
Efficient Code Caching to Improve Performance and
Energy Consumption for Java Applications

Yu Sun, Wei Zhang
Dept. of Electrical and Computer Engineering, Southern Illinois University Carbondale

Carbondale, IL 62901

sunyu@engr.siu.edu, zhang@engr.siu.edu

ABSTRACT
Java applications rely on Just-In-Time (JIT) compilers or
adaptive compilers to generate and optimize binary code at
runtime to boost performance. In conventional Java Virtual
Machines (JVM), however, the binary code is typically writ-
ten into the data cache, and then is loaded into the instruc-
tion cache through the shared L2 cache or memory, which
is not efficient in terms of both time and energy. In this
paper, we study three hardware-based code caching strate-
gies to write and read the dynamically generated code faster
and more energy-efficiently. Our experimental results indi-
cate that writing code directly into the instruction cache can
improve the performance of a variety of Java applications by
9.6% on average, and up to 42.9%. Also, the overall energy
dissipation of these Java programs can be reduced by 6% on
average.

Categories and Subject Descriptors
B.3.2 [HARDWARE]: Memory StructuresDesign StylesCache
Memories; D.3.4 [SOFTWARE]: Programming LanguagesCode
Generation

General Terms
Design,Performance

Keywords
Instruction Cache, JIT Compiler, Code Generation, Code
Caching, Java Virtual Machine

1. INTRODUCTION
In dynamic optimization systems such as Java Virtual

Machines (JVM), the code is typically compiled and stored
while the program is being executes. A typical path of gen-
erating and executing Java code in a Java Virtual Machine
[1] is shown in Figure 1. The dynamic/adaptive compiler
treats the generated code as normal data and stores them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

back to the memory through the data cache. When this
binary code segment is needed by the processor, it is then
loaded from the memory to the instruction cache. Such a
code generation and fetching path, however, is not efficient
due to the following reasons.

1. Since the binary code is stored into both data and
instruction caches, the aggregated cache space for the
binary code is doubled.

2. Instruction cache misses always occur when the binary
code is invoked for the first time, since the code is writ-
ten to the data cache and cannot be directly fetched
from the instruction cache.

3. The L1 data cache may be polluted by the binary code
generated. Unlike a static compilation system, where
all the binary codes are generated before the program
is executed, in a JVM, the binary code is generated at
runtime, while the program also read and write data
at the same time in the same data cache. As a result,
writing binary code into the data cache may evict use-
ful data from the data cache, leading to worse data
cache locality and longer execution time.

4. Cache synchronization is needed for each dynamically
generated code segment so as to guarantee the data
consistency among the data cache, the memory and the
instruction cache, resulting in substantial CPU stalls
and flushing of cache blocks while the binary code is
generated.

This inefficient path is particularly problematic for em-
bedded Java applications, in which both performance and
energy efficiency are crucial [19, 20]. In this paper, we study
three different techniques that aim at improving the effi-
ciency of Java binary code generation and fetching, includ-
ing 1) I-cache D-cache Data Path (IDDP), 2) Dynamically-
generated Instruction Cache (DIC), and 3) Writable Instruc-
tion Cache (WIC). Specifically, IDDP adds a path between
the onchip instruction and data caches, which allows the
processor to access the data cache directly (rather than the
L2 or memory) after an instruction cache miss. The moti-
vation is that it is very likely to find the recently generated
code from the data cache. DIC is an additional cache used to
only store the dynamically generated code by the JIT com-
piler, which can be accessed by the processor in parallel to
the instruction cache. WIC enables write operations to the
instruction cache. Thus all the dynamically generated code
can be directly written into and read from the instruction

119

Figure 1: A typical path of generating and executing
Java code.

cache without touching the data cache. More details of these
three schemes can be found at Section 3. Our evaluation of
these three code caching optimizations indicates that WIC
is the most effective and efficient approach to improving the
performance and energy efficiency for Java applications.

The rest part of this paper is organized as follows. In
Section 2, we discuss the related work. We present the de-
sign of three code cache optimization schemes in Section 3.
Section 4 shows the experimental results. Finally, we make
concluding remarks in Section 5.

2. RELATED WORK
There have been a number of research efforts to optimize

the code cache for improving performance [2, 3] or energy ef-
ficiency [4]. Hazelwood and Smith [2] proposed generational
cache management of code traces in dynamic optimizers,
which categorizes code traces based on their expected life-
time. The advantage of the generational code cache manage-
ment is to filter out short-lived code traces to reduce frag-
mentation. As a result, long-lived code traces can be kept
longer to benefit the performance. Hazelwood and Smith
[3] also showed that using a medium-grained FIFO (First-
In, First-Out) eviction policy for code caches can effectively
balance cache management complexity and cache miss rates.
Compared with the above efforts that focus on enhancing the
code cache management policies, our study aims at bypass-
ing the inefficient path of writing and fetching Java native
code in conventional JVMs, which is orthogonal and com-
plementary to the prior work in [2, 3].

Chen et al. [4] studied energy-efficient code cache man-
agement techniques for memory-constrained Java devices.
Their work assumes that in addition to on-chip instruction
and data caches, there is an independent on-chip code cache
to store Java native code, which is similar to the DIC scheme
studied in this paper. Chen’s work [4] showed that selec-
tive use of code cache can reduce energy dissipation sub-
stantially as compared to the pure interpreted and the pure
(performance-oriented) compilation strategies for memory-
constrained Java devices. Compared to this study, our work
on the WIC cache does not assume the existence of an in-
dependent code cache, which is certainly more expensive in
terms of the hardware cost. Nevertheless, the WIC cache
proposed in this paper can benefit both performance and
energy dissipation.

Traditionally, there have been many studies on organiz-
ing instruction caches and data caches efficiently [5, 6, 7] to
achieve better performance. Generally, the instruction and
data caches can be either separated or unified. Computer
architectures have proposed a variety of smart cache archi-
tectures to exploit the locality of instruction and data ac-
cesses to maximize performance, for instance victim caches
[8], column-associative caches [9], cache bypassing [10] and
split caches [11, 12, 13, 14], etc. However, all these studies
are focused on programs that are statically compiled (e.g.
C programs). By comparison, this paper studies the WIC
cache that is more efficient for dynamically compiled ap-
plications such as Java programs. Also, unlike traditional
cache architectures (in which the instruction caches are typ-
ically read-only), the WIC cache enables write operations
directly to the instruction cache, which is suitable to store
binary code generated at runtime.

3. CODE CACHE OPTIMIZATION SCHEMES

3.1 IDDP (I-cache D-cache Data Path)
The path of storing and loading dynamically-generated

code in IDDP is shown in Figure 2. As we can see, an addi-
tional data path is added between the L1 instruction cache
and the L1 data cache. With this fast inter-cache data path,
the processor can access the L1 data cache directly for each
L1 instruction cache miss. If the instruction is found in the
L1 data cache (i.e., a L1 instruction cache miss but a L1 data
cache hit), the instruction can be efficiently transferred to
the L1 instruction cache. However, if the processor cannot
find the needed instruction from the L1 data cache (i.e. a L1
instruction cache miss and a L1 data cache miss), then the
L2 cache or the main memory has to be accessed to return
the code to the L1 instruction cache as usual. The motiva-
tion behind the IDDP scheme is that the binary code needed
by the instruction cache is most likely in the L1 data cache
when it is needed, since this code has been just written into
the L1 data cache. By providing a short and fast inter-cache
data path, it is expected that the cost of handling instruc-
tion cache misses caused by the dynamically generated Java
binary code can be reduced. In our evaluation, we assume
that for the IDDP scheme, an instruction cache hit takes
1 cycles, and an instruction cache miss but a data cache
hit takes 2 cycles (i.e., we assume that fetching instructions
from the data cache directly through the I-cache D-cache
data path takes 1 cycle).

3.2 DIC (Dynamically-generated Instruction
Cache)

In the DIC scheme, an extra cache structure (i.e. the
DIC cache) is added into the system, which is in parallel
with the level 1 instruction and data caches, as shown in
Figure 3. The DIC cache has access control that allows
only dynamically-generated Java code to be stored, while
at the same time the Java native code is also written to
the L1 data cache. Nevertheless, the DIC cache forbids the
read or replacement operations from low-level caches or main
memory. As a result, the DIC cache is guaranteed to always
contain the most updated Java native code generated by the
JIT compiler. When the binary code is needed, the processor
can fetch the code from the L1-I cache and the DIC cache
simultaneously. If there is a DIC cache hit, the instructions

120

Figure 2: The path of Java binary code generation
and fetching in the IDDP scheme.

will be immediately returned to the CPU. Otherwise, a L1-
I cache hit or a L1-I cache miss may occur to supply the
needed instructions to the pipeline (note that a DIC cache
does not handle a DIC cache miss as it is not connected to
the L2 cache).

Figure 3: The path of Java binary code generation
and fetching in the DIC scheme.

3.3 WIC (Writable Instruction Cache)
The WIC cache is another way to simplify the Java bi-

nary code generation and fetching path by enabling writes
to the L1 instruction cache, as depicted in Figure 4. Tra-
ditionally, the L1 instruction cache is read-only because the
instructions are typically already generated and stored in
the memory before they are executed, which usually do not
need to be modified at runtime. However, in a dynamic
optimizing system such as JVM, the byte codes need to be
compiled and optimized at runtime to generate high-quality
Java native codes. Thus it is desirable to enable write oper-
ations to the instruction cache so that the binary code can
be directly written into and read from the instruction cache
without having to bother the L1 data cache.

The WIC cache can not only reduce the pollution to the
L1 data cache, but also make the Java binary codes closer to
the fetch unit that needs to use them (as can be seen from
Figure 5 (b)). Moreover, without a WIC cache, the L1 data
cache has to be synchronized with the memory and the L1
instruction cache to ensure that all the recently generated

Java binary codes are written back to the main memory and
no outdated binary code will stay in the instruction cache
after it is recompiled. With the availability of a WIC cache,
these expensive data cache synchronization operations can
be removed. However, it should be noted that one possible
problem of the WIC cache is that writing binary code di-
rectly into the IL1 (i.e., the level-1 instruction cache) may
evict certain useful instructions from the IL1, possibly lead-
ing to some instruction cache misses.

Figure 4: The path of Java binary code generation
and fetching in the WIC scheme.

The writable instruction cache functions like a write-back
data cache. In other words, only when an instruction is
replaced, it is written back to the L2 cache if it is modified.
This writeback policy is expected to mitigate the overhead of
updating the low-level memory hierarchy caused by writing
to the instruction cache.

The architecture support of the WIC cache is depicted in
Figure 5, in which Figure 5 (a) shows a 5-stage instruction
pipeline of the baseline processor with a traditional instruc-
tion cache, and Figure 5 (b) illustrates the modified pipeline
of the processor that employs a WIC cache. Compared with
the baseline instruction pipeline, the memory stage of the
processor with WIC is connected to both the data cache and
the WIC cache through a multiplexer. We assume that this
processor supports an additional store instruction to write
code (not data) into memory, which is called Storei instruc-
tion in this paper. Also, we assume an additional control sig-
nal called IsIns is used, in conjunction with an existing sig-
nal MemWrite (i.e. to enable write operations to the mem-
ory), to control the multiplexer. After an Storei instruction
is decoded, the IsIns signal will be enabled (which will be
cleared by other instructions). Since IsIns is logical−anded
with the MemWrite, the multiplexer will select the WIC
cache (instead of the data cache) as the target to write Java
binary code. Once IsIns is cleared, the memory stage will
write data to the data cache as usual. As we can see from
Figure 5 (b), the hardware overhead to support the WIC
cache is insignificant.

4. EXPERIMENTS

4.1 Evaluation Methodology
We evaluate the proposed three optimization schemes by

using Dynamic SimpleScalar (DSS) simulator [16]. We sim-

121

(a)

 IF WBID EXE MEM

 IF WBID EXE MEM

(b)

D−CacheI−Cache

D−Cache

MUX& MemWriteIsIns
1 0

 WIC

Figure 5: The instruction pipeline for a processor
with (a) a traditional instruction cache, (b) the WIC
cache.

Hardware Parameters
L1 I-Cache 16KB, direct-mapped, 32-byte block

1 cycle latency
L1 D-Cache 16KB, 4 way, 32 byte-block

1 cycle latency, LRU
DIC Cache 4KB, fully associative, 32 byte-block

1 cycle latency, LRU
L2 Cache 256KB, 4 way, 64-byte block

6 cycle latency, LRU
Memory 32 cycles, unlimited size

Table 1: Configuration parameters and their values
in our base configuration for the simulated proces-
sor.

ulate a 4-issue PowerPC-based superscalar processor with
32 integer and 32 floating point registers. The important
parameters of memory hierarchy are given in Table 1.

The Java virtual machine running on the simulator is Jikes
RVM [18], which uses the baseline compilation mode that
compiles every method of Java applications. We extended
DSS by fully implementing four cache synchronization in-
structions used by Jikes RVM, including dcbst, sync, icbi
and isync, which were simply treated as NOPs in the orig-
inal DSS.

Two sets of benchmarks are used in our experiments to
evaluate the effectiveness of the code cache optimization
schemes proposed for Java Virtual Machines. In addition to
SPECjvm 98 benchmark suite [15], five smaller Java appli-
cations are collected to represent light-load client-side Java
applications, for which startup time is crucial. Table 2 gives
the description and salient characteristics of these bench-
marks.

In our experiments, we compare the performance of dif-
ferent schemes by evaluating the relative performance im-
provement as defined below.

I =
Porig − Popt

Porig
(1)

In the equation above, Porig is the original performance,
and Popt stands for the optimized performance, both in
terms of the number of CPU clock cycles.

4.2 Comparison of 3 Schemes
Figure 6 shows the performance improvement achieved by

the IDDP, DIC and WIC schemes. It is obvious that IDDP
gets almost the same performance as the base scheme with-
out using any code cache optimization. While DIC attains
better results for several benchmarks, WIC achieves the best
performance improvement for most benchmarks. The rea-
sons of these different performance results are the following.

1. WIC is the only scheme that can eliminate the cache
synchronization overhead. Moreover, WIC benefits
from better L1 data cache performance since no bi-
nary code will be written into the L1 data cache.

2. The DIC scheme makes an extra copy of recently gen-
erated Java code in the DIC cache, so the number of
instruction misses can be reduced. In particular, we
find that the DIC cache can reduce almost all instruc-
tion cold misses.

3. The IDDP scheme can potentially reduce the instruc-
tion cache miss latency by fetching instructions di-
rectly from the L1 data cache if it hits in the DL1.
However, since the binary code written into the DL1
may be overlapped by data references or other binary
code, the number of cold instruction misses that hit
in the L1 data cache is relatively too small to have a
noticeable impact on the overall performance.

As can be seen in Figure 6, the WIC scheme can boost
performance for most of the benchmarks. The only two ex-
ceptions are edge and compress. The reason is that both
these two benchmarks have quite small instruction cache
miss rate (as well as the data cache miss rate) as shown
in Table 2. Therefore, WIC cannot noticeably enhance the
overall performance of these two benchmarks by simply re-
ducing the instruction cache misses. On average, the WIC
scheme improves the performance by 9.6%, indicating the
effectiveness of WIC.

We also observe that generally the WIC cache can ben-
efit small benchmarks more than the SPECjvm 98. The
reason is that for larger benchmarks such as SPECjvm 98,
the instruction cache miss latency can be amortized by a
large number of instruction reuses. Nevertheless, even for
SPECjvm 98, we still observe noticeable performance en-
hancement for most benchmarks, since the WIC cache can
both reduce the cache misses and eliminate cache synchro-
nization overhead. More specifically, the average perfor-
mance improvement of SPECjvm 98 by using the WIC cache
is 4.6% (up to 7.8% for javac), demonstrating that WIC can
effectively boost performance for many Java applications.

Since both IDDP and DIC schemes make insignificant im-
provement and particularly DIC is quite expensive in terms
of hardware overhead, we will focus on the WIC scheme in
the rest of this paper.

4.3 Breakdown of Performance Improvement
Figure 7 shows the breakdown of the performance im-

provement in terms of reducing synchronization and decreas-
ing cache misses for the WIC scheme. As we can see, avoid-
ing cache synchronization is the major factor to improve
performance, for both small benchmarks and SPECjvm 98.
Specifically, on average 70.2% performance improvement by
the WIC cache is due to the elimination of cache synchro-
nization overheads. These results also explain why WIC

122

Set Benchmark Description I$ Miss Rate D$ Miss Rate

Small Bench

db s Simplified database 1.56% 1.18%
edge Image edge detection 0.11% 0.04%
fft 2d 2D FFT 1.46% 1.30%
hello Hello world 1.55% 1.27%
xml XML parser 1.65% 1.23%

SpecJVM 98

compress File compression 0.52% 0.75%
jess Java expert system 2.69% 1.85%
raytrace Raytrace of dinosaur 2.22% 0.97%
db Database 1.77% 1.83%
javac Java compiler 2.37% 1.91%
mpegaudio Audio en/decoder 1.77% 0.58%
jack Java parser generator 3.58% 1.71%

Table 2: Benchmark description and salient characteristics.

Figure 6: Compare the performance improvement
of 3 schemes.

adequately outperforms DIC, which still needs cache syn-
chronization to guarantee that the processor can fetch the
correct (i.e. most updated) Java binary code.

4.4 Sensitivity to the Cache Size
We have also studied the effectiveness of WIC for instruc-

tion caches with different sizes. Figure 8 shows the nor-
malized execution cycles of the base and WIC schemes with
the L1 I-cache size varying from 4KB to 8KB and 16KB,
which are normalized with the base with a 4K instruction
cache. As we can see, WIC is always superior to the base
scheme for instruction caches with various sizes. In par-
ticular, WIC seems to be slightly more effective for larger
instruction caches. On average, the WIC scheme can in-
crease the base performance by 6.7%, 7.4% and 8.3% for an
instruction cache with 4KB, 8KB and 16KB respectively.
The reason may lie in the fact that a larger instruction cache
can hold more Java binary code that is written directly from
the processor, which is likely to be used later to benefit per-
formance. Interestingly, we also find that a 8KB WIC cache
can achieve performance very close to or even better than
a 16KB instruction cache (without WIC), for instance fft,
xml and db, which demonstrates that WIC can be a cost-
effective approach to boosting instruction cache performance
(i.e. without increasing the cache size).

4.5 Energy Results
We also evaluate the energy consumption of the WIC

Figure 7: Performance Improvement Distribution

scheme by using the DSS simulator [16], which reports the
energy dissipation results based on the Wattch energy model
with all its default parameters [17]. Figure 9 and Figure
10 give the energy consumption and energy-delay product
(EDP) of the processor (including the datapath and the
memory energy dissipation) for the base and WIC schemes,
which are normalized with the energy consumption and EDP
respectively of the base, whose configuration has been shown
in Table 1. As we can see, except edge and compress, there
is improvement of both energy efficiency and energy-delay
product for most of the benchmarks. This is because the
WIC cache can avoid the inefficient binary code writing and
fetching path in a traditional code cache, which can be trans-
lated into energy savings. On average, the WIC scheme re-
duces the energy dissipation by 6%, and reduces the energy-
delay product by 14.5%, indicating that the WIC cache can
benefit both performance and energy for Java programs.

Table 3 gives the energy saving of the L1 instruction cache,
the L1 data cache, and the L2 cache with the WIC scheme,
as compared to the base scheme. As we can see, the WIC
scheme can improve the energy efficiency of all these three
cache memories. Particularly, the L1 instruction cache en-
ergy consumption is reduced because WIC can decrease the
cold instruction misses by storing Java binary code directly
into the L1 instruction cache. The energy efficiency of the
L1 data cache is improved since the WIC scheme can de-
crease the L1 data cache pollution by avoiding writing bi-
nary code directly into the L1-Dcache. Also, we observe
that the L2 energy consumption can be reduce more than

123

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

db
_s

ed
ge fft

he
llo xm

l

co
m

pr
es

s
jes

s

ra
ytr

ac
e db

jav
ac

m
pe

ga
ud

io
jac

k

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

Base-4K Base-8K Base-16K WIC-4K WIC-8K WIC-16K

Figure 8: Execution cycles of the base and WIC
schemes with the L1 I-cache size varying from 4KB
to 8KB and 16KB, which are normalized with the
base with a 4K instruction cache.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

db
_s

ed
ge fft

he
llo xm

l

co
m

pr
es

s
jes

s

ra
ytr

ac
e db

jav
ac

m
pe

ga
ud

io
jac

k

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Base WIC

Figure 9: Normalized energy dissipation of the base
and WIC schemes, which is normalized with respect
to the energy consumption of the base.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

db
_s

ed
ge fft

he
llo xm

l

co
m

pr
es

s
jes

s

ra
ytr

ac
e db

jav
ac

m
pe

ga
ud

io
jac

k

N
or

m
al

iz
ed

 E
ne

rg
y-

D
el

ay
 P

ro
du

ct

Base WIC

Figure 10: Normalized energy-delay product of the
base and WIC schemes, which is normalized with
respect to the energy-delay product of the base.

Benchmark L1-Icache L1-Dcache L2 Cache
db s 3.49% 4.35% 7.54%
edge 0.08% 0.05% 0.17%
fft 10.28% 9.86% 26.09%

hello 2.19% 2.69% 5.03%
xml 8.36% 9.85% 18.96%

compress 0.06% 0.07% 0.25%
jess 2.91% 3.53% 6.30%

raytrace 0.61% 0.76% 1.11%
db 3.45% 4.27% 7.19%

javac 4.18% 4.92% 8.54%
mpegaudio 1.53% 1.47% 4.43%

jack 1.63% 1.57% 3.31%
AVERAGE 3.23% 3.62% 7.41%

Table 3: Energy reduction of the L1 I-cache, L1 D-
cache and L2 cache.

those of L1 caches. The reason is that the WIC cache can
completely remove the cache synchronization involved with
the L2 cache, leading to more significant energy saving.

5. CONCLUSION
This paper explores the hardware-based code cache opti-

mizations for Java applications. We have studied three dif-
ferent schemes to shorten the path of Java binary code gen-
eration and fetching, among which the WIC scheme achieves
the best performance improvement. The WIC cache allows
the Java binary code to be written directly into the instruc-
tion cache, which can both reduce the pollution to the L1
data cache and remove the needs of cache synchronization
due to the dynamically generated binary code. Our exper-
imental results indicate that the WIC cache improves the
performance for a variety of Java applications by 9.6% on
average. Also, WIC can reduce the energy dissipation of
Java programs by 6% on average.

Acknowledgment
This work was funded in part by the NSF grant CNS 0613633.
We would like to thank the anonymous referees for the de-
tailed comments that helped us improve the paper.

124

6. REFERENCES
[1] M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V.

Sarkar, M. J. Serrano, V. C. Sreedhar, H. Srinivasan
and J. Whaley. The Jalapeno dynamic optimizing
compiler for Java. In Proc. of the ACM 1999
Conference on Java Grande, 1999.

[2] K. Hazelwood and M. D. Smith. Generational cache
management of code traces in dynamic optimization
systems. In 36th Annual International Symposium on
Microarchitecture (MICRO), 2003.

[3] K. Hazelwood and J. E. Smith. Exploring code cache
eviction granularities in dynamic optimization
systems. In Proc. of the International Symposium on
Code Generation and Optimization (CGO), 2004.

[4] G. Chen, G. Chen, M. Kandemir, N. Vijaykrishnan
and M. J. Irwin. Energy-aware code cache
management for memory-constrained Java devices. In
Proc. of International Systems-On-Chip (SOC)
Conference, 2003.

[5] A. Smith. Sequential program prefetching in memory
hiearchies. IEEE Computer, 11(2):7-21, 1978.

[6] A. Smith. Cache memories. Computing surveys,
1493):473-530, September 1982.

[7] D. Patterson and J. Hennessy. Computer organization
and design: the hardware/software interface.
Published by Morgan Kaufmann Publishers, 2005.

[8] N.P. Jouppi. Improving direct-mapped cache
performance by the audition of a small
fully-associative cache and prefetch buffers. In Proc. of
the Annual International Symposium on Computer
Architecture, 1990.

[9] A. Aggarwal and S. D. Pudar. Column-associative
caches: a technique for reducing the miss rate of
direct-mapped caches. In Proc. of 20th Annual
International Symposium on Computer Architecture.

[10] J. L. Baer and T. F. Chen. An effective on-chip
pre-loading scheme to reduce data access penalty. In
Proc. of the Supercomputing 1991.

[11] C. Gonzalez, A. Aliagas and M. Valero. Data cache
with multiple caching strategies tuned to different
types of locality. In Proc. of the International
Conference on Supercomputing, July 1995.

[12] V. Milutinovic, M. Tomasevic, B. Markovic and M.
Tremblay. The split temporal/spatial cache: initial
performance analysis. SCIzzL-5, March 1996.

[13] J. A. Rivers and E. S. Davidson. Reducing conflicts in
direct-mapped caches with a temporal locality based
design. In Proc. of the International Conference on
Parallel Processing, August 1996.

[14] F. J. Sanchez, A. Gonzalez and M. Valero. Software
management of selective and dual data caches. IEEE
TCCA Newsletters, March 1997.

[15] Standard Performance Evaluation Corporation.
SPECjvm98 benchmarks.
http://www.spec.org/osg/jvm98.

[16] X. Huang, J. E. B. Moss, K. S. Mckinley, S. Blackburn
and D. Burger. Dynamic SimpleScalar: simulating
Java virtual machines. Technical Report TR-03-03,
University of Texas at Austin, Feb. 2003.

[17] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimization. In Proc. of the 27the Annual
IEEE/ACM International Symposium on Computer
Architecture (ISCA), 2000.

[18] B. Alpern, C. Attanasio, J. J. Barton, M. G. Burke, P.
Cheng, J. Choi, A. Cocchi, S. Fink, D. Grove, M.
Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan and J. Whaley. The Jalapeno virtual
machine. In IBM System Journal. 39, 1, pp. 211-238,
January 2000.

[19] G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan,
M. J. Irwin, and R.Chandramouli. Energy-aware
compilation and execution in Java-enabled mobile
devices. In Proc. of the 17th International Parallel and
Distributed Processing Symposium (IPDPS), April
2003.

[20] M. Debbabi, A. Gherbi, L. Ketari, C. Talhi, H.
Yahyaoui, S. Zhioua and N. Tawbi. E-Bunny: a
dynamic compiler for embedded Java Virtual
Machines. Journal of Object Technology 4(1): 83-108,
2005.

125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

