially 
reconfigurable architecture in which reconfiguration is partially 
done within the FPGA, to reduce reconfiguration time and energy. 
Compton [9] proposed a relocation technique to solve the 
fragmentation problem of partial reconfiguration. Noguera [21] 
proposed dynamic run-time hardware/software scheduling 
techniques for FPGAs emphasizing dynamic scheduling of task 
graphs with runtime varying execution times. Dynamic 
coprocessor management is complementary to most of these 
techniques; integration with previous methods represents possible 
future directions. Vahid, Stitt, and Lysecky [24] introduced warp 
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Figure 6: Powerstone/EEMBC execution times (seconds) for the various online algorithms for random (left), biased (center), and 
periodic (right) application sequences, for reconfiguration times for the whole FPGA ranging from 10ms to 500 ms.  
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Figure 7: RAW execution times (seconds) for the various online algorithms for random (left), biased (center), and periodic (right) 
application sequences, for reconfiguration times for the whole FPGA ranging from 10ms to 500 ms. 
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processing, the dynamic generation of FPGA coprocessors via 
runtime binary decompilation and synthesis; warp processing 
could be coupled with dynamic coprocessor management in an 
approach that generates and characterizes coprocessors 
dynamically, stores those coprocessors, and then dynamically 
manages those coprocessors.  

The metrical task system problem has been the focus of much 
online algorithm research since its definition in 1992 [7]. Many 
such works focus on developing K-competitive algorithms – 
algorithms guaranteed not to be worse than a factor of K from the 
offline optimal – and/or extending the problem definition  (e.g. 
[4][6]).  

6. CONCLUSIONS 
We defined the dynamic coprocessor management (DCM) 
problem for processors with FPGA. We introduced a new 
cumulative benefit heuristic inspired by a commonly used 
accumulation approach in online algorithm work. We extended 
the heuristic to take advantage of the temporal locality common in 
real application sequences using a fading process, with the fading 
amount dependent on the reconfiguration overhead of a particular 
system. The resulting fading cumulative benefit heuristic has 
linear time complexity O(n), dependent only on the number of 
different types of applications n. The heuristic is more efficient 
than the previously-developed work function heuristic having 
complexity O(m2), where m is the number of configuration types, 
which is also usually much bigger than n. The fading cumulative 
benefit heuristic proved best in nearly all scenarios we examined, 
for two different benchmark sets. The heuristic’s results were 
within 9% of the offline optimal for performance, and within 3% 
for energy. The heuristic’s simplicity and good results may lead 
to it being useful for a wide variety dynamic architecture 
management problem beyond dynamic FPGA coprocessor 
management.    
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