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ABSTRACT 
The Field Programmable Compressor Tree (FPCT) is a 
programmable compressor tree (e.g., a Wallace or Dadda Tree) 
intended for integration in an FPGA or other reconfigurable 
device. This paper presents a design space exploration (DSE) 
method that can be used to identify the best FPCT architecture for 
a given set of arithmetic benchmark circuits; in practice, an FPGA 
vendor can use the design space exploration to tailor the FPCT to 
meet the needs of the most important benchmark circuits of the 
vendor’s largest-volume clients. One novel feature of the DSE is 
the introduction of a metric called I/O utilization; we found that 
I/O utilization has a strong correlation with both the critical path 
delay and area of the benchmark circuits under study. Pruning the 
search space using I/O utilization allowed us to reduce 
significantly the number of FPCTs that must be synthesized and 
evaluated during the DSE, while giving high confidence that the 
best architectures are still explored. The DSE was applied to 
seven small-to-medium range benchmark circuits; one FPCT 
architecture was found that was 30% faster than the second best in 
terms of critical path delay, and only 3.34% larger than the 
smallest.  

Categories and Subject Descriptors 
B.7.1 [Hardware]: Integrated Circuits – gate arrays. 

General Terms 
Performance. 

Keywords 
Field Programmable Compressor Tree (FPCT), Design Space 
Exploration (DSE). 

1. INTRODUCTION 
FPGA performance is currently lacking for arithmetic circuits. In 
particular, FPGAs cannot exploit one of the fundamental results 
of computer arithmetic: the use of carry-save (based) addition to 
efficiently add k > 2 integers. This representation was introduced 
by Wallace [21] and Dadda [9] in the context of parallel 
multiplier design in the 1960s. The addition of two integers 
requires the use of a carry propagate adder (CPA), e.g., a ripple-
carry or parallel-prefix adder, whose critical path delay is from 
the carry-in to the carry-out bit. The naïve method to add k > 2 
integers is to use an adder tree, i.e., a binary tree of CPAs; a 
compressor tree (e.g., a Wallace or Dadda Tree) is a circuit that 
uses carry-save addition to add k > 2 integers: the output is two 
integers, S (sum) and C (carry) such that S+C is the sum of the k 
integers. Thus, a CPA is only required to add S and C, rather than 
at every level of the tree.  
Multi-operand integer addition occurs in a wide variety of 
applications including, but not limited to, FIR filters [14], video 
coding [8], and 3G wireless base station channel cards [17]. 
Verma and Ienne [20] have introduced a set of data flow 
transformations that can expose opportunities to exploit the carry-
save representation. First, each multiplication operation is 
decomposed into a partial product generator, compressor tree, and 
CPA. A sequence of sorting rules is applied to the flowgraph to 
reorder the operations such that disparate CPAs are merged with 
one another and with other compressor trees. Each subsumption 
of a CPA into a larger compressor tree replaces the carry-in to 
carry-out delay with a smaller delay due to a slightly enlarged 
compressor tree.  
These transformations automate optimization steps that expert 
designers have been applying manually for years. The judicious 
exposition and exploitation of compressor trees is one area where 
ASIC designs have a significant advantage over processors and 
FPGAs. Multi-input addition is performed serially in a single-
issue processor or use a partially serialized adder tree in a multi-
issue VLIW or superscalar (partial serialization occurs if the 
number of integers to add exceeds the register file bandwidth). A 
secondary drawback is that the bitwidth of all of the adders is 
fixed, based on the instruction set of the processor. 
Now, let us turn our attention to FPGAs which contain embedded 
hard multipliers and DSP blocks. The bitwidths of both hard 
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multipliers and DSP blocks are fixed, creating a potential 
mismatch between the needs of the application and the solution 
provided by the target architecture. Additionally, neither the 
multipliers nor the DSP blocks expose their compressor trees 
directly to the user. The user cannot bypass the partial product 
generator in the multiplier to directly access the compressor tree; 
likewise, the DSP blocks offer efficient multiply-accumulate 
(MAC) functionality, but only in a highly pipelined and 
sequentialized mode. Thus, despite the fact that multi-input 
addition and multiplication are based on the same circuitry, the 
embedded cores inside an FPGA cannot be used for both.  
Therefore, the user must realize multi-input addition using the 
general logic of the FPGA. Modern high-performance FPGAs 
contain logic blocks that can be configured as ternary (3-input) 
carry-propagate adders; fast carry chains connect adjacent logic 
blocks (to one another), bypassing the costly programmable 
routing network. Support for ternary addition was first integrated 
into the Adaptive Logic Module (ALM) of Altera’s Stratix-series 
FPGAs, starting with the Stratix II [13]; Xilinx integrated similar 
functionality into the Configurable Logic Block (CLB) of their 
Virtex-series devices, starting with the Virtex 5 [22]. One of the 
key selling points of this logic block architecture was that the 
number of logic levels in a ternary adder tree is less than the 
number of logic levels in a binary adder tree [2].  
For a long time, it was thought that adder trees were faster than 
compressor trees on FPGAs due to the presence of dedicated 
adders and carry chains within the logic blocks. Parandeh-Afshar 
et al. [15, 16] have since shown that this is not true for modern 
high-performance FPGAs whose logic blocks contain 6 (rather 
than 4, previously) inputs. Parandeh-Afshar et al. developed 
methods to synthesized compressor trees whose critical path 
delays were less than the delays of the adder trees; however, the 
programmable routing network still contributed significantly to 
the overall delay and the ternary adder trees required fewer LUTs.  
In a previous paper [7], we introduced the Field Programmable 
Compressor Tree (FPCT)1, a programmable compressor tree  
intended for integration in an FPGA or other reconfigurable 
device. The FPCT is distinguished from the DSP blocks and hard 
multipliers that are embedded in modern high-performance 
FPGAs in two respects: (1) The FPCT can be programmed to 
match precisely the bitwidth of the input operands, and (2) the 
FPCT exposes its compressor tree directly to the user, allowing 
faster multi-operand addition than the compressor trees 
synthesized by Parandeh-Afshar et al. [15, 16].  
A vendor who sells FPGAs or other reconfigurable devices will 
want to tailor the design of their FPCTs to the most important 
benchmark circuits of their largest clients—especially if the 
company has a small client base. To meet this need, this paper 
introduces a design space exploration (DSE) method that 
determines the best FPCT architecture for a set of benchmarks 
deemed by the vendor to be of sufficient importance. An FPCT 
can be described in terms of three parameters, which are 
described in Section 3. T|he DSE enumerates the different legal 
combinations of these three parameters, each of which 
corresponds to a different FPCT; each FPCT is synthesized, and  
                                                                 
1 In our prior work [6, 7], the name of the FPCT was “Field 

Programmable Counter Array” (FPCA); ref. [6] describes a 
preliminary version that was revised significantly in ref. [7]. 

each application is then mapped onto it. From the mapping, we 
can determine the area and delay for each benchmark. The areas 
and delays are averaged, yielding a Pareto curve in terms of area 
and delay. The Pareto optimal solutions are then presented to the 
vendor, who can then select the architecture with the guarantee of 
Pareto optimality.  
To speed up the DSE, we introduce a metric called I/O utilization, 
which can be computed for each FPCT prior to synthesis. We 
have observed a strong correlation between I/O utilization and the 
delay and area observed for each benchmark following synthesis. 
To prune the design space, the I/O utilization is computed for 
each benchmark on each FPCT that has been enumerated; only 
those architectures for which at least one benchmark has a high 
I/O utilization are synthesized and evaluated directly. Due to this 
correlation, the user can prune the search space while retaining 
high confidence that the DSE will still explore the best FPCTs. 

2. FPCT ARCHITECTURE 
This section summarizes the key design points of the FPCT 
architecture and explains which parameters are varied by the DSE 
in the following section.  
The basic unit of computation in an FPCT is called a Compressor 
Slice (CSlice); an FPCT is a 1-dimensional array of CSlices. A 
CSlice takes as its input a set of bits to be summed; it sums these 
bits, and produces one (or more) output bits representing the sum. 
Additionally, each CSlice propagates carry-out bits to subsequent 
CSlices, and receives carry-in bits from it preceding CSlices. The 
mapping process, which synthesizes an instance of multi-input 
addition or partial product reduction on an FPCT maps all of the 
input bits onto a contiguously set of CSlices. Details on the 
architecture and mapping process can be found in a prior paper by 
Cevrero et al. [7].  
Fig. 1 illustrates the basic CSlice architecture. Three parameters 
of the CSlice are varied by the DSE, and are highlighted in gray: 
the First Counter Size (FCS), the Generalized Parallel Counter 
(GPC) Configuration Circuit (GPCCC), which subsumes the 
Input Configuration Circuit (ICC), and the Maximum Output 
Rank Configuration (MORC). Two other modules shown in Fig. 
1—the Chain Interrupt Configuration Circuit (CICC) and Output 
Multiplexing Circuit (OMC) are necessary for correct operation, 
but can be derived deterministically from the FCS, GPCCC/ICC, 
and MORC.  The remainder of this section describes these three 
parameters and modules in detail.  

2.1 First Counter Size (FCS) 
An m:n (parallel) counter is a circuit that takes in m input bits, 
counts the number of inputs that are set to ‘1’, and outputs the 
result as an unsigned n-bit binary integer in the range [0, m]; it 
follows that ( )⎡ ⎤1mlogn 2 += .  

Parallel counters are a fundamental building block for compressor 
trees [19]. In the FPCT, each CSlice contains a vertical chain of 
counters in descending order of size; the pattern is as follows: the 
number of output bits of the following counter is equal to the 
number of input bits of the preceding counter, followed by a CPA. 
In Fig. 1, the chain is: {31:5, 5:3, 3:2}; in general, the size of each 
counter in the chain is deterministic once the FCS is given. 
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Increasing the FCS increases the input bandwidth of the CSlice (as 
well as the FPCT, as all CSlices are identical). The FCS, however, 
is the largest component in the CSlice, so increasing its size may 
significantly impact the area of the FPCT.  

The Compression Ratio of an m:n counter is the ratio m/n of the 
number of input to output bits; for a fixed number of output bits n, 
m/n is maximal when m = 2n – 1. For example, the compression 
ratio of a 7:3 counter is 2.33, while that of a 6:3 counter is 2. As 
the goal of the FPCT is to compress a large number of input bits 
down to two per column (which are then added by the CPA), 
counters with higher compression ratios are the most effective. Our 
DSE considered 15:4 and 31:5 counters for our FCS; for the 
benchmarks considered in this study, 63:6 counters were simply 
too large, and lead to excessive delay and area. 

2.2 Generalized Parallel Counter (GPC) 
Configuration Circuit (GPCCC)  
Let B = bs-1bs-2…b0 be an s-bit unsigned binary integer, where b0 
is the least significant bit (LSB) and bs-1 is the most significant bit 
(MSB). The subscript r of bit br is called the rank of br. Each bit 
of rank r contributes a total value of br2r to the value of B.  
Given a set of input bits to sum, a column is the set of bits of the 
same rank from each integer. An m:n counter takes in m input bits 
from the same column, each having rank r, and produces n output 
bits of rank r, r+1, …, r+(n-1) respectively. A Generalized 
Parallel Counter (GPC) [18] is an extension of a parallel counter 
that can compress input bits from multiple columns. Formally, a 
GPC is defined as a tuple (kt-2, kt-3, …, k0; n), where kr is the 
number of input bits of rank r summed by the counter, and n is the 
number of output bits.  

 
For example, a (5, 5; 4) GPC sums five bits of rank 1 and four 
bits of rank 0; the maximum output value is 15, so n=4 output bits 
are required. Leading zeros are generally omitted from a GPC 
definition, e.g., one would write (5, 5; 4) in lieu of (0, 5, 5; 4).  

One implementation of a GPC is to use an m:n counter, where 
each input bit of rank r is connected to 2r GPC inputs. This 
architecture requires that m > 2t-1 + 2t-2 + … + 1; any unused 
inputs can be driven to ‘0’.  

The GPC Configuration Circuit (GPCCC) shown in Fig. 1 
extends the largest m:n counter in the chain so that it can 
implement a variety of GPCs. Fig. 2 shows an example in which a 
GPCCC placed in front of a 15:4 counter allows it to implement a 
(5, 5; 4) GPC. The GPCCC has ten inputs and fifteen outputs. The 
five inputs on the right-hand-side of Fig. 2 have rank 0; the five 
inputs on the left-hand side can be configured as rank 0 or 1 by 
setting the appropriate configuration bits. Thus, this specific 
GPCCC architecture allows the 15:4 counter to be configured as 
an m:n counter with up to 10 inputs, or a variety of different 
GPCs: (5, 5; 4), (4, 6; 4), (3, 7; 4), (2, 8; 4), and (1, 9; 4).   

For each FCS the DSE enumerates all GPCCCs that can extend it 
without exceeding the input or output requirements. We found the 
number of GPCCCs to be tractable for the 15:4 and 31:5 counters 
explored here, but prohibitively large for 63:6 counters. 

2.3 Input Configuration Circuit (ICC)  
The Input Configuration Circuit (ICC) in Fig. 1 allows the 31:5 
counter to implement smaller counters, e.g., by setting two input 
bits to ‘0’, it can implement a 29:5 counter. Given a GPCCC, the 
ICC is derived deterministically: if the GPCCC has m input bits, 
then an m-input, m-output ICC is required. A configuration bit is 
required for each wire, along with an AND gate; setting each 
configuration bit to ‘0’ independently drives each ICC output to 
‘0’.   

2.4 Maximum Output Rank Configuration 
(MORC) 
Each CSlice can be configured to produce more than one output 
bit by replicating portions of the counter chain after the largest 
counter. If the chain is replicated k times, then the Cslice can be 
configured to produce 1 to k output bits of ranks 0 to k – 1; k – 1 
in this case is called the Maximum Output Rank Configuration 
(MORC). The Output Rank Configuration (ORC) is the number of 
output bits that the CSlice is currently configured to produce.  

15:4 Counter 

Configuration Bit 

Figure 2.  
Illustration of a GPCCC. 
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31:5 

 5:3 

 3:2 

CPA 

 5:3 

 3:2 

CPA 

GPC Config. Circuit 
(GPCCC) and Input 
Config. Circuit (ICC) 

{15:4, 31:5} in 
our experiments 

First Counter Size (FCS) 

Figure 1.  
The CSlice architecture template [7, Fig. 4(e)], which is 

characterized by 3 parameters. 

Maximum Output Rank Configuration (MORC) 
{0, 1, 2} in our experiments 
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2.5 Output Multiplexing Circuit (OMC) 
The carry bits propagated from one CSlice to the next differ, 
depending on the ORC. If the MORC is k – 1, then a k:1 
multiplexer is required to select among k different possibilities for 
each carry-out bit. The Output Multiplexing Circuit (OMC) 
contains a multiplexer on each carry bit that is propagated from 
one CSlice to the next: the OMC is not needed if the MORC is 1. 
The OMC can be derived deterministically from the FCS and 
MORC; although it influences both the delay and area of the 
circuit, it is not an independent parameter that is varied by the 
DSE. 
Increasing the MORC increases the area of a CSlice by 
replicating the chains of counters and bitwidth of the CPA, 
allowing each CSlice to produce multiple output bits. Although 
this yields a larger CSlice, it can reduce the number of CSlices 
required to map each benchmark. The CSlice area is dominated 
by the area of the largest counter; thus, increasing the MORC 
allows the mapper to use fewer CSlices overall, which yields 
better area utilization. The drawback is that the extra multiplexers 
in the OMC increase the critical path delay through each CSlice. 

2.6 Carry Propagate Adder (CPA) Chain 
Interrupt Configuration Circuit (CICC) 
A carry-propagate adder (CPA) [7, Fig. 8] performs the final 
addition of the sum and carry outputs of the compressor tree. To 
support an ORC of rank j, a j-bit CPA is required; the carry-out 
bit is propagated to the next CSlice. To support a MORC of rank 
k, any k-bit CPA can produce the sum bits; however, all of the 
carry-out bits for rank j, 1 < j < k are required, since any of these 
bits could be propagated to the next CSlice via the OMC. 

The Chain Interrupt Configuration Circuit (CICC), shown on the 
right-hand side of Fig. 1, allows the user to program the carry-in 
bit of each CSlice to 0. A single multi-input addition or 
multiplication operation may not use the complete FPCT; 
interrupting the carry-chain permits a second independent 
operation to use the remainder of the FPCT. This functionality 
was not considered during our DSE; nonetheless, the CICC was 
generated and synthesized for each CSlice for completeness. 

3. Design Space Exploration 
The following subsections describe the DSE platform that was 
used in our experiments.  The platform, which is shown in Fig. 3, 
consists of several elements: 

• Generic HDL models that hierarchically describe the FPCT. 

• Perl scripts that perform the DSE operations: configuring the 
HDL models, mapping input compressor trees onto the 
FPCT, invoking the synthesis tool, and extracting timing and 
area results from reports generated by the synthesis tool. 

• TCL scripts that synthesize the FPCT, remove false paths, 
and generate the required timing and area reports. 

• Other tools and scripts used to format the DSE results, etc. 

3.1 FPCT HDL Model 
The FPCT/CSlice architectures are modeled completely in 
VHDL. Generic module design capabilities are used to 
parameterize the FPCT/CSlice architectures. A few parameters, 
such as the FCS, are calculated offline by the generator script and 

the corresponding architectural components are written to a 
VHDL package which is used by the appropriate design modules. 

Fig. 3 shows the structure of the model. Solid lines represent 
hierarchical dependencies and dependencies between modules, 
while dashed lines represent parameterized dependencies based 
on the high-level package, fpct_pkg. fpct_top is the top-level 
module, cslice is the CSlice model, cntr models a generic m:n 
counter, and ICC, GPCCC, CICC, and CPA respectively model 
the components of the same name; sreg models a shift register 
(used by the CICC, ICC, OMC, and GPCCC); and, the package 
GPCCC_block contains sub-blocks used to construct the GPCCC. 

The model used is generic in terms of the three parameters that 
characterize the FPCT (the FCS, GPCCC/ICC, and MORC), and 
was developed using a synthesizable subset of VHDL. Each 
FPCT sub-block was modeled in a generic fashion. Sub-blocks 
were connected together to form higher-level blocks, which were 
also generic. Most of the generic blocks were modeled using 
generic statements in VHDL; others were calculated using a Perl 
script and written to a VHDL package included by other modules; 
the remainder of the model was developed in pure VHDL. 

The parallel counters were modeled using a generic compressor 
tree built from full- and half-adders, which was then optimized 
using Synopsys Design Compiler v2006.06 using the 
compile_ultra option. The implementation used a TSMC 90nm 
process with an Artisan standard cell library. 

The correct propagation of carry-out bits produced by the parallel 
counters from the current and previous CSlices results in an 
intricate interconnection scheme of counters, OMCs, CICCs, and 
CPAs. The interconnection in a top-level CSlice was modeled 
using a combination of process statements and VHDL functions. 
This approach yielded correct and fully verifiable VHDL code. 

The DSE considers two FCSs, 15:4 and 31:5 and three MORCs, 
1, 2, and 3. This results in CSlice architecture descriptions for 
which only the GPCCC/ICCC is varied. Performing complete 
synthesis of the architecture for each case significantly increases 
the exploration time and introduces non-determinism due to the 
specific algorithms used for optimization by Synopsys Design 
Compiler. Therefore, the non-GPCCC/ICC portions of the six 
baseline CSlice architectures were synthesized and optimized 
separately and saved in a library. During the DSE, only the 
GPCCC/ICC’s are generated anew and synthesized; the rest of the 
CSlice is invoked from the library.  

3.2 Exploration Module 
The exploration scripts (one for each FCS) are the top-level 
modules called by the user during DSE. The input includes the 
input bit pattern (benchmark) and the MORC. The exploration 
script, illustrated in Fig. 4, systematically enumerates each 
GPCCC/ICCC that can fit the FCS; for each GPCCC/ICC it then 
performs the following steps: 

• The fpct_gen script is invoked to generate the FPCT. This 
script, in turn, invokes the fpct_pkg module, which holds some 
constants that were calculated offline, a testbench based on 
System Verilog (see Subsection 3.3), and a TCL script for 
proper synthesis of the FPCT. 

• The mapping script (see Subsection 3.4) is invoked to 
synthesize the input bit pattern onto the FPCT. 
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• Synopsys Design Compiler is invoked to synthesize the design 
and generate delay and area reports. 

The exploration script is invoked once per benchmark, as the 
number of CSlices required varies. 

3.3 Model Verification 
The model was verified using a generic testbench developed in 
SystemVerilog. A white box-based approach was taken to ensure 
coverage of every corner of the verification space. Let FCSout be 
the number of output bits of the largest counter in a CSlice. An 
FPCT comprised of 2FCSout – 1 CSlices is generated; the middle 
CSlice is the design under test. This value was chosen so that all 
possible bit propagations from (to) preceding (subsequent) 
CSlices will occur in the middle CSlice.  
 

 
 
 
 
 
 
 
 
 
 
 
In all preceding CSlices, the ORC is configured to the minimum 
required for full bit propagation; the ORC is configured as the 
MORC for all subsequent CSlices. The ICC for the CSlice under 
test and all preceding CSlices is set to accept all input bits, but is 
disabled for subsequent CSlices which are used to propagate the 
carry-out bits of the CSlice under test. The CICC is enabled in all 
CSlices, except for the first. 
The simulation proceeded as follows. In an outer loop, a random 
ORC for the CSlice under test is chosen. The FPCT is configured 
using these values together with the appropriate configurations of 
the OMC, CICC, and ICC, which are derived deterministically. 
Within an inner loop several input bit patterns are generated and 
fed into the FPCT. A summation of the input bit patterns is 
calculated by the testbench and compared against the output of 
the FPCT. An error is generated if a mismatch occurs; all errors 
were debugged prior to running the experiments. 

3.4 Mapping Heuristic 
The mapping heuristic was written in Perl and embedded in the 
mapping module. Its output is a TCL script used by the synthesis 
tool. The script is a sequence of set_case_analysis commands that 
replace each configuration flip-flop in the FPCT with a constant. 
Replacing flip-flops with constant values effectively configures 
the FPCT, closing many false paths that would otherwise occur; 
however, it is important that these flip-flops are not treated as 
constant values that could be optimized via propagation. This 
ensures that the critical path reported by the timing analyzer 
corresponds precisely to the critical path of the input bit pattern 
synthesized on the FPCT. 
The mapping heuristic determines the number of CSlices required 
for each benchmark. Unlike our previous work [7], which used 
multiplce FPCTs to realize large compressor trees, our script 
generates a complete FPCT that precisely matches the needs of 
each benchmark. This eliminates the non-determinism that arises 
from inter-FPCT routing delays; furthermore, this is highly 
dependent on the placement of FPCTs within a larger FPGA—
which is beyond the scope of this work. Another drawback is the 
high runtime of FPGA placement and routing, which would 
significantly impede the DSE. Therefore, if a benchmark cannot 
be mapped onto the FPCT because the FCS is small or the 
GPCCC too restrictive, then the design is not evaluated. 
The mapping heuristic solves a problem outlined in our previous 
work, but has been simplified in order to reduce its runtime. It 
employs a greedy right-to-left pass over the input columns, 
starting with the least significant column in terms of rank. At each 

Enumerate next GPCCC/ICC 

fpct_gen 

mapping 

synthesis 

All GPCCCs enumerated? 

FCS, MORC, Input Bit Pattern 

Delay/Area 

Done 

Figure 4.  
Exploration module 

fpct_top 

fpct (CSlice) 

CPA GPCCC SCC ICC CIC OMC 

fpct_pkg

Figure 3.  
FPCT HDL Model Structure 

 GPCCC_block SREG
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step, the heuristic generates a new CSlice and attempts to map 
bits from the current column onto it. The heuristic grabs as many 
bits as possible from the current and subsequent columns, but is 
limited by the GPCCC and MORC; it then maps each of these bits 
onto the current CSlice. If any bits in the current column remain, 
then the mapping fails—a “vertical configuration” [7, Fig. 9(b)] 
would be required for this benchmark, indicating that a larger FCS 
or less restrictive GPCCC would be ideal for this benchmark. 
If no bits remain from the current column, then the heuristic sets the 
ORC of the current CSlice appropriately (e.g., [7, Fig. 6]), and 
moves on to the next column. After processing all columns, 
additional CSlices are generated to propagate all of the carry-out 
bits until the complete sum is produced. This eliminates the need for 
“horizontal” configurations [7, Fig. 9(a)], where one FPCTs carry-
outputs are propagates to the carry-inputs of the next.  

4. I/O UTILIZATION: PRUNING THE DSE 
Let a family be a set of FPCTs with a given FCS and MORC. 
Within a family, we observed that the delay and area among the 
FPCTs within each family strongly correlated to the number of 
CSlices required, which we denote by N. Intuitively, reducing the 
number of CSlices reduces area; however, it also reduces the critical 
path delay through the CPA. Thus, one goal of the exploration 
module is to find the GPCCC that simultaneously maximizes (1) the 
number of input bits mapped to each CSlice and (2) the number of 
output bits produced by each CSlice. This information can be 
determined from the mapping phase of the exploration module 
shown in Fig. 4; synthesis via Synopsys Design Compiler—the most 
runtime-intensive portion of the DSE—can therefore be eliminated. 
The input utilization of a CSlice measures its ability to consume 
input bits. The most obvious measurement of input utilization is the 
number of input bits mapped to each CSlice; however, this is 
skewed by the GPCCC. For example, let FCS = 15:4; a GPCCC of 
(0, 15; 4) allows up to fifteen inputs; on the other hand, a GPCC of 
(5, 5; 4) has up to ten inputs, but has greater flexibility in terms of 
mapping. Comparing the input utilization of the two is difficult, 
since in the end, up to fifteen input bits of the FCS will be used in 
both cases (see Fig. 2). Suppose that N CSlices are used and the 
FCS is an m:n counter; now, let X be the total number of input bits 
that are not driven to ‘0’ by the ICC after mapping; X ignores bits 
mapped to the final CSlice, since it may be under-utilized due to a 
lack of available bits rather than poor utilization; X also ignores the 
additional CSlices that are appended to the FPCT to propagate the 
carry bits.  
The input utilization is defined as the quantity Uin = X/Nm. For 
example, if our CSlice is configured as a (5, 5; 4) GPC and two bits 
of rank 1 and four bits of rank 0 are mapped onto the CSlice, then 
Uin = (2×21 + 4×20)/15 = 8/15 = 0.53. 
The output utilization, Uout, is defined for CSlices whose MORC 
exceeds 1. Recall for a given MORC of k, the ORC can be 
configured to any value j, 0 < j < k-1, i.e., the CSlice can produce 1 
to k output bits. Let Oi be 1 plus the ORC of the ith CSlice in the 
FPCT. Then, 

( )1Nk

O
U

N

1i
i

out −
=
∑
= .    (1) 

 

By construction, Uout is constant if the MORC is 0, as each CSlice 
that is used produces exactly one output bit. 
We observed a strong correlation between the input and output 
utilization of the different FPCTs that were enumerated during the 
DSE for MORCs of 1 and 2. Due to this strong correlation, we 
introduce a unified I/O utilization metric, U = UinUout which can be 
computed for each FPCT that is generated for each benchmark. 
Only the FPCTs with the highest I/O utilization values are then 
synthesized during the DSE. Although there is no formal guarantee 
of optimality in terms of either delay or area, I/O utilization found, 
a-priori, most of the best FPCT architectures that were enumerated 
for each benchmark in our experiments. 

5. EXPERIMENTAL RESULTS 
5.1 Benchmarks 
We selected a set of seven arithmetic benchmarks to use in the DSE; 
our goal was to find a mix of benchmarks that had a wide variety of 
bit patterns (e.g., rectangular for multi-input addition, trapezoidal for 
multiplication, irregular for filters, etc.). In principle, these 
experiments could easily be repeated with a larger set of 
benchmarks and fewer restrictions on the FPCT configuration (e.g., 
consider a wider variety of FCSs).  
Table 1 lists the benchmarks, which include compressor trees for 
three different multipliers, two multiinput addition operations, a FIR 
filter [7, Fig. 5], and the Sum-of-Absolute Difference (SAD) 
computation, which is used for motion estimation in video coding 
algorithms such as H.264/AVC [8]. mul5x5 was selected based on an 
anecdote in a paper by Kuon and Rose [12]: mul5x5 performs better 
on the general logic of an FPGA than on the dedicated 9x9 
multiplier in the embedded DSP blocks. mul36x18 represents either 
36x18-bit multiplication or 18x18-bit multiplication with Booth 
encoding. mul18x18, mul36x18, add16+16, and FIR were too large 
to fit on an FPCT whose CSlices have an FCS of 15:4; the 
remaining benchmarks fit on FPCTs whose CSlices have an FCS of 
either 15:4 or 31:5. 

5.2 DSE Results 
This section summarizes the results of the complete DSE. For each 
FCS size (15:4, 31:5), the DSE enumerated every legal 
GPCCC/ICC and MORC combination, generated and synthesized 
each FPCT, and then mapped each benchmark as described in 
Section 3, yielding delay and area measurements. For each FPCT 
architecture enumerated during the exploration, the delay and area 
are averaged across the set of benchmarks.  
Fig. 5 shows the area/delay results for the 3 benchmarks that could 
be mapped onto FPCTs whose CSlices have FCS = 15:4; due to the 
small number of GPCCC/ICCC and MORC configurations, Fig. 5 
reports results for every FPCT. 

 

Table 1.  
Benchmark circuits used for the FPCT DSE. 

Benchmark Description FCSs Mapped 
mul5x5 
mul18x18 
mul36x18 
add8x32 
add16x16 
FIR 
SAD 

5x5 Multiplication 
18x18 Multiplication 
36x18 Multiplication 
Add 8 32-bit Integers 
Add 16 16-bit Integers 
FIR Filter 
Sum-of-Absolute-Differences 

15:4, 31:5 
31:5 
31:5 
15:4, 31:5 
31:5 
31:5 
15:4, 31:5 
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It is important to note that Fig. 5 only contains data points for three 
benchmarks, as the others were too large to fit onto a single FPCT 
whose CSlices have FCS = 15:4. Therefore, we conclude that a 
larger FCS will be preferable. Nonetheless, Fig. 5 does illustrate 
several interesting trends. 
The average delay reported in Fig. 5(a) correlates strongly with the 
MORC. The delays are clustered around 3 data points: all FPCTs 
with a MORC of 0 had delays of approximately 1.4ns; all FPCTs 
with a MORC of 1 had delays ranging from approximately 2.1 to 
2.3ns; and all FPCTs with MORC of 2 had delays ranging from 
approximately 3.2 to 3.4ns. It appears that for this portion of the 
design space, the delays through the multiplexers of the OMC 
distinguish the 3 data points.  
The average areas reported in Fig. 5(b) range from approximately 
17,500 to 25,000μm2. The worst data points in terms of area were 
those with a MORC of 2. Among the FPCTs with a MORC of 0, the 
smallest tended to be those with few rank-1 and rank-2 input bits. 
Among the FPCTs with a MORC of 1, the best tended to be those 
with a larger number of rank-1 inputs; the design points having 
both rank-1 and rank-2 inputs in addition to rank-0 inputs tended 
to be among the larger design points.  
Fig. 6 shows similar results for the FPCTs with FCS = 31:5; here, 
the total number of FPCT architectures in the design space is too 
large to enumerate. Therefore, Fig. 6(a) shows the ten best and ten 
worst architectures in terms of area; Fig. 6(b) shows the nine best 
and ten worst architectures in terms of area along with the area of 
the architecture from Fig. 6(a) that has the best delay. Dashed 
arrows link the seven best architectures in Fig. 6(a) in terms of 
their delay with their areas.  

 

In Fig. 6(a), the best FPCT architecture in terms of delay has a 
GPCCC/ICC of (12, 7; 5) and a MORC of 0; the next nine best 
architectures all have MORCs of 1; the ten worst architectures all 
have MORCs of 2. The delay of the best FPCT architecture is 
approximately 1.8ns, while the delay of the second through ninth 
best range from 2.6 to 2.8ns. The worst architectures have delays 
that are between three and four times larger than the best; this 
illustrates that there is a significant difference in quality between 
different FPCT architectures, justifying the DSE: an arbitrarily-
selected FPCT is not likely to perform particularly well. 

Fig. 6(b) shows that the nine smallest FPCT architectures have 
approximately the same area, ranging from around 41,000 to 
43,000μm2; the worst FPCT, in contrast, has an area of 
approximately 60,000μm2. Once again, this justifies the DSE on the 
grounds that an arbitrarily selected FPCT architecture may be 
among the largest.  

Dashed arrows from Fig. 6(a) to (b) associate the best seven best 
performing FPCT architectures in terms of delay with their 
respective areas. The fastest FPCT has an area of around 
50,000μm2, which is somewhere in the middle, in terms of area. The 
next second through seventh fastest FPCTs are the first through 
sixth smallest. In terms of Pareto optimality, this yields two points: 
one point that is optimal in terms of delay (with a significant area 
overhead) and six approximately equivalent points that are optimal 
in terms of area and close-to optimal in terms of delay. Depending 
on the relative importance of delay and area, the designer is free to 
choose either point. 

X

0

10000

20000

30000

40000

50000

60000

70000

(1
3,

5;
5)

(1
1,

9;
5)

(1
0,

11
;5

)

(1
2,

7;
5)

(1
,9

,9
;5

)

(1
,1

0,
7;

5)

(1
2,

7;
5)

(1
1,

9;
5)

(1
3,

5;
5)

(1
2,

7;
5)

(1
,2

9;
5)

(3
,0

,1
9;

5)

(2
,2

7;
5)

(1
,0

,0
,2

3;
5)

(1
,0

,2
7;

5)

(1
,1

,2
5;

5)

(2
,0

,2
3;

5)

(1
,2

9;
5)

(1
,0

,2
7;

5)

(3
1;

5)

1 1 1 1 1 1 2 2 2 0 1 2 2 2 1 2 2 2 2 2

MORC and GPCCC/ICCC

um
2

Average Delay (FCS = 31:5)

0

1

2

3

4

5

6

7

(1
2,

7;
5)

(1
1,

9;
5)

(1
0,

11
;5

)

(1
3,

5;
5)

(1
,9

,9
;5

)

(1
2,

7;
5)

(1
,1

0,
7;

5)

(2
,7

,9
;5

)

(1
,8

,1
1;

5)

(2
,6

,1
1;

5)

(1
,1

,1
,1

7;
5)

(2
,2

7;
5)

(1
,1

,2
5;

5)

(2
,0

,2
3;

5)

(1
,1

,0
,1

9;
5)

(1
,0

,1
,2

1;
5)

(1
,0

,2
7;

5)

(1
,0

,0
,2

3;
5)

(1
,2

9;
5)

(3
1;

5)

0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

MORC and GPCCC/ICC

ns

(a) 

(b) 

ns
 

μm
2 

Best Worst 

Figure 6.  
Average delay (a) and area (b) of the ten best and worst 

FPCT architectures with FCS = 31:5; all benchmarks were 
used. The dashed lines link the seven best architectures in 

terms of delay with their respective areas. 
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Figure 5.  
Average delay (a) and area (b) of each FPCT architecture 
with FCS = 15:4; three of seven benchmarks were used. 
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The fastest FPCT architecture in Fig. 6(a) has a MORC of 0, and 
therefore, no OMC; thus, it achieves its speed by eliminating 
multiplexers in the critical path of the CPA and carry propagation 
chains from the first CSlice. Since the second fastest FPCT has a 
MORC of 1, it contains an OMC, and thus a multiplexer’s worth of 
delay is accumulated through each CSlice; this explains the gap of 
almost 8ns between the best and worst. 
Because the fastest FPCT architecture has a MORC of 0, the CPA in 
each CSlice produces exactly one output bit; consequently, it will 
require more CSlices than architectures with larger MORCs. The 
area of the larger counter replicated across more CSlices outweighs 
the cost of replicating the chain of smaller counters across every 
CSlice when the MORC exceeds 1.  

5.3 I/O Utilization 
As mentioned in Section 4, we observed a strong correlation 
between the Uin and Uout values of the different FPCTs that were 
enumerated during the DSE for MORCs of 1 and 2; the utilization is 
constant if the MORC is 0.  
As a representative example, Fig. 7(a) shows Uin and Uout for the 
mul36x18 benchmark for every GPCCC/ICC configuration 
enumerated for FCS = 31:5. Due to the size of the figure, the exact 
GPCCC/ICCs could not be labeled; it suffices to note that 52 
different GPCCC/ICCs were enumerated. 
Six curves are shown: Uin and Uout for MORCs of 0, 1, and 2. The 
correlation is clear from the figure: the design points with high/low 
Uin values tend to have high/low Uout values, across all MORCs; this 
justifies the use of the unified I/O utilization metric U = UinUout. In 
general, the most profitable GPCCC/ICCs to explore tend to be 
those with the highest I/O utilization. 
mul5x5, whose Uin and Uout values for different GPCCC/ICCs are 
shown in Fig. 7(b), is an outlier: due to its small size, many 
GPCCC/ICC configurations achieved similar Uin and Uout values 
(for their respective MORCs). Our goal is to use I/O utilization to 
prune the search space by considering only the FPCT designs for 
each benchmark whose utilization is maximal. Due to the large 
number of points with maximal I/O utilization, the search space for 
mul5x5 cannot be pruned efficiently with this method.  
The number of design points in Fig. 7(a) and (b) differ; mul5x5 is 
sufficiently small that it can fit onto any FPCT having FCS = 31:5, 
regardless of GPCCC/ICC; mul36x18, in contrast, could not fit onto 
every design that was enumerated; these designs were discarded and 
their I/O utilization was not reported. 

5.4 Pruning the Design Space 
Here, we evaluate the effectiveness of pruning the design space with 
I/O utilization for MORCs of 1 and 2. Fig. 8 shows all of the points 
in the design space enumerated for each benchmark for FPCTs with 
FCS = 31:5. For MORCs of 1 and 2, the four points having 
maximum I/O utilization are circled and labeled (A-D for MORC = 
1; E-G for MORC = 2). In all cases except for add8x32, the Pareto-
optimal points for each MORC are contained within the four points; 
for add8x32, the points that are found are near-Pareto-optimal. For 
the other benchmarks, the four points per MORC were typically the 
best; however, there are some exceptions: for example, there are 
several design points in Fig. 8(d) (SAD) that have a lower area and 
approximately the same delay as points C and D.  

 
Fig. 8 demonstrates that I/O utilization can find near-Pareto optimal 
points in the design space without a full-blown DSE; however, it 
may miss some points that are still good solutions. In Fig. 8, the 
choice of four maximum I/O utilization points per MORC was 
arbitrary; increasing the number of maximum I/O utilization points 
per MORC would increase the likelihood of finding Pareto-optimal 
solutions, but increases the runtime.  
It is important to note that I/O utilization requires exhaustive 
enumeration of the different points in the design space; the pruning 
criterion reduces the number of designs to synthesize. It is also 
worth noting that this only works for MORCs greater than zero; 
when the MORC is 0, I/O utilization is constant, so all points are 
equivalent. Other methods may need to be developed for pruning 
when the MORC is 0. The effectiveness of pruning, however, 
suggests that there may exist analytical methods to evaluate 
different FPCTs without resorting to a pruned DSE; developing 
such methods is one potential avenue for future research on this 
topic. 

6. RELATED WORK 
DSE has been used for many academic and industrial studies for 
FPGA architecture evaluation. A typical approach, similar to what 
is done here, is to enumerate a set of different FPGA 
architectures, place-and-route a set of benchmark circuits, and 
extract appropriate metrics (e.g., delay, throughput, wirelength, 
LUT usage, etc.) to evaluate the quality of the architectures under 
consideration, using tools such as VPR [4, 5].  
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Figure 7.  
A strong correlation between input and output utilization 

was observed; (a) mul36x18 is a representative example; (b) 
one anomaly is mul5x5, where maximal utilization was 

observed for many GPCCC/ICC combinations. 
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For example, many parameters of Altera’s Stratix II logic and 
routing architecture were determined via DSE [13]; other DSE-
based studies include: Ahmed and Rose’s experiments on LUT 
and cluster size [1]; Kuon and Rose’s more recent experiments on 
the effects of varying architectureal parameters (e.g., LUT size) 
and transistor-sizing vis-à-vis delay and area [11]; and Ye and 
Rose’s evaluation of the use of bus-based interconnections in an 
FPGA routing network [23].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reconfigurable arithmetic accelerators are also related to this 
work; typically, they have been proposed as customizable 
accelerators for application-specific processors. Chimaera [10], 
for example, is a LUT-based accelerator with fast carry chains; 
many of these ideas have since been incorporated into the logic 
blocks of high-performance FPGAs [13]. Yehia et al. [24] 
performed a DSE for an accelerator for superscalar processors 
that can collapse sequential logic chains into a single cycle; the 
design space included parallel-prefix addition, LUTs to perform 

Figure 8.  
For each benchmark with FCS = 31:5, the points in the design space found by pruning. The four points whose utilization is 

maximal when the MORC is 1 and 2, respectively, are shown; utilization is flat if the MORC is 0, so pruning is impossible. In 
all cases except add8x32 (e), pruning found the Pareto-optimal points when the MORC is 1 or 2. 
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arbitrary logic functions at the bit-level, and optional shifters 
placed at the inputs and output of the device. Ansaloni et al. [3] 
recently introduced the Expression-Grained Reconfigurable Array 
(EGRA), which contains several levels of arithmetic and logic 
operations connected by programmable switches; the operations 
supported include logical operations (e.g., AND, XOR), arithmetic 
and logical shifts, and addition/subtraction and comparison 
operations. 
The FPCT differs from the preceding arithmetic accelerators in 
two respects: (1) it is intended for integration into an FPGA, 
rather than a processor, and (2) it accelerates multi-input addition 
and multiplication operations, rather than chaining a CPA with 
other logical operations.  

7. CONCLUSION 
This paper has presented a DSE methodology that can optimize 
an FPCT for a given set of benchmarks; the I/O utilization metric 
was introduced to reduce the number of FPCT architectures that 
are synthesized during the DSE, while providing high confidence 
to the user that the remaining design points are among the best. 
We used a MORC of 2 for our previous FPCT evaluation; as a 
result of this study, we have observed that a MORC of 1 tends to 
be preferable in terms of delay and area—at least for the 
benchmarks examined here. An FPGA vendor who wishes to 
integrate an FPCT into a large reconfigurable device—such as an 
FPGA—could use our approach to determine the best FPCT 
architecture for their most important customer’s benchmark 
circuits.  
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