
Reducing Pressure in Bounded DBT Code Caches

José A. Baiocchi, Bruce R. Childers
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

{baiocchi,childers}@cs.pitt.edu

Jack W. Davidson, Jason D. Hiser
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904, USA

{jwd,hiser}@virginia.edu

ABSTRACT

Dynamic binary translators (DBT) have recently attracted much at-
tention for embedded systems. The effective implementation of
DBT in these systems is challenging due to tight constraints on
memory and performance. A DBT uses a software-managed code
cache to hold blocks of translated code. To minimize overhead,
the code cache is usually large so blocks are translated once and
never discarded. However, an embedded system may lack the re-
sources for a large code cache. This constraint leads to significant
slowdowns due to the retranslation of blocks prematurely discarded
from a small code cache. This paper addresses the problem and
shows how to impose a tight size bound on the code cache without
performance loss. We show that about 70% of the code cache is
consumed by instructions that the DBT introduces for its own pur-
poses. Based on this observation, we propose novel techniques that
reduce the amount of space required by DBT-injected code, leav-
ing more room for actual application code and improving the miss
ratio. We experimentally demonstrate that a bounded code cache
can have performance on-par with an unbounded one.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-purpose and a-
pplication-based systems—Real-time and embedded systems; D.3.4
[Programming Languages]: Processors—Code generation, Com-

pilers, Incremental compilers, Interpreters, Optimization, Run-time

environments

General Terms

Measurement, Performance, Design, Experimentation

Keywords

Dynamic Binary Translation, Code Generation, Footprint Reduc-
tion, System-on-Chip

1. INTRODUCTION
Dynamic Binary Translators (DBT) allow the modification of a

running program for a specific purpose. Recent work has shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

several uses of DBT for embedded systems, including instruction
set translation [5], security [14, 16], power management [18], and
software caching [15, 2], For instance, a DBT can improve perfor-
mance in embedded systems with Flash memory because it pro-
vides a form of incremental loading that requires fewer accesses to
the slow Flash device, rather than loading the whole executable into
main memory (DRAM). Previous work with a DBT for this type of
system has achieved a 1.9x to 2.2x speedup over native execution
[2]. Despite these promising uses, the adoption of DBT for embed-
ded systems has been limited, due to tight constraints on memory
and performance that make the implementation of an efficient DBT
a challenging task.

A DBT commonly uses a software-managed memory buffer (a
“code cache”) to hold translated application instructions. To en-
sure low runtime overhead in general-purpose systems, the code
cache size is usually unbounded to let it grow large enough to hold
an application’s full translated code working set. Thus, application
code is never evicted and there is no need for re-translation due to
premature evictions. When the code cache is unbounded, a DBT’s
performance is partially a function of the number of compulsory

misses. Past work showed that a general-purpose DBT with an un-
bounded code cache has an average performance overhead of just
2% to 4% over native execution on the SPEC benchmarks [12].

Unfortunately, a large, unbounded code cache can easily exceed
the limited capacity of an embedded system’s memory resources
(e.g., if the system has only a small scratchpad memory). As a
result, the performance of a dynamically translated program in such
systems can be poor. The problem is that limiting the size of the
code cache makes it unlikely that the translated code working set
will fit. If it becomes necessary to obtain space for newly translated
code and the code cache is full, some of the existing translated code
must be evicted. When code is evicted, it becomes possible to need
that code again, and capacity misses appear.

Past research for general-purpose systems has examined evic-
tion schemes that effectively decide what code to keep in the code
cache. Even with these techniques, the code cache size can still be
hundreds of kilobytes to a few megabytes [10]. For embedded sys-
tems, compression and pinning can be used to keep needed code in
the code cache [2]. While these approaches are important, they pri-
marily address what code to keep and when to discard it. They do
not tackle the footprint of the translated code, although some work
considers it in a limited way [2, 7, 6]. We show in this paper, the
code inserted by the DBT for its own purposes can easily account
for 70% of the code in the code cache! As a result, it is important
to aggressively minimize this “control code”.

We investigate and develop techniques that reduce the footprint

of the translated code for small, bounded code caches. With a
smaller translated code footprint, there is less pressure on the code

109

Core

L1
D$

Scratchpad

SRAM
ROM

On-chip Communications

Flash
Cntrl

I/O
Cntrl

SDRAM
Cntrl

ASIC

Flash
Storage

External
Memory

SDRAM

Figure 1: Example target embedded system

cache, and its miss ratio is improved. To this end, we categorize the
instructions emitted by a DBT and distinguish those necessary to
carry out the application behavior from those inserted by the DBT
to ensure its control over execution. We measure the relative code
cache space consumed by each category, and identify which as-
pects of the DBT’s “control code” have the largest impact on code
footprint. Then, we develop techniques to minimize it. A reduction
in the code cache space consumed by “control code” leaves more
room for actual application code, which lowers the number of evic-
tions and achieves a significant improvement in performance.

This paper makes the following contributions:

• A classification of the instructions generated by a DBT, used
to characterize the utilization of the code cache. This has
not previously been done because in general-purpose sys-
tems there is less concern about code expansion.

• Experimental evidence of the excessive amount of code in-
serted by the DBT and its negative effect on performance
under the memory constraints of embedded systems.

• Descriptions and implementations of novel techniques for
substantially reducing the space consumed by DBT-injected
code: single-instruction trampolines, factored indirect han-
dling, prologue elimination, and bottom link eliding.

• Comprehensive experimental evaluation of the techniques,
considering different code cache sizes and management ap-
proaches.

The paper is organized as follows: Section 2 provides the frame-
work for our work. Section 3 shows the performance impact of re-
ducing the size of the code cache and Section 4 analyzes the usage
of the code cache, describes and incrementally evaluates different
techniques for reducing the footprint of each instruction category,
choosing the most beneficial. Section 5 gives the overall improve-
ment with the selected techniques. Section 6 describes related work
and Section 7 concludes.

2. FRAMEWORK
We start with a description of the type of embedded system tar-

geted by our study and the operation of a typical DBT.

2.1 Target SoC System
Figure 1 shows a canonical embedded system that has a proces-

sor, L1 data cache (D-cache), an application-specific integrated cir-
cuit (ASIC), on-chip SRAM, a ROM, controllers for external Flash
and main (SDRAM) memories and off-chip I/O channels. The on-
chip SRAM is a scratchpad memory (SPM) that has single-cycle

Application Binary

DBT
Context
Capture

Cache
Mgmnt.

New
PC

Cached?
No

Yes

New
Fragment Overflow?

Yes

No

Fetch
Decode

Translate
Next PC

Context
Switch

Link
Fragment Finished?

Yes

No

Code Cache

Figure 2: DBT system operation

access. The application code executes from SPM. The figure shows
both SDRAM and Flash memories. The SDRAM is main memory
and holds application data. The Flash memory is managed by the
operating system; it holds user files, including application binary
images. In this environment, the DBT is kept in ROM as part of the
system code, and executed from there. The code cache is allocated
to the SPM, which takes advantage of its fast (single-cycle) access
time. This approach is essentially a form of software instruction
caching [15, 2]. A hardware L1 instruction cache is unnecessary
because code executes directly from the SPM.

2.2 Dynamic Binary Translation
Figure 2 shows a high-level view of a typical DBT. The DBT

mediates application execution – it ensures that all untranslated ap-
plication instructions are examined, and possibly modified, prior
to their execution. As a result, the DBT must be invoked when-
ever new application code is requested. New application code is re-
quested when a control transfer instruction (CTI) changes program
flow to an application address that does not have a corresponding
translated address in the code cache. To remain in control, the DBT
rewrites CTIs to “re-enter” it when program flow goes to a new ap-
plication address.

In the most basic mode of operation, the DBT is re-entered when-
ever a CTI is executed. To safely re-enter the translator, the applica-
tion’s context must be saved to free registers for use by the transla-
tor. In essence, a context switch is done to the DBT, which operates
as a co-routine to the application. The translator is notified of the
requested application address and checks whether translated code
already exists for it. If so, the application context is restored and a
jump is made to the translated code. Otherwise, the DBT builds a
new fragment of translated instructions. A fragment is a code re-
gion that is translated as one unit. A hash table, the fragment map,
records information about the new fragment, using the application
address that corresponds to the fragment as a key. During trans-
lation, the code in the fragment is written to the code cache (also
called a fragment cache (F$)). When the DBT finishes, the appli-
cation context is restored and control is transferred to the translated
code (in the F$).

The Fragment Builder is the DBT’s component that fetches, clas-
sifies and translates instructions until a stop condition is met [11].
This condition indicates when to terminate a fragment. It depends
on the type of instruction being processed and the DBT’s region
formation policy. For example, fragments could be terminated at
all CTIs to form dynamic basic blocks.

Trampolines are portions of code emitted into the F$ to return

110

control to the DBT for translating a new address. To reduce over-
head from context switches, when a new fragment is created, all di-
rect control transfers that would have requested its translation can
be “linked” to it. That is, when the target code materializes in the
F$, the trampolines are replaced by a direct control transfer to the
target code [3]. The DBT’s Fragment Linker is responsible for this
task. It records trampolines and their target application addresses
so they can be “fixed up” immediately after the pending application
address is requested and translated. Indirect jumps and returns can-
not be directly linked because their targets change as the program
executes. In this case, to keep the execution in the F$, a separate
mechanism, called the Indirect Branch Target Cache [12] is em-
ployed to map target application addresses to their corresponding
translated addresses.

When a F$ is too small and cannot hold the full translated code
working set of the program, it eventually overflows. Code cache

management techniques are employed to handle this problem [3, 9,
10]. These solutions evict some or all translated blocks from the F$
to make room for new code, preemptively or on-demand. However,
they are likely to increase the F$ miss rate because evicted code
may be requested again and retranslated. The performance penalty
due to retranslation can be high, especially in embedded systems
where the binary image resides on slow Flash memory [2].

This paper investigates how the footprint of the translated code
can be reduced so that it fits in the F$. With less pressure on the
valuable F$ space, there will be fewer evictions and a better miss
rate. Thus, less code will be re-fetched and re-translated, leading
to better overall performance.

3. IMPACT OF MEMORY CONSTRAINT
To understand the effect of bounding the F$ to a small size, as in

an embedded system with limited memory, we studied the perfor-
mance of small fragment caches without our techniques to reduce
code footprint. The F$ is constrained to the available SPM size.

3.1 Experimental Methodology
For this study, we used the Strata [17], a publicly available DBT.

Strata was retargeted to SimpleScalar/PISA [1] and modified to in-
clude the techniques in this paper. Our experiments use the pro-
grams from MiBench [8] that SimpleScalar can execute1, with the
large input data sets.

We extended SimpleScalar’s out-of-order simulator with Flash
and SPM. We use the configuration shown in Table 1, which mod-
els the Marvell 624MHz XScale PXA-270 SoC, augmented with
SPM, SDRAM and NOR Flash [13]. This processor is used in de-
vices such as the Dell Axim Pocket PC. The Flash latencies were
measured on a Dell Axim x50v with NOR Flash and a 8192-byte
file buffer. It takes Windows Mobile Edition 5, 1.6 ms to fetch a
block and 67,000 ns per word to read from the block. To facil-
itate experimentation, PISA uses a 64-bit instruction word; how-
ever, embedded processors use 16-bit or 32-bit instructions, so we
double the SPM size for the simulations. We refer to the smaller
effective size (e.g., a 32KB SPM is simulated with 64KB).

3.2 Performance of Small Fragment Caches
We study the effect of bounding the size of the F$ when running

the MiBench programs under Strata’s control. Strata was config-
ured to always stop fragment formation when a control transfer
instruction (CTI) is found, making the fragments Dynamic Basic

1
mad, ispell, rsynth, and sphinx don’t run due to library

and system call incompatibility with SimpleScalar.

Processor (XScale PXA-270 624Mhz)
fetch:ifqsize 8 issue:width 2

fetch:mplat 3 res:ialu 1

fetch:speed 1 res:imult 1

bpred bimod res:fpalu 1

bpred:bimod 128 res:fpmult 1

bpred:btb 512 4 res:memport 1

decode:width 1 lsq:size 4

issue:inorder true ruu:size 4

issue:wrongpath true commit:width 2

Memory System
tlb:dtlb 1:4096:32:f scratchpad:lat 1

tlb:itlb 1:8192:32:f tlb:lat 30

cache:il1 none cache:dl1lat 1

cache:dl1 32:32:32:f mem:width 8

cache:il2 none mem:lat 60 12

cache:dl2 none flash:lat 900K 42K

Table 1: SimpleScalar Configuration

Blocks (DBB). This configuration minimizes code duplication and
is appropiate when memory is limited.

To avoid expensive context switches, Strata uses fragment link-

ing and provides several techniques for handling indirects [12]. We
chose a shared IBTC because it was determined to be the most use-
ful technique across platforms [12]. PISA returns (jr $ra) are
treated as indirects.

Performance results are reported for three F$ sizes normalized
to the execution of a program under Strata’s control with an un-
bounded F$. The unbounded F$ baseline represents the “ideal”
performance if no constraint was placed on the F$ size – this con-
figuration has no capacity misses and clearly illustrates the impact
of a constraint.

Limiting the F$ size requires of code cache management to han-
dle overflow events. We employed two techniques, FLUSH and
FIFO, which are at opposite ends of the spectrum of eviction granu-
larities and performance cost [10]. They illustrate the independence
of our footprint reduction techniques from the eviction scheme.
FLUSH is a low-overhead, coarse-grained technique that handles
an overflow by evicting the whole contents of the code cache, which
the DBT must translate again [3]. FIFO is a fine-grained technique
that evicts only the least recently created fragment(s); it treats the
code cache as a circular buffer [9]. FIFO has a better miss rate than
FLUSH and avoids internal fragmentation.

Strata allocates fragments and trampolines interleaved in the F$.
When a CTI is translated and its target is already in the F$, the
generation of a trampoline can be avoided by emitting a CTI to
the target fragment. This saves space with an unbounded F$ or
when FLUSH is used. When using FIFO, space must be reserved
to change the CTI into a trampoline when the target fragment is
evicted.

Figure 3 shows the performance of the MiBench programs rel-
ative to the unbounded F$ baseline. For 64K and 32K F$ using
FLUSH, some benchmarks (adpcm.enc/dec, crc, blowfish.enc/dec,
bitcount) have similar performance as the unbounded baseline when
the working set fits in the F$. However, with FIFO, all benchmarks
have at least some slowdown. This slowdown is due to the effort
of always generating trampolines and unlinking them on eviction,
which increases both code size and frequency of evictions.

As the size of the F$ is reduced and F$ pressure is increased,
performance suffers. Some benchmarks have considerable slow-
downs with both FLUSH and FIFO. For instance, fft practically
fits in a 64K F$; it has no slowdown with FLUSH and only 3%
with FIFO. When running with a 32K F$, its slowdowns are 3.22x
(FLUSH) and 12.9x (FIFO). However, a 16K F$ has slowdowns
of 3418.97x (FLUSH) and 2846.71x (FIFO)! For patricia, signifi-

111

 0

 1

 10

 100

 1000

10000

S
lo

w
d
o
w

n
 (

F
L
U

S
H

)
FC64K FC32K FC16K

a
d
p
cm

.d
e
c

a
d
p
cm

.e
n
c

b
a
si

cm
a
th

b
itc

o
u
n
t

b
lo

w
fis

h
.d

e
c

b
lo

w
fis

h
.e

n
c

cr
c

d
ijk

st
ra ff

t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.d
e
c

g
sm

.e
n
c

jp
e
g
.d

e
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

q
so

rt

ri
jn

d
a
e
l.d

e
c

ri
jn

d
a
e
l.e

n
c

sh
a

st
ri
n
g
se

a
rc

h
su

sa
n
.c

o
r

su
sa

n
.e

d
g

su
sa

n
.s

m
o

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

ty
p
e
se

t

A
ve

ra
g
e

 0

 1

 10

 100

 1000

10000

S
lo

w
d
o
w

n
 (

F
IF

O
)

Figure 3: Initial performance relative to unbounded F$

cant slowdowns occur even with a 64K F$: 47.83x (FLUSH) and
62.25x (FIFO). The situation is especially bad for 16K: 4779.03x
(FLUSH) and 4416.92x (FIFO)!

Different F$ sizes favor FIFO or FLUSH. fft does better with
FLUSH in 32K F$, and better with FIFO in 16K F$. patricia

prefers FLUSH for 64K F$ and FIFO for 32K and 16K F$. As F$
pressure increases, FIFO eventually performs better than FLUSH,
but the inflexion point depends on the benchmark.

These results show that high F$ pressure leads to poor perfor-
mance. Thus, we aim to reduce the size of the translated code so
the pressure on the F$ is reduced. In this way, it can hold more
fragments for a longer time before eviction. This approach is inde-
pendent of the eviction policy – it will help either policy do better.

4. REDUCING TRANSLATED CODE SIZE
To find opportunities to reduce the translated code footprint, we

analyzed the composition of the code emitted by the DBT into the
F$. In general-purpose systems this type of analysis is rarely made,
because there are looser constraints on F$ size and there is also per-
formance benefit from code expansion when the F$ is unbounded
[3, 11]. However, in embedded systems with limited code cache
space, it is important to improve the utilization of the F$. The
F$ should hold instructions that advance program execution rather
than those inserted to transfer control back to the DBT.

4.1 Instruction Categories
We classify the instructions put into the F$ according to their pur-

pose. The instruction categories are illustrated in Figure 4, which
shows an example of untranslated code (leftside) and its corre-
sponding translated code (rightside).

Prologue instructions are executed to complete the context re-
store when returning from the DBT to the translated code. In PISA,
the control transfer to the fragment is done with an indirect jump
(see exec routine), which needs a free register. The register must
be restored at the target fragment. All fragments in Figure 4 (F1,
F2, F4) have the prologue: lw $ra,ra_ofs($sp).

Native instructions are copied unmodified from the binary to
the F$ or translated for some purpose. In Figure 4, fragment F1
contains a series of native instructions (labelled “Native”).

Trampoline instructions are used to return control to the DBT

L1: xxx $rx,$ry,$rz

...

beq $t0,$t1,L2

...

L2: xxx $rx,$ry,$rz

...

jal L4

L3: xxx $rx,$ry,$rz

...

L4: xxx $rx,$ry,$rz

...

jr $ra

(a) Binary

reenter://ctxt save

sw $ra,ra_ofs($sp)

sw $at,at_ofs($sp)

...

jal builder

...

exec://ctxt restore

...

lw $a1,a1_ofs($sp)

lw $a0,a0_ofs($sp)

jr $ra #to frag

(b) Translator

F1 : //L1

lw $ra,ra_ofs($sp) /∗Prologue∗/
F1t: xxx $rx,$ry,$rz /∗Native∗/

...

beq $t0,$t1,T1bF2t

T1a: sw $a0,a0_ofs($sp) /∗Trampoline∗/
...

j reenter

T1b: sw $a0,a0_ofs($sp) /∗Trampoline∗/
lui $a0,HI(L2)

ori $a0,$a0,LO(L2)

...

j reenter

F2 : //L2

lw $ra,ra_ofs($sp) /∗Prologue∗/
F2t: ...

lui $ra,HI(L3) /∗Call Emul.∗/
ori $ra,$ra,LO(L3)

j F4t /∗Link∗/
F4 : //L4

lw $ra,ra_ofs($sp) /∗Prologue∗/
F4t: ...

sw $a0,a0_ofs($sp) /∗Indir.Handl.∗/
add $a0,$z0,$ra

...

j reenter

(c) Fragment Cache (F$)

Figure 4: Example fragments with instruction categories

when a CTI’s target address is untranslated. Fragment F1 has tram-
polines at T1a and T1b, corresponding to the branch’s taken and
not-taken application addresses, which are initially untranslated.
After F1 is executed, and the branch is taken, control returns to
the DBT (see reenter routine). After the DBT creates the target
fragment F2, the branch in F1 is redirected to F2t, skipping the
prologue. If the branch is taken again, execution stays in the F$.

Call emulation instructions are the result of translating proce-
dure calls. Since a translation corresponding to the return applica-
tion address may not exist or could be evicted before the translated
program returns from the procedure, call emulation instructions ex-
plicitly set the return location as the original application return ad-
dress. When the return happens, it is handled as an indirect branch.
Call emulation instructions can be seen in fragment F2.

Link instructions transfer control to the translated target of a
direct CTI. Trampoline instructions are overwritten to become link

112

 0
 64
 128
 192
 256
 320
 384
 448
 512
 576
 640
 704

K
ilo

b
y
te

s
Native CallEmu Prol Indir Tramp Link

a
d
p
cm

.d
e
c

a
d
p
cm

.e
n
c

b
a
si

cm
a
th

b
itc

o
u
n
t

b
lo

w
fis

h
.d

e
c

b
lo

w
fis

h
.e

n
c

cr
c

d
ijk

st
ra ff

t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.d
e
c

g
sm

.e
n
c

jp
e
g
.d

e
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

q
so

rt

ri
jn

d
a
e
l.d

e
c

ri
jn

d
a
e
l.e

n
c

sh
a

st
ri
n
g
se

a
rc

h
su

sa
n
.c

o
r

su
sa

n
.e

d
g

su
sa

n
.s

m
o

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

ty
p
e
se

t 0

 16

 32

 48

 64

K
ilo

b
y
te

s

Figure 5: Translated code size for an unbounded F$ (different scales for clarity)

instructions when previously unseen application code is translated.
The link instructions go to the location after the target fragment’s
prologue. A link instruction (j F4t) can be seen in fragment F2
that transfers control to fragment F4, skipping the prologue.

Indirect handling instructions are emitted when an indirect
CTI is translated. This code tries to map the application address
in the target register to an existing F$ address. If the target appli-
cation address is untranslated, the DBT is re-entered. Fragment F4
ends with indirect handling code.

The native and call emulation instructions are the ones that ad-
vance program execution. The rest are “control code” introduced
by the DBT to remain in control and ensure that untranslated code
is processed prior to its execution.

4.2 Initial Generated Code Composition
We investigated how much of the code in the F$ corresponds

to each instruction category. Figure 5 shows the amount of code
generated per benchmark for each instruction category for an un-
bounded F$. When compared to Figure 3, the benchmarks without
performance loss are those whose total amount of translated code
fits in the bounded F$, such as adpcm.enc/dec and stringsearch for
64K and 32K.

The amount of code generated for some benchmarks greatly ex-
ceeds the capacity of the bounded F$ (e.g., ghostscript and type-

set), even when considering only the native and call emulation cat-
egories. It is unlikely that such benchmarks ever run in a F$ size ≤
64K without a considerable performance loss.

For several benchmarks, however, the native and call emula-
tion instructions add to less than 64K (or even 32K and 16K). For
instance, in basicmath and patricia, these two categories sum to
less than 24K, with the rest of the code being control code. Nev-
ertheless, these benchmarks suffer significant slowdowns with a
bounded F$, as seen in Figure 3. Thus, they could benefit from
a reduction in the amount of control code.

Figure 6 shows the relative utilization of the F$ by each instruc-
tion category for benchmarks that suffer at least a 50% slowdown
for a 32K F$ with FLUSH (top) and FIFO (bottom). On average,
native instructions account for less than 30% of the generated code:
27.42% with FLUSH and 26.07% with FIFO. Trampoline instruc-
tions are the largest consumer of F$ space, averaging 57.56% with
FLUSH and 60.26% with FIFO (due to eviction preparation). Code
used to handle indirect branches averages 7.27% with FLUSH and
6.86% with FIFO. Prologue code averages 5.56% for FLUSH and

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
L
U

S
H

)

Native CallEmu Prol Indir Tramp Link

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t

A
ve

ra
g
e

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
IF

O
)

Figure 6: Initial relative F$-32K usage

5.28% for FIFO. Call emulation averages 1.58% for FLUSH and
1.53% for FIFO. Links average 0.6% with FLUSH and 0% with
FIFO because we do not count links when they overwrite trampo-
lines. For brevity, experimental results in the rest of this section are
shown for the benchmarks in Figure 6 for a 32KB F$. In the final
results, presented later, we show all the benchmarks with 16K, 32K
and 64K F$ sizes with FLUSH and FIFO.

We now describe and evaluate our techniques to minimize the
footprint of instructions in each “control code” category. The aim
is to reduce the size of the generated code and improve the uti-
lization of the F$ in favor of native instructions. Our experimental
configuration forms DBBs, but larger code regions [11] can also be
characterized in this manner. The total amount of code generated in
such cases will be larger, due to duplication and speculation, but the
percentage of “control code” should be similar and the miss ratio
and performance improvements could be even better. We start re-
ducing trampoline code, as it is the greatest consumer of F$ space.

4.3 Direct Branch Trampolines
The design of a trampoline is guided by the target architecture

and the internal design of the DBT. Trampolines help perform a
context switch to the DBT. The number of instructions required
by a context switch depends on the target architecture (e.g., 22 on
SPARC, 78-84 on MIPS and 10 on x86 [17]). To avoid unnece-

113

.fcache

//builder(to_PC,frag)

Tr:sw $a0,a0_ofs($sp)

sw $a1,a1_ofs($sp)

lui $a0,HI(to_PC)

ori $a0,$a0,LO(to_PC)

lui $a1,HI(&frag)

ori $a1,$a1,LO(&frag)

j reenter

(a) 2-Argument

.fcache

//builder(link)

Tr:sw $a0,a0_ofs($sp)

lui $a0,HI(&link)

ori $a0,$a0,LO(&link)

j reenter

.datamem

//linker record

link: to_PC &frag

(b) 1-Argument

.fcache

//builder(link)

Tr:sw $ra,ra_ofs($sp)

jal reenter

&link

.translator

reenter:

sw $a0_ofs($sp)

lw $a0,0($ra)

...

(c) Contiguous Data

.fcache

//builder(Tr)

Tr:sw $ra,ra_ofs($sp)

jal reenter

.datamem

//trampoline map

tramp:Tr &link

(d) Mapped Data

.fcache

//after $ra def.

lui $t0,HI(&shra)

ori $t0,$t0,LO(&shra)

sw $ra,0($t0)

...

//builder(Tr)

Tr:jal reenter

.translator

reenter:

...

lui $t0,HI(&shra)

ori $t0,$t0,LO(&shra)

lw $ra,0($t0)

sw $ra,ra_ofs($sp)

...

(e) Shadow Link Register

Figure 7: Trampoline design choices

sary F$ pressure, most context save instructions on Strata/PISA are
factored into a single “re-entrance routine” (the entry point to the
fragment builder). Each trampoline needs only to perform a partial
context save before jumping to the re-entrance routine. This ap-
proach is natural for a small, bounded F$. However, there are other
unique opportunities to reduce the size of the trampoline. We con-
sider the alternative designs shown in Figure 7. They are ordered
by trampoline size. A code reduction is achieved by moving the in-
formation associated with the trampoline into data memory to free
F$ space, which increases the execution cost of the trampoline.

Design (a), “2-argument”, is the one used in Strata by default.
The trampoline conveys two pieces of information to the builder:
the application address to translate and a pointer to the fragment
map entry associated with the fragment invoking the DBT. Both ar-
guments depend on the trampoline and are set by it. A partial con-
text save is needed to free the argument registers before setting the
values and jumping to the re-entrance routine. With this approach
the builder is accessed with the necessary arguments directly after
the context save, trading F$ space for a smaller dynamic instruction
count.

Design (b), “1-argument”, exploits the fact that the fragment
linker also records the target address and source fragment of each
trampoline. It passes to the builder only a pointer to the appropri-
ate link record (&link). This approach uses less instructions in
the F$ but needs an extra step to enter the translator; i.e., to retrieve
the trampoline information from data memory.

On many architectures, loading a constant pointer takes more
than one instruction. Instead, design (c), “contiguous data”, stores
the link record pointer (as data) in the instruction slot immediately
after the trampoline. A jump-and-link (jal) instruction is then

 0

 1

 10

 100

 1000

10000

S
lo

w
d
o
w

n
 (

F
L
U

S
H

)

2-Args 1-Arg Cont-Data Map-Data ShadowLR

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t 0

 1

 10

 100

 1000

10000

S
lo

w
d
o
w

n
 (

F
IF

O
)

Figure 8: Performance of trampoline designs

used to access the re-entrance routine, which sets the argument
using a load relative to the value in the link register ($ra). The
tradeoff is saving one instruction but polluting the data cache with
trampoline data mixed with code.

This pollution can be avoided by storing the trampoline data in
main memory, which saves more F$ space. For this purpose, a hash
table indexed by trampoline address is used to store and recover
the trampoline data. Design (d), “mapped data”, implements this
approach. It trades data memory (an extra hash table) for F$ space,
and requires a hash lookup on re-entering the builder.

Instead of spilling the link register in every trampoline before
overwriting its value (with the jump-and-link), Design (e), “shadow
link register” (SLR), can be used. This approach requires the DBT
to identify the instructions that change the value of $ra and in-
sert code to update the value of a shadow variable (shra). Then,
trampolines can safely overwrite $ra since the re-entrance routine
uses the value in shra to perform the context save. The tradeoff
is that if the application code changes the value of $ra too often,
the translated code size could be increased. Fortunately, $ra is
typically defined only when a non-leaf procedure passes the return
address to a callee and when it recovers its own return address from
the stack. Because the number of calls and returns from non-leaf
procedures is usually smaller than the number of CTIs in need of a
trampoline, this technique can be very effective.

Evaluation

Figure 8 shows the performance of the benchmarks for a 32K F$
relative to an unbounded F$. For some benchmarks, the initial gain
obtained with “1-Argument” is significant: basicmath goes from
46x slowdown with FLUSH and 514x slowdown with FIFO to just
1.26x and 1.35x! Once close to the ideal, the improvements are
less impressive: fft goes from initial slowdowns of 3.2x and 12.9x
with FLUSH and FIFO to 1.06x and 1.03x for “1-Argument”. The
other designs do not achieve further improvement. In benchmarks
with high F$ pressure, the effect is progressive: ghostscript has
slowdowns of 28.6x (2-Arg), 18.5x (1-Arg), 17.4x (Cont.Data),
16.4x (Map.Data) and 15.7x (ShadowLR) with FLUSH. patricia

has slowdowns of 68x with FLUSH and 53x with FIFO when using
SLR. However, the other designs have slowdowns beyond 1000x.
The greatest improvement overall is achieved with SLR.

Figure 9 shows the 32K F$ utilization after applying “Shadow
Link Register”. With both FLUSH and FIFO, native instructions
now account for 58.8% of the F$ on average, while trampoline

114

 0%

 25%

 50%

 75%

100%
%

 F
$
 (

F
L
U

S
H

)
Native CallEmu Prol Indir Tramp Link LRSync

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t

A
ve

ra
g
e

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
IF

O
)

Figure 9: Relative F$-32K usage after Shadow LR

instructions are reduced to an average of 12.18% (FLUSH) and
13.42% (FIFO). We introduce a new category (“LR Sync”) to ac-
count for the code introduced to update the shadow variable; it aver-
ages 4.74% with FLUSH and 4.68% with FIFO. From these results
we conclude that when F$ pressure is high, even a small reduction
in trampoline size has a dramatic effect on performance due to im-
proved F$-32K usage. Since “Shadow Link Register” (SLR) has
the best overall performance, we use it in the rest of the paper.

4.4 Indirect Branch Handling
After reducing trampoline size, indirect branches become a more

important source of F$ pressure. In Figure 9, the amount of code
generated for indirect branch handling is about the same as trampo-
line code: 12.4% on average for both FLUSH and FIFO. We now
show how to minimize the indirect branch handling code.

An indirect CTI (branch, call or return) may have multiple run-
time targets, so it can not be directly linked. On the other hand, do-
ing a context switch to let the DBT find the translated target every
time the indirect is executed degrades performance. The context
switch should ideally occur only if the application target address
does not have a corresponding translation in the F$. Several mech-
anisms have been proposed to map the original application address
to a translated address without leaving the F$, saving the cost of a
full context-switch. Past work has shown that the most useful tech-
nique across platforms is the Indirect Branch Table Cache (IBTC)
[12]. The IBTC is a small, direct-mapped table that associates in-
direct branch target addresses to their F$ locations. It is allocated
in main memory and does not consume F$ space.

For every indirect CTI, code is generated in the F$ to access the
IBTC, as shown in Figure 10(a). The code first spills registers to
safely do hash table computations. The table lookup is done next.
If a match is found (a “hit”), the IBTC holds a corresponding F$ ad-
dress. On a hit, the registers, except $ra, are restored. $ra is used
to jump to the target fragment and is restored by that fragment’s
prologue. If no match is found (a “miss”), the DBT is entered.

Emitting an IBTC lookup in every fragment (ending with an in-
direct) puts extra pressure on the F$. Our approach trades dynamic
instruction count for more compact code with a single “Out-Of-
Line IBTC Lookup” (OOL-Lookup) as shown in Figure 10(b). The
shared out-of-line lookup code is similar to a function call – argu-
ments are passed to the code to indicate the requested application
address and a pointer to the fragment map’s record of the fragment
with the indirect branch (to pass to the builder on a miss).

An equivalent of the “contiguous data” trampoline for indirects

.fcache

//for each indirect

sw $a0,a0_ofs($sp)

sw $a1,a1_ofs($sp)

sw $ra,ra_ofs($sp)

add $a0,$z0,$rt

lkup: //$ra = &table

//$a1 = hash($a0)

//$ra = $ra[$a1]

lw $a1,PC_ofs($ra)

bne $a1,$a0,miss

hit: lw $ra,FPC_ofs($ra)

lw $a0,a0_ofs($sp)

lw $a1,a1_ofs($sp)

jr $ra

miss: lui $a1,HI(&frag)

ori $a1,$a1,LO(&frag)

j reenter_ibtc

(a)Inline IBTC Lookup

.fcache

//for each indirect

sw $a0,a0_ofs($sp)

sw $a1,a1_ofs($sp)

add $a0,$z0,$rt

lui $a1,HI(&frag)

ori $a1,$a1,LO(&frag)

j lkup

//shared by all indirects

lkup: sw $ra,ra_ofs($sp)

sw $a1,at_ofs($sp)

//$ra = &table

//$a1 = hash($a0)

...

miss: lw $a1,at_ofs($sp)

j reenter_ibtc

(b) Out-of-line IBTC Lookup

.fcache

//for each indirect

sw $ra,ra_ofs($sp)

sw $a0,a0_ofs($sp)

add $a0,$z0,$rt

jal lkup

&frag

//shared by all indirects

lkup: sw $a1,a1_ofs($sp)

lw $a1,0($ra)

sw $a1,at_ofs($sp)

//$ra = &table

//$a1 = hash($a0)

...

miss: lw $a1,at_ofs($sp)

j reenter_ibtc

(c) Contiguous Data Indirect

.fcache

//for each indirect

sw $ra,ra_ofs($sp)

jal l$rt

&frag

//shared by $rt-indirects

l$rt: sw $a0,a0_ofs($sp)

add $a0,$z0,$rt

j lkup

//shared by returns

l$ra: sw $a0,a0_ofs($sp)

lw $a0,ra_ofs($sp)

//shared by all indirects

lkup: sw $a1,a1_ofs($sp)

lw $a1,0($ra)

...

(d) Shared Target Register Copies

Figure 10: Indirect branch handling with an IBTC

can also be implemented, as shown in Figure 10(c). The “contigu-
ous data indirect” uses a jump-and-link (jal) instruction to access
the out-of-line IBTC lookup. The address of the requesting frag-
ment’s record is put in the instruction slot after the jal. In the
lookup code, the value in the link register ($ra) is used to load that
pointer into the appropriate register.

The out-of-line IBTC lookup code uses a fixed argument regis-
ter ($a0) for the target application address. To do a lookup, the
register ($rt) that contains the address must be copied to the argu-
ment register. For further gain, our approach, called “Shared Target
Register Copies” (STRC), shares the code that performs this copy
among all indirects that use the same register. As shown in Fig-
ure 10(d), the code generated for each indirect spills $ra and uses
a jal to go to an entry point in the out-of-line shared code that
depends on the target register ($rt) used. For each unique $rt,
a single transfer routine spills the argument register ($a0), copies
$rt to $a0 and jumps to the IBTC lookup code. The transfer
routines are emitted on-demand as new indirect target registers are
discovered by the DBT.

Evaluation

Figure 11 shows the performance of the benchmarks with the dif-
ferent IBTC lookups. patricia has the greatest improvement: with
FLUSH, the slowdown of 68x after SLR is reduced to 1.87x (OOL-
Lookup), 1.31x (cont.data) and 1.23x (STRC). ghostscript shows
more steady slowdown reductions: with FLUSH, from 15.7x af-
ter SLR to 14.37x (OOL-Lookup), 14.16x (cont.data) and 13.47

115

 0

 1

 10

 100

 1000

S
lo

w
d
o
w

n
 (

F
L
U

S
H

)
ShadowLR OOL-Lookup Cont-Data STRC

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t 0

 1

 10

 100

 1000

S
lo

w
d
o
w

n
 (

F
IF

O
)

Figure 11: Performance of IBTC lookups

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
L
U

S
H

)

Native CallEmu Prol Indir Tramp Link LRSync

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t

A
ve

ra
g
e

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
IF

O
)

Figure 12: Relative F$-32K usage after STRC

(STRC). FIFO has similar trends. The benchmarks that already
fit, however, suffer some degradation due to the increased number
of jumps: basicmath goes from 5% overhead after SLR to 8%
(OOL-Lookup), 7% (cont.data) and 8% (STRC) with both FLUSH
and FIFO.

Figure 12 shows the 32K F$ utilization after applying “Shared
TR Copies”. With both FLUSH and FIFO, native instructions now
account for 68.8% of the F$ (an increase of 10% after using only
SLR), while indirect handling code is reduced to an average of
2.35% with FLUSH and 2.27% with FIFO. In the rest of the pa-
per, we use “Shared Target Register Copies” (STRC) because it
achieves the greatest improvement.

4.5 Prologue Elimination
After reducing the indirect branch handling code, fragment pro-

logue instructions now account for an average 9% of the F$. In
Strata/PISA, the fragment prologue restores the link register ($ra),
used to transfer control to the fragment from the DBT with an in-
direct jump (as shown in Figure 13(a)). On an IBTC hit, restoring
that register is also left to the fragment.

The indirect jump can be eliminated by rewriting a direct jump.
This approach, which we call “Self-Modifying Control Transfer”
(SMCT), is illustrated in Figure 13(b). As shown, instead of end-
ing with an indirect jump, the routine that returns control to the F$
rewrites its last instruction to be a direct jump to the target frag-

.translator

exec: //$a0==Fx

add $ra,$z0,$a0

rest: //ctxt restore

addiu $sp,$sp,+SIZE

...

lw $a1,a1_ofs($sp)

lw $a0,a0_ofs($sp)

j $ra

.fcache

Fx://target fragment

lw $ra,ra_ofs($sp)

xxx $rx,$ry,$rz

...

(a) Original

.fcache

sm_exec: #$a0==Fx

//$a0 = [j Fx]

lui $ra,HI(Jx)

ori $ra,LO(Jx)

sw $a0,0($ra)

jal rest

lw $ra,ra_ofs($sp)

Jx: j ????

Fx://target fragment

xxx $rx,$ry,$rz

...

(b) Self-Modifying

Figure 13: Control transfer to fragment

 0

 1

 10

 100

 1000

S
lo

w
d
o
w

n
 (

F
L
U

S
H

)

STRC SMCT BJE

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t 0

 1

 10

 100

 1000
S

lo
w

d
o
w

n
 (

F
IF

O
)

Figure 14: Performance with SMCS and BJE

ment. In systems with instruction and data caches, self-modifying
code requires synchronization between the caches. Depending on
architectural details, this operation can be expensive since it may
require flushing a cache line or the entire instruction cache. How-
ever, in many embedded designs with SPM, the SPM addresses are
not cached and a data write is immediately sent to the SPM. As
a result, synchronization is not needed and self-modifying code is
inexpensive. Because Strata is in ROM, our implementation ini-
tially emits a “return routine” into the F$ on start-up. This routine
transfers control from the DBT to the F$, by rewriting the jump at
the end as described above. The code for an IBTC hit must also be
modified to work with self-modifying code: to go to the target frag-
ment, a direct jump is overwritten with the target fragment address
found in the IBTC.

After eliminating the prologue, it does not have to be skipped
when fragments are linked. Now, when the last instruction in a
fragment transfers control to the fragment immediately after it, we
can elide that jump. “Bottom Jump Eliding” (BJE) implements this
idea.

Evaluation

Figure 14 shows the performance of the benchmarks with both
SMCT and BJE. High-pressure benchmarks have significant im-
provements: ghostscript for FLUSH goes from a 13.47x slowdown
(STRC) to 10.88x with SMCT and 8.18x with BJE. With FIFO it
goes from 9.93x (STRC) to 7.68x (SMCT) and 5.8x (BJE). In some

116

 0.00

 0.25

 0.50

 0.75

 1.00

 1.25

 1.50

 1.75

 2.00

S
lo

w
d
o
w

n
 (

F
L
U

S
H

)

 6
6
1
.0

4
4
4
9
.2

 1
9
1
.7

FC64K FC32K FC16K

a
d
p
cm

.d
e
c

a
d
p
cm

.e
n
c

b
a
si

cm
a
th

b
itc

o
u
n
t

b
lo

w
fis

h
.d

e
c

b
lo

w
fis

h
.e

n
c

cr
c

d
ijk

st
ra ff

t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.d
e
c

g
sm

.e
n
c

jp
e
g
.d

e
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

q
so

rt

ri
jn

d
a
e
l.d

e
c

ri
jn

d
a
e
l.e

n
c

sh
a

st
ri
n
g
se

a
rc

h
su

sa
n
.c

o
r

su
sa

n
.e

d
g

su
sa

n
.s

m
o

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

ty
p
e
se

t

A
ve

ra
g
e

 0.00

 0.25

 0.50

 0.75

 1.00

 1.25

 1.50

 1.75

 2.00

S
lo

w
d
o
w

n
 (

F
IF

O
)

 5
7
2
.4

4
1
7
2
.1

Figure 16: Final performance normalized to unbounded F$

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
L
U

S
H

)

Native CallEmu Prol Indir Tramp Link LRSync

b
a
si

cm
a
th ff
t

ff
t.
in

v

g
h
o
st

sc
ri
p
t

g
sm

.e
n
c

jp
e
g
.e

n
c

la
m

e

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

tif
fd

ith
e
r

ty
p
e
se

t

A
ve

ra
g
e

 0%

 25%

 50%

 75%

100%

%
 F

$
 (

F
IF

O
)

Figure 15: Relative F$-32K usage after BJE

benchmarks, SMCT increases the slowdown and BJE reduces it
again. This is the case with pgp.encode with FLUSH. It has a 1.98x
slowdown after STRC, which increases to 2.04x after SMCT. With
BJE, it goes to 1.63x.

Figure 15 shows the F$ distribution after BJE. In this case, the
replaced links are discounted and the prologue has been eliminated,
leaving more room for native instructions. They now average 83%
(FLUSH) and 81.7% (FIFO). For the final results, we use the “self-
modifying control transfer” and “bottom jump eliding”, since this
combination has the better performance impact.

5. OVERALL RESULT
Figure 16 shows the slowdowns of all benchmarks after apply-

ing the techniques in this paper. The results are normalized to the
initial unbounded F$. Our techniques achieve significant improve-
ments when the translated code working set did not fit initially in
the F$ due to excessive DBT control code. For example, basicmath

initially had a 4983.96x slowdown for a 16K F$ and 46x in a 32K
F$ with FLUSH. After applying our techniques, the overhead for
both sizes was reduced to only 5%. This final overhead is the same
for a 64K F$. However, it initially was only 1%, indicating a per-
formance cost associated with our techniques that is not amortized

when the code fits in the F$. patricia has an impressive improve-
ment. For a 32K F$ with FLUSH: its initial slowdown of 4769.5x
is reduced to 1.07x. With FIFO, the initial slowdown in 32K F$
was 4159x, but our techniques reduce it to 1.04x. The performance
is nearly equivalent (within 7% for FLUSH and 4% for FIFO) to
the ideal case of an unbounded F$. dijkstra is another example
where our techniques make the final performance equivalent to the
unbounded F$, after an initial 20.33x slowdown.

Although our techniques improve performance, there are situa-
tions where the slowdowns can not be overcome. In a 16K F$ with
FIFO, the initial slowdown of 4416.92x for patricia is reduced to
only 4172.06x. Our techniques help somewhat, but can not fully
overcome the performance degradation when the application work-
ing code set does not fit.

Our techniques reduce code size and lead to a performance im-
provement regardless of the F$ management technique. The ini-
tial average slowdowns for FLUSH of 10x (64KB) is reduced to
1.21x, the slowdown of 184.88x (32KB) is reduced to 6.99x and the
slowdown of 643.28x (16KB) is reduced to 171.98x (16KB). For
FIFO, the average slowdowns of 9.35x (64KB), 176.96x (32KB),
and 433.72x (16KB) are reduced to 1.15x (64KB), 6.09x (32KB)
and 158.51x (16KB).

6. RELATED WORK
Several studies address the management of bounded software

code caches. For general-purpose systems, Bala et al. propose pre-
emptively flushing the trace cache of a dynamic optimizer when de-
tecting program phase changes [3]. Bruening and Amarasinghe de-
velop methods for maintaining the consistency of the code cache in
the presence of self-modifying code and for dynamically increasing
the size of the code cache as the working set grows [4]. Hazelwood
and Smith explore different eviction policies for the trace cache
of a dynamic optimizer and conclude that FIFO reduces the miss
rate over FLUSH by half [9]. Later, they find that medium-grained
evictions scale better than FLUSH and FIFO [10]. From observing
the lifetime of traces, they also develop a generational scheme that
stores short-lived and long-lived traces in separate caches. Guha
et al. adapt generational cache management to embedded systems,
in order to reduce the maximum dynamic size of an unbounded

code cache [7]. Baiocchi et al. manage constrained code caches by

117

keeping a compressed F$ region to which fragments are initially
evicted and decompressed if required again [2]. This technique re-
duces the retranslation cost for accessing Flash memory. They also
“pin” decompressed fragments to avoid repeated compressions and
decompressions.

Reducing the size of DBT’s “control code” has been studied by
Guha et al., who focus only on trampolines [6]. In their setup, frag-
ments and trampolines are inserted from opposite ends of the code
cache. They reduce the trampoline size and delete free trampo-
lines on top of the stack. They also unify trampolines that request
the same address. Their optimizations reduce the relative size of
trampolines from 66.7% to 41.4%, for an unbounded code cache.
Our techniques consider all control code and do considerably better
when applied together. Hiser et al. study the allocation of trampo-
lines in a separate region (a “trampoline pool”) in comparison to in-
terleaving them with fragments [11]. They find the technique low-
ers I-cache pressure (over 18% of the misses are eliminated with a
pool). The reduction of trampoline size to 1 instruction, thanks to
the “Shadow Link Register”, combined with “Bottom Jump Elid-
ing”, fully eliminates the need for trampoline management.

A similar concept to the “Shadow Link Register” technique is
used by Miller and Agarwal in Flexicache [15]. It is a system that
provides a software-managed code cache for processors with SPM
and no I-cache. Flexicache is not a DBT; it uses a binary rewriter
to statically form cache blocks of fixed size and inject control code
prior to the program’s execution. The rewriter also inserts code to
update the shadow variable after each definition of the link register
(including call sites) and to load the value of the shadow variable
before each use. Instead, we move the update to the beginning
of the callee and do not instrument uses, because the proper value
of the link register is restored on return from the DBT. Our work
shows that a DBT with a bounded F$ allocated to SPM can provide
similar functionality as Flexicache, while enabling other services.

Hiser et al. study several indirect branch handling techniques
across platforms [12]. They found IBTC to be the most useful tech-
nique, but that the placement of the lookup code has little impor-
tance in general-purpose systems. Our work shows that in embed-
ded systems aggressive factorization of the lookup code can benefit
performance due to space savings.

7. CONCLUSION
This paper investigated the composition of the code generated

by a DBT and proposed techniques to reduce its footprint, target-
ing “control code”. We described and evaluated methods to mini-
mize the space needed by trampolines, indirect branch handling and
context switch code. With these techniques, the translated program
code fits better in a small, bounded code cache for an embedded
system. In general, when our approaches are enabled, a DBT with
a constrained code cache has similar performance than a DBT with
an unbounded code cache.

8. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation

under grants CNS-0720483, CCF-0702236, CNS-0551492, CNS-
0720789 and CNS-0716478.

9. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An

infrastructure for computer system modeling. Computer,
35:59–67, 2002.

[2] J. Baiocchi, B. R. Childers, J. W. Davidson, J. D. Hiser, and
J. Misurda. Fragment cache management for dynamic binary

translators in embedded systems with scratchpad. In Int’l.

Conf. on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES), 2007.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. In Conf. on

Programming Language Design and Implementation (PLDI),
2000.

[4] D. Bruening and S. Amarasinghe. Maintaining consistency
and bounding capacity of software code caches. In Int’l.

Symp. on Code Generation and Optimization (CGO), 2005.

[5] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. Deli: a new run-time control point. In Int’l.

Symp. on Microarchitecture (MICRO), 2002.

[6] A. Guha, K. Hazelwood, and M. L. Soffa. Reducing exit stub
memory consumption in code caches. In Int’l. Conf. on High

Performance Embedded Architectures and Compilers

(HiPEAC), 2007.

[7] A. Guha, K. Hazelwood, and M. L. Soffa. Code
lifetime-based memory reduction for virtual execution
environments. In Workshop on Optimizations for DSP and

Embedded Systems, 2008.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE

Workshop on Workload Characterization, 2001.

[9] K. Hazelwood and M. D. Smith. Code cache management
schemes for dynamic optimizers. In Workshop on Interaction

between Compilers and Computer Architectures, 2002.

[10] K. Hazelwood and M. D. Smith. Managing bounded code
caches in dynamic binary optimization systems. ACM Trans.

Archit. Code Optim., 3:263–294, 2006.

[11] J. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. R.
Childers. Evaluating fragment construction policies for SDT
systems. In Int’l. Conf. on Virtual Execution Environments

(VEE), 2006.

[12] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and
B. R. Childers. Evaluating indirect branch handling
mechanisms in software dynamic translation systems. In
Int’l. Symp. on Code Generation and Optimization (CGO),
2007.

[13] Intel Corporation. Intel PXA27x Processor Family

Developer’s Manual, 2006.

[14] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In USENIX Security

Symp., 2002.

[15] J. E. Miller and A. Agarwal. Software-based instruction
caching for embedded processors. In Int’l. Conf. on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2006.

[16] K. Scott and J. Davidson. Safe virtual execution using
software dynamic translation. In Annual Computer Security

Applications Conf., 2002.

[17] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and reconfigurable
software dynamic translation. In Int’l. Symp. on Code

Generation and Optimization (CGO), 2003.

[18] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors,
Y. Wu, J. Lee, and D. Brooks. A dynamic compilation
framework for controlling microprocessor energy and
performance. In Int’l. Symp. on Microarchitecture (MICRO),
2005.

118

