
StageNetSlice: A Reconfigurable Microarchitecture
Building Block for Resilient CMP Systems

Shantanu Gupta Shuguang Feng Amin Ansari Jason Blome Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{shangupt, shoe, ansary, jblome, mahlke}@umich.edu

ABSTRACT

Although CMOS feature size scaling has been the source of dra-
matic performance gains, it has lead to mounting reliability con-
cerns due to increasing power densities and on-chip temperatures.
Given that most wearout mechanisms that plague semiconductor
devices are highly dependent on these parameters, significantly higher
failure rates are projected for future technology generations. Tra-
ditional techniques for dealing with device failures have relied on
coarse-grained redundancy to maintain service in the face of failed
components. In this work, we challenge this practice by identify-
ing its inability to scale to high failure rate scenarios and inves-
tigate the advantages of finer-grained configurations. We use this
study to motivate the design of StageNet, an embedded CMP archi-
tecture designed from its inception with reliability as a first class
design constraint. StageNet relies on a reconfigurable network of
replicated processor pipeline stages to maximize the useful life-
time of the chip, gracefully degrading performance toward end of
life. This paper addresses the microarchitecture of the basic build-
ing block of StageNet, named StageNetSlice, which is a processor
core comprised of networked pipeline stages. A naive slice design
results in approximately 4X slowdown verses a traditional proces-
sor due to longer communication delays in the pipeline. However,
several small design changes that eliminate inter-stage communi-
cation paths and minimize communication bandwidth reduce this
overhead to 11% on average while providing high levels of fine-
grain adaptability.

Categories and Subject Descriptors

B.8.1 [Hardware]: Reliability, Testing and Fault-Tolerance; C.1.0
[Computer System Organization]: Processor Architecture

General Terms

Design, Reliability, Performance

Keywords

Multicore, Reliability, Architecture, Pipeline

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

1. INTRODUCTION
Device scaling trends into the nanometer regime have lead to

increasing current and power densities and rising on-chip temper-
atures, resulting in increasing device failure rates. Leading tech-
nology experts have begun to warn designers that device reliability
will begin to deteriorate from the 65nm node onward [7]. Current
projections indicate that future microprocessors will be composed
of billions of transistors, many of which will be unusable at manu-
facture time, and many more which will degrade in performance (or
even fail) over the expected lifetime of the processor [10]. To as-
suage these reliability concerns, computer designers must directly
address reliability in computer systems through innovative fault-
tolerance techniques.

The sources of computer system failures are widespread, rang-
ing from transient faults, due to energetic particle strikes [40] and
electrical noise [37], to permanent errors, caused by wearout phe-
nomenon such as electromigration [13] and time dependent dielec-
tric breakdown [39]. In recent years, industry designers and re-
searchers have invested significant effort in building architectures
resistant to transient faults and soft errors. Though there is signifi-
cant evidence suggesting a growing rate of soft errors in future tech-
nology generations [10], this problem is actively being addressed in
research [27, 27, 28, 38].

In contrast, much less attention has been paid to the problem of
permanent faults, specifically transistor wearout due to the degrada-
tion of semiconductor materials over time. Concerns about wearout
are primarily due to increasing power and current densities, both of
which lead to increasing on-chip temperatures. All three of these
parameters have been shown to heavily influence most wearout
mechanisms [4]. In fact, most wearout mechanisms exhibit an ex-
ponential dependence on temperature [17] [13] [32]. Furthermore,
device scaling increases the susceptibility to wearout by shrink-
ing the thickness of the gate and inter-layer dielectrics and increas-
ing interconnect current density. Traditional techniques for dealing
with transistor wearout have involved extra provisioning in logic
circuits, known as guard-banding, to account for the expected per-
formance degradation of transistors over time. However, the in-
creasing degradation rate projected for future technology genera-
tions implies that traditional margining techniques will be insuffi-
cient. This necessitates revolutionary new designs for systems that
can identify and adapt to wearout through reconfiguration.

The challenge of tolerating permanent faults can be broadly di-
vided into three requisite tasks: fault detection, fault diagnosis, and
system recovery/reconfiguration. Fault detection mechanisms [8,
22, 5] are used to identify the presence of a fault, while fault di-
agnosis techniques [21, 16, 12] are used to determine the source
and nature of the fault. System recovery can consist of a number

1

of different tasks, based on the nature of the fault. For example, if
the fault is transient, the incorrect state may be corrected by simply
flushing the processor pipeline [5]. However, if the fault is perma-
nent, then a recovery mechanism which leverages system reconfig-
uration may be necessary to avoid propagating faults through the
use of a failed component.

The third and the last task of system reconfiguration usually re-
quires additional redundant resources, or the decommissioning of
non-critical components. For example, many computer vendors
provide the ability to repair faulty memory and cache cells, through
the inclusion of spare memory elements [30]. Recently, researchers
have begun to extend these techniques to support sparing for addi-
tional on-chip resources [33], such as branch predictors [11] and
registers [26].

Classical mechanisms such as dual and triple-modular redun-
dancy (DMR and TMR) have also been used to address the problem
of system recovery [6, 30]. With the recent popularity of multicore
systems these traditional core-level approaches have been able to
leverage the inherent redundancy present in large chip multipro-
cessors (CMP) [29, 1, 34]. However, both the historical designs
and their modern incarnations, because of their emphasis on core-
level redundancy, incur high hardware overhead and can only tol-
erate a small number of defects. With the increasing defect rate in
semiconductor technology, it will not be uncommon to see a rapid
degradation in throughput for these systems as single device fail-
ures cause entire cores to be decommissioned (oftentimes with the
majority of the core still intact and functional). While such solu-
tions may be appropriate for mainframes and mission-critical sys-
tems, they are too costly in terms of area and power the embedded
domain.

In contrast, this paper argues the case for reconfiguration and
redundancy at a finer granularity. Providing finer-grain control en-
ables isolation and/or replacement of individual structures within
a processor core. This not only allows for more effective provi-
sioning of spare parts (i.e., replicating only those components most
susceptible to failure) but also minimizes waste by permitting a de-
sign, under the right circumstances, to salvage healthy components
from dying cores. Over time as more and more devices fail, such a
system will gracefully degrade its performance capabilities, maxi-
mizing its useful lifetime. The focus of this work is to propose an
efficient solution for maintaining redundancy and enabling recon-
figuration. The other requisite tasks of detecting and diagnosing
the source of failure are assumed to be already in place and their
discussion is beyond the scope of this paper.

This work presents StageNetSlice (SNS), the basic building block
for StageNet, a highly reconfigurable and adaptable CMP comput-
ing substrate. Each SNS is a network of pipeline stages that col-
lectively act as a logical processor. With flexible interconnects, an
SNS can easily isolate failures by adaptively routing around faulty
stages, either by leveraging spare components or in the case of a
large CMP system time-multiplexing the same stage in an adja-
cent SNS. CMPs consisting of multiple SNS pipelines stitched to-
gether would possess inherent fine-grain redundancy and be capa-
ble of maintaining higher throughput over the duration of a sys-
tem’s life (even extending that lifetime) compared to conventional
multicore designs. With a sea of pipeline stages at its disposal, an
intelligent reliability management system can dynamically config-
ure SNS-based CMPs to meet changing reliability and performance
demands.

Conceptually, the design of an SNS is relatively straight-forward.
However, introducing network switches into the heart of a proces-
sor pipeline will inevitably lead to poor performance due to high
communication latencies and low communication bandwidth be-

tween stages. The key to creating an efficient SNS design is re-
thinking the organization of a basic processor pipeline to more ef-
fectively isolate the operation of individual stages. More specif-
ically, inter-stage communication paths must either be removed,
namely by breaking loops in the design, or the volume of data trans-
mitted must be reduced. This paper presents the design of an effi-
cient SNS that attacks these problems and reduces the reconfigura-
bility overhead to an acceptable level. The primary contributions
of this paper include:

• A design space exploration of reconfiguration granularities
for resilient systems

• A highly adaptive microarchitecture (SNS) suitable for ro-
bust CMPs design

• An examination of the trade-offs and optimizations that helped
realize the SNS design

• A detailed evaluation of SNS performance compared to a
conventional embedded processor

2. RECONFIGURATION GRANULARITY
An architecture for tolerating permanent faults must have the

ability to reconfigure, where reconfiguration can refer to a variety
of activities ranging from decommissioning non-functioning, non-
critical processor structures to swapping in cold spare devices. In
a reconfigurable architecture, recovery entails isolating defective
component(s) and incorporating spare structures as needed. Sup-
port for reconfiguration can be achieved at various levels of gran-
ularity, from ultra-fine grain systems that have the ability to re-
place individual logic gates to coarser designs that focus on isolat-
ing entire processor cores. This choice presents a trade-off between
complexity of implementation and potential lifetime enhancement,
where finer grain solutions provide greater lifetime extensions, at
significantly more cost, than their coarser counterparts. Generally
speaking, the law of diminishing returns places a lower limit on the
granularity of reconfiguration. This section presents experiments
studying this trade-off and draws upon these results to motivate the
design of SNS.

2.1 Experimental Setup
In order to effectively model the reliability of different designs, a

Verilog model of the OpenRISC 1200 (OR1200) core [?] was used
in lifetime reliability experiments. The OR1200 is an open-source
core with a conventional 5-stage pipeline design, representative of
commercially available embedded processors. The core was syn-
thesized, placed and routed using industry standard CAD tools with
a library characterized for a 130nm process. The final floorplan
along with several attributes of the design is shown in Figure 1.

To study the impact of reconfiguration granularity on chip life-
times the mean-time-to-failure (MTTF) was calculated for each in-
dividual module in the OR1200. MTTF was determined by estimat-
ing the effects of a common wearout mechanism, time-dependent-
dielectric-breakdown (TDDB) on a OR1200 core running a repre-
sentative workload.1 Employing an empirical model similar to that
found in [31], Equation 1 presents the formula used to calculate
per-module MTTFs. More details about these calculations can be
obtained from [9], which uses a similar experimental setup.

MTTFTDDB ∝ (
1

V
)(a−bT)

e

(X+ Y

T
+ZT)

kT (1)

where V = operating voltage, T = temperature, k = Boltzmann’s
constant, and a,b,X,Y,and Z are all fitting parameters based on [31].

1A similar analysis can be done for other wearout mechanisms in-
cluding negative bias threshold inversion (NBTI), hot carrier injec-
tion (HCI) and electromigration (EM).

2

(a) Overlay of the OR1200 floorplan on
top of the placed and routed implemen-
tation of the CPU core

OR1200 Core

Area 1.28 mm2

Power 93.4 mW

Clock Frequency 200 MHz

Data Cache Size 8 KB

Instruction Cache Size 8 KB

Technology Node 130 nm

(b) Implementation details

Figure 1: OpenRisc 1200 embedded microprocessor.

For the purposes of this study, it is assumed that the fastest failing
component in the design (the one with the smallest MTTF) deter-
mines the operational lifetime of the core. Using this MTTF data,
the next subsection will discuss the advantages and disadvantages
of reconfiguring hardware at different levels of granularity.

2.2 Granularity Tradeoffs
The granularity of reconfiguration is used to describe the unit of

isolation for components within the processor core. Implicitly it
also defines the granularity at which redundancy can be leveraged
by the system. It is important to note that it is not strictly necessary
to use cold spares to replace failed components, in certain situations
the isolation of non-critical, faulty components suffices. Various
options for reconfiguration, in order of increasing granularity, are
as follows:

Gate level: At this level of reconfiguration, a system can replace
individual logic gates in the design as they fail. Unfortunately, such
designs are typically impractical because they require both precise
fault diagnosis and tremendous overhead due to redundant compo-
nents and wire routing area.

Module level: In this scenario, a processor core can replace/isolate
broken microarchitectural structures such as an ALU or branch pre-
dictor. Such designs have been active topics of research [15, 26].
The biggest downside of this reconfiguration level is that maintain-
ing redundancy for full coverage is almost impractical. Addition-
ally, for the case of simple cores, even fewer opportunities exist for
isolation since almost all modules are unique in the design.

Stage level: Here, the entire pipeline stages are treated as sin-
gle monolithic units that can be replaced. Reconfiguration at this
level is challenging because: 1) pipeline stages are tightly coupled
with each other (reconfiguration can cause performance loss), and
2) cold sparing pipeline stages is expensive (area overhead).

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

P
e
rc

e
n
t
In

c
re

a
s
e
 i
n
 M

T
T

F

Percent Area Overhead

Module-granularity replacement
Stage-granularity replacement
Core-granularity replacement

Figure 2: Gain in MTTF from the addition of cold spares at the
granularity of micro-architectural modules, pipeline stages, and
processor cores. The base system is a single core machine. The
gains shown are cumulative, and spare modules are added in the
order they are expected to fail (the markers indicate the times when
a cold spare is added to the system). A higher slope indicates better
returns on the area investment but at the same time involves more
design complexity.

Core level: This is the coarsest level of reconfiguration where
entire processor cores are isolated from the system in the event of
a failure. Core level reconfiguration has also been an active area
of research [34, 1], and from the perspective of a system designer,
it is probably the easiest technique to implement. However, it has
poorest returns in terms of lifetime extension, and therefore might
not be able to keep up with the increasing defect rate.

Figure 2 demonstrates the effectiveness of the above granulari-
ties of reconfiguration (gate-level reconfiguration is not included in
this study due to the complexity of implementation). MTTFs for in-
dividual modules in the OR1200 core were computed as described
previously. Stage-level MTTFs were then defined as the minimum
MTTF of any module belonging to the stage. Similarly core level
MTTFs were defined as the minimum MTTF across all the mod-
ules. The figure shows the potential for lifetime enhancement as a
function of how much area a designer is willing to allocate to cold
spares. While this study evaluates processors with cold spares, it
can also be viewed as investigating how efficiently the natural re-
dundancy in a CMP can be exploited for reliability. The figure
overlays three separate plots, one for each level of reconfiguration.
The redundant spares were allowed to add as much as 300% area
overhead.

The data shown in Figure 2 demonstrates that going towards
finer-grain reconfiguration is categorically beneficial as far as gains
in MTTF is concerned. But, it overlooks the design complexity
aspect of the problem. Finer-grain reconfiguration tends to exacer-
bate the hardware challenges for supporting redundancy, e.g. mux-
ing logic, wiring overhead, circuit timing management, etc. At the
same time, very coarse grained reconfiguration is also not an ideal
candidate since MTTF scales poorly with the area overhead. There-
fore, a compromise solution is desirable, one that has manageable
reconfiguration hardware and a better life expectancy.

Stage level reconfiguration is positioned as a good candidate be-
cause of the following reasons:

1. Stages provide clean natural boundaries. Logically stages are
a convenient boundary because pipeline architectures divide
work at the level of stages (like fetch, decode, etc.). Simi-

3

Pipeline 1

Pipeline 2

Pipeline 3

Pipeline M

C
o
n
fi

g
u
ra

ti
o
n
 M

an
ag

er

Stage1 Stage2

Stage1 Stage2

Stage1 Stage2

Stage1 Stage2

StageN−1

StageN

StageN

StageN

StageN

StageN−1

StageN−1

StageN−1

Figure 3: StageNet architecture. Each StageNet Slice (SNS) is equivalent to a logical processing core. This figure shows M, N-stage slices.
More than one crossbar switches can be kept at the pipeline stage boundaries in order to tolerate rare, albeit possible, failure of the switch
itself.

larly, in terms of circuit implementation stages are a intuitive
boundary because data signals typically get latched at the end
of every pipeline stage.

2. Stage-based reconfiguration scales well with the increase in
available redundant spares (see Figure 2).

3. Lastly, in the vision of SNS-based CMPs, the ability to share
stages between neighboring SNSs makes the system inher-
ently redundant.

The next section introduces the SNS architecture, a scalable fault
tolerant pipeline designed to allow stage level reconfiguration.

3. STAGENET: A RECONFIGURABLE MI-
CROARCHITECTURE

As shown in the previous section, fine-grain reconfigurability at
the pipeline stage granularity is an effective tool to combat future
reliability challenges. One of the ways to allow reconfiguration at
this granularity is to decouple the pipeline stages from each other.
In other words, remove all direct point-to-point communication be-
tween the stages and replace them by a switch based interconnec-
tion network. A conceptual picture of a chip multiprocessor using
this philosophy is presented in Figure 3. We call this design Sta-

geNet (SN). Processor cores within SN are designed as part of a
high speed network-on-a-chip, where each stage in the processor
pipeline corresponds to a node in the network. A horizontal slice
of this architecture is equivalent to a logical processor core, and we
call it a StageNetSlice (SNS). The use of switches allows complete
flexibility for a pipeline stage at depth X to communicate with any
stage at depth X+1, even those from a different SNS. Such a sys-
tem can isolate nodes (pipeline stages) that are defective and con-
figure pipelines to share (time-multiplex) certain stages. As nodes
wearout and eventually fail, SN will exhibit a graceful degradation
in performance, and a gradual decline in throughput.

The advantages of the SN architecture do not come for free,
and there are certain overheads associated with this design, namely
area and performance overheads. Area overhead arises from the
switch interconnection network between stages. Depending upon
the switch design, a variable number of cycles will be required to
transmit operations between stages, leading to performance penal-
ties.

3.1 SNS: Overview
A conventional embedded processor pipeline [2, 3, 23] usually

consists of five stages namely, fetch, decode, issue, execute/memory,
and writeback (see Figure 4a). Although the execute/memory block

is sometimes separated into multiple stages, for the sake of simplic-
ity (and generality) it is treated as a single stage in this work.

Starting with the basic pipeline design in Figure 4a, we will
show how it’s transformed into an SNS. We begin by replacing
the pipeline latches with a combination of crossbar switches and
buffers. A graphical illustration of such a pipeline design is shown
in Figure 4b. For now, ignore the shaded boxes inside the pipeline
stages, the significance of these portions will be addressed later in
this section. To maximize performance, we propose the use of full
crossbar switches [24] since a) these allow non-blocking access to
all of their inputs and b) for a small number of inputs and out-
puts they are not prohibitively expensive. Furthermore, the channel
width of the crossbar can be varied to trade off performance with
area. In addition to the forward connections, feedback loops in the
SN architecture also need to go through similar switches. This is
because different SNSs can share their resources with each other
and thus require an exchange of results. For instance, the result
from, say SNS A’s execute stage, might need to be directed to SNS
B’s issue stage for writeback. Due to the introduction of the cross-
bar switches, the SNS has three fundamental challenges to over-
come:

1. Global Communication: Global pipeline stall/flush signals are
fundamental to the functionality of a pipeline. Stall signals are sent
to all the stages in the pipe for cases such as multi-cycle operations,
memory access, etc. Similarly, flush signals are necessary to squash
instructions that are fetched along mis-predicted control paths. In
an SNS, all the stages are decoupled from each other, and global
broadcast of a signal is infeasible.

2. Forwarding: Data forwarding is a crucial technique used
in a pipeline for avoiding frequent stalls that would otherwise oc-
cur because of data dependencies between consecutive instructions.
The data forwarding logic relies on precisely timed (in an architec-
tural sense) communication between execute and later stages us-
ing combinational links. With variable amounts of delay through
the switches, and the presence of intermediate buffers, forwarding
logic within an SNS is not feasible.

3. Performance: Lastly, even if the above two problems are
solved, communication delay between stages is still expected to
result in a hefty performance penalty.

The rest of this section will discuss how the SNS design over-
comes these challenges and will also propose techniques that can
recover lost performance.

4

Predictor

Branch

Gen PC

Fetch

la
tc

h

forwardingbranch feedback

register writeback

Decode Execute/Mem Writeback

To I$ To D$

Issue
File

Register

la
tc

h

la
tc

h

la
tc

h

(a) A simple 5-stage in-order pipeline

d
o

u
b

le
b

u
ff

er

Decode

d
o

u
b

le
b

u
ff

er

d
o

u
b

le
b

u
ff

er

d
o

u
b

le
b

u
ff

er

d
o

u
b

le
b

u
ff

er

d
o

u
b

le
b

u
ff

er

d
o

u
b

le
b

u
ff

er

Issue
File

Register

Scoreboard

Fetch

Predictor
Branch

Gen PC

branch feedback

register writeback

To I$ To D$

Bypass $

Execute/Mem

Packer SIDSID SID SID

(b) The SNS pipeline. Stages are interconnected using a full crossbar switch. The shaded portions highlight
modules that are not present in a regular pipeline.

Figure 4: Traditional in-order pipeline design and SNS.

3.2 SNS: Functional needs

3.2.1 Stream Identification

The basic SNS pipeline lacks global communication signals. With-
out global stall/flush signals traditional approaches to flushing in-
structions upon a branch mis-predict are not applicable. The first
addition to the basic pipeline, a stream identification register, tar-
gets this problem.

The SNS design shown in Figure 4b has certain components that
are shaded in order to distinguish the ones that are not found in a
traditional pipeline. One of these additional components is a stream
identification (sid) register in all the stages. This is a single bit
register and can be arbitrarily (but consistently across stages) ini-
tialized to 0 or 1. Over the course of program execution this value
changes whenever a branch mispredict takes place. Every in-flight
instruction in a SNS carries a stream id, and this is used by the
stages to distinguish the instructions on the correctly predicted path
from those on the incorrect path. The former are processed and al-
lowed to proceed, and the latter are squashed. A single bit suffices
because the pipeline model is in-order and it can have only one re-
solved branch mispredict outstanding at any given time. All other
instructions following this mispredicted branch can be squashed.
In other words, the stream id works as a cheap and efficient mech-
anism to replace the global branch mis-predict signal. The details
of how and when the sid register value is modified are discussed
below on a stage-by-stage basis:

Fetch: Every new instruction is stamped with the current value
stored in the sid register. When a branch mis-predict is detected
by fetch (using the branch update from execute/memory stage) it
toggles the sid register and flushes the program counter. From
this point onwards, the instructions fetched are stamped with the
updated stream id.

Decode: The sid register is updated from the stream ids of the
incoming instructions. If at any cycle, the old stream id stored in
the decode does not match the stream id of an incoming instruction,
a branch mispredict is detected and decode flushes the instruction
buffer.

Issue: It maintains the sid register along with an addition 1-bit
last-sid register. The sid register is updated by the stream
id of the instruction that performs register writeback. And the
last-sid value is updated from the stream id of the last success-

fully issued instruction. For an instruction reaching the issue stage,
its stream id is compared with the sid register. If the values match,
then it is eligible for issue. A mismatch implies that some branch
was mispredicted, in the recent past, and further knowledge is re-
quired to determine whether this new incoming instruction is on the
correct path or the incorrect path. This is where the last-sid
register gathers importance. A mismatch of the new instruction’s
stream id with the last-sid indicates that the new instruction is
on the corrected path of execution and hence it is eligible for issue.
A match implies the otherwise and the new instruction is squashed.
Complete significance of last-sidwill be made clear in the next
sub-section.

Execute/Memory: It compares the stream id of the incoming in-
structions to the sid register. In the event of a mismatch, the in-
struction is squashed, otherwise the instruction is executed. A mis-
predicted branch instruction toggles the sid register value stored
in this stage along with its own stream id. This branch resolution
information is sent back to the fetch stage, initiating a change in the
sid register value stored there. The mispredicted branch instruc-
tion also updates the sid in the issue stage during the writeback.
Thus, the cycle of updates is completed.

To summarize, under normal operating conditions (i.e. no mis-
predicts), instructions go through the switched interconnection fab-
ric, get issued, executed and write back computed results. When a
mispredict occurs, using the stream id mechanism, instructions on
the incorrect execution path can be systematically squashed in time.

3.2.2 Scoreboard

The second important component required for proper function-
ality of the SNS is a scoreboard that resides in the issue stage.
A scoreboard is essential in this design because a forwarding unit
(that normally handles register value dependencies) is not feasible.
More often than not, a scoreboard is already present in a pipeline’s
issue stage for hazard detection. In such a scenario, only minor
modifications are needed to tailor a conventional scoreboard to the
needs of an SNS pipeline.

The SNS pipeline needs a scoreboard in order to keep track of the
registers that have results outstanding and are therefore invalid in
the register file. Instructions for which one or more input registers
are invalid can be stalled in the issue stage. The SNS scoreboard
table has two columns (see Figure 6c), one to maintain a valid

5

...

Live−out 0 <val>
Live−out 1 <val>

Live−out J <val>

....

Live−in 0 <val>
Live−in 1 <val>

Live−in I <val>
Branch information
Stream ID (SID)

Macro−op ID (MID)
Macro−op length

Op1: opcode, dest, src(s)

Op2: opcode, dest, src(s)
....

OpN: opcode, dest, src(s)

List of live−ins. The list is assembled by the decode

and the values are populated in the issue stage

List of operations. Each operation has an opcode

destination, and a list of sources. The sources point

either to the live−in list or destination of a previous op

Macro−op meta information filled entirely by the
decode stage

List of live−outs. The list is assembled by the decode

and the values are populated in the ex/mem stage

Figure 5: Structure of a macro-op.

bit for a register, and a second to store the id of the last modi-
fying instruction. In case of a branch mis-predict, the scoreboard
needs to be wiped clean since it gets updated by instructions on
the wrong path of execution. To recognize a mis-predict, the issue
stage maintains a last-sid register that stores the stream id of
the last issued instruction. Whenever the issue stage finds out that
the new incoming instruction’s stream id differs from last-sid,
it knows that a branch mis-predict has taken place. At this point,
the scoreboard waits to receive the writeback, if it hasn’t received
it already, for the branch instruction that was the cause of the mis-
predict. Finally, after this waiting period, the scoreboard is cleared
and the new instruction is issued.

3.2.3 Network Flow Issues

In a SNS, the stalls are automatically handled by maintaining
network back pressure through the switched interconnection. A
crossbar does not forward values to the buffer of a subsequent stage
if the stage is stalled. This is similar to the way network queues
handle stalls. In our implementation, we guarantee that an instruc-
tion is never dropped (thrown away) by a buffer.

For a producer consumer based system, where the transfer la-
tency is variable, double buffering is a standard technique used to
make the transfer latency overlap with the job cycles of a producer
/ consumer. In a SNS, all stages have their input and output latches
double buffered to enable this optimization.

3.3 SNS: Performance Enhancement
The functional additions to the SNS discussed in the previous

section brings the design to a point where it is functionally correct.
However, in its present state, much is left on the table in terms
of performance. This section introduces techniques to address this
shortcoming.

3.3.1 Bypass cache

Due to the lack of forwarding logic in an SNS, frequent stalls are
expected for instructions with register dependencies. To alleviate
the performance loss we add a bypass cache in the execute/memory
stage (see Figure 6d). The job of this cache is to store values gener-
ated by recently executed instructions within the execute/memory
stage. The instructions that follow, can use these cached values and
need not stall in the issue. In fact, if the cache is large enough, re-
sults from every instruction that has been issued, but has not writ-
ten back, can be retained. This would completely eliminate the
stalls arising from register dependencies. In this manner, the by-
pass cache emulates the work of forwarding logic.

A FIFO replacement policy is used for this cache because older
instructions are less likely to have produced a result for an incoming
instruction. The scoreboard unit of the issue stage is made aware
of the bypass cache size when the system is first configured. As
discussed earlier, the scoreboard maintains the id of the last in-
struction which wrote to a particular register. Knowing the size of
the bypass cache, and the absolute difference between the id of a

given instruction X and the id(s) of the last writing instruction(s) for
input register(s) of X, the scoreboard can decide whether to issue or
stall. If this difference is less than the depth of bypass cache, then
the required input register is guaranteed to be present in the bypass
cache (assuming all instructions have a maximum of 1 destination).
Therefore, the instruction can be issued when all the outstanding in-
put dependencies are guaranteed to be present in the bypass cache,
and stalled otherwise. Furthermore, the issue stage can also per-
form selective register operand fetch for only those values that are
not going to be available in the bypass cache. By this optimization,
we can reduce the number of bits that are transferred from the issue
stage to the execute/memory stage.

3.3.2 Macro Operations

The performance of the SNS design suffers significantly from
the overhead of transferring instructions between stages, since ev-
ery instruction has to go through a switched network with a variable
amount of delay. For instance, if an instruction takes three cycles
for transfer between the stages, and one cycle to execute, the CPI
of the system (with perfect cache, assuming no branches) would be
4. Another way to look at this is that since each of the stages usu-
ally takes a single cycle to execute the instruction, they are idle the
majority of the time waiting for instructions to arrive. A natural op-
timization would be to increase the granularity of communication
to a bundle of multiple instructions/operations (macro-op). There
are two advantages of doing this:

1. More work (multiple instructions) is available for the stages
to work on while waiting for the next macro-op to arrive.

2. This can eliminate the temporary intermediate values gen-
erated within small sequences of instructions, and therefore
give an illusion of data compression to the underlying inter-
connection fabric.

This collection of operations can be done both statically (at com-
pile time) or dynamically (in the hardware). To keep the overall
hardware overhead low, we form these statically in the compiler.
Our approach involves selecting a subset of instructions belong-
ing to a basic block, while keeping two sets of constraints: 1) the
number of live-ins and live-outs of the macro-op, and 2) the num-
ber of instructions. We use a simple greedy policy, similar to [14],
that maximizes the number of instructions, while minimizing the
number of live-ins and live-outs. The ideal macro-op is one where
the computational cost is roughly equivalent to the communication
costs. Effectively, the idea is to pipeline the transfer with the com-
putation.

The complete structure of a macro-op is shown in the Figure 5.
The compiler embeds the macro-op boundaries, internal data flow,
and live-in/live-out information in the program binary. During run-
time, decode’s Packer structure is responsible for identifying and
assembling macro-ops. Leveraging hints for the macro-op bound-
aries that are embedded in the program binary, the Packer assigns

6

M
U PC

Mispredict
Handler

OP

X

resolution
Branch

Exec Next PC

Predicted Next PC

Icache response Icache request

Update BP

Controller
Fetch

Mispredict ?

Predictor
Branch

S

D
I

(a) Fetch

Instruction Buffer

Outgoing (Macro) OP

Incoming OP

Logic

Decoder Packer

MID

SID

(b) Decode

REG ID Valid Last Wr. MID

0

1

2

62

63

59

60

61

0

1

1

0

0

1

1

1

17

21

17

−

−

−

−

−

REGISTER FILE

Issue

Controller

Writeback Registers

Incoming (Macro) OP

Outgoing (Macro) OP

(Macro) OP latch

SID

Last SID

SCOREBOARD

(c) Issue

REG ID REG Value

(Macro) OP latch

Functional Unit

Incoming (Macro) OP

Outgoing (Macro) OP

Branch Resolution

OP Counter

SID

Ex / Mem
Controller

BYPASS $

Dcache RequestDcache Response

(d) Execute/Memory

Figure 6: Pipeline stages of the SNS. Gray blocks highlight the modules added for transforming a traditional pipeline into a SNS.

a unique macro-op ID (MID) to every macro-op flowing through
the pipeline. All other stages in the SNS are also modified to work
with these macro-ops instead of simple instructions. This is partic-
ularly true of the execute/memory stage where a controller cycles
across the individual instructions that comprise a macro-op, exe-
cuting them in sequence. However, the bandwidth of the stages is
not modified, and they continue to process one instruction per cy-
cle. This implies that register file ports, execution units, memory
ports etc. are not increased in their number or capability. The de-
sign overhead primarily arises from the new structures that we add
to every stage as elaborated in the next subsection.

3.4 SNS: Stage Modifications
This section goes over the pipeline stages in the SNS, and sum-

marizes the modules added to each of them.
Fetch: The modifications made in the fetch stage (Figure 6a) are

restricted to the addition of an sid register and a small amount of
logic to toggle it upon branch mis-predicts.

Decode: Decode stage (Figure 6b) collects the fetched instruc-
tions in an instruction buffer. An instruction buffer is a common
structure found in most pipeline designs, and to that we add an sid
register. For an incoming instruction with a different stream id, this
register is toggled and the instruction buffer is flushed. The decode
stage is also augmented with the Packer. The Packer logic reads
instructions from the buffer, identifies the macro-op boundaries,
assigns them a macro-op id, and fills out the macro-op structure
attributes.

Issue: Issue stage (Figure 6c) is modified to include a Score-
board that tracks register dependencies. For a macro-op that is
ready for issue, the register file is read to populated the live-ins. The
issue stage also maintains two 1-bit registers: sid and last-sid,

in order to identify branch mis-predicts and flush the Scoreboard at
appropriate times.

Execute/Memory: Execute/Memory stage (Figure 6d) houses
the bypass cache that partially emulates the forwarding logic. This
stage is also the first to update its sid register upon a branch mis-
predict. In order to handle macro-op execution, the execute/memory
controller is modified to go over the macro-op instructions one at
a time. While doing this, the computed results are saved into the
bypass cache for later use.

4. RESULTS AND DISCUSSION

4.1 Evaluation Infrastructure
The evaluation infrastructure for the SNS design consisted of two

major components, 1) a compilation framework and 2) an architec-
tural simulator. Ten benchmarks were selected from a variety of
domains to evaluate SNS under differing conditions, including me-
dia kernels (idct, sobel), encryption (3des, rijndael, rc4, pc1), audio
encoding (rawcaudio, g721encode), and audio decoding (rawdau-
dio, g721decode).

We use the Trimaran compilation system [35] as our first compo-
nent. The macro-op selection algorithm is implemented as a com-
piler pass on the intermediate code representation. During this pass,
the code is augmented with the macro-op boundaries and other mis-
cellaneous attributes (Figure 5). The final code generated by the
compiler uses the HPL-PD ISA [19].

The architectural simulator was developed using the Liberty Sim-
ulation Environment (LSE) [36]. A functional emulator was also
developed for the HPL-PD ISA within the LSE system. Two flavors
of the microarchitectural simulator were implemented in sufficient
detail to provide cycle accurate results. The first simulator mod-
eled a simple five stage pipeline, which is also the baseline for our

7

 0

 1

 2

 3

 4

 5

 6

3des
g721decode

g721encode

idct
pc1

raw
caudio

raw
daudio

rc4
rijndael

sobel

Average

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

baseline
SNS

SNS + bp$ 2
SNS + bp$ 4

SNS + bp$ 6
SNS + bp$ 8

Figure 7: SNS pipeline, with a bypass cache, compared to the base-
line pipeline. The slowdown, seen because of the issue stage stalls,
reduces as the size of bypass cache is increased.

experiments. The second simulator implemented the SNS architec-
ture with all the proposed enhancements. Table 1 lists the common
attributes for our architectural simulations.

Base pipeline 5-stage in-order

SNS 4-stage in-order, with double buffering
and 32/64 bit 5×5 crossbar switches

Branch predictor global, 16-bit history, gshare predictor

Level 1 I/D cache 4-way, 16 KB, 1 cycle hit latency

Level 2 unified cache 8-way, 64 KB, 5 cycle hit latency

Memory 40 cycle latency

Table 1: Architectural attributes

4.2 Simulation Results
To evaluate SNS, we present the baseline performance results

followed by successive addition of features to increase efficiency.
Base SNS performance: The performance of a basic SNS

in comparison to the baseline (bars 1 and 2) is shown in Figure 7.
Basic here implies an SNS configured with the stream identification
logic, scoreboard and double buffering. The macro-op size is kept
fixed at 1 and there is no bypass cache. The results are normalized
to the runtime of the baseline processor. An average slowdown
of over 4X was seen, which is a significant price to pay for the
reconfiguration flexibility.

SNS with bypass cache: The addition of the bypass cache re-
sults in drastic improvements in the overall performance of the SNS
(Figure 7). For this experiment, macro-op size is kept fixed at 1,
and the bypass cache depth is varied from 2 to 8. The depth of the
bypass cache indicates the number of destinations that it can store.
In Figure 7, for bypass cache sizes beyond 6, there is hardly any
performance improvement. This follows from the fact that as the
bypass cache size is increased, almost all the outstanding register
values get cached into it, and the performance returns are progres-
sively diminished. The average slowdown hovers around 2.1X with
the addition of the bypass cache, which is still quite high.

Varying crossbar channel width: The channel width of the
crossbar determines the number of cycles it takes to transfer an
instruction between two stages. A bigger value is going to im-
prove performance but at the same time present a higher area over-
head. Figure 8 illustrates the impact of varying the crossbar channel
width on the performance. Three data points are presented for ev-
ery benchmark: 32-bit channel width, 64-bit channel width, and
infinite channel width (added to show the maximum potential gain
in the performance). A crossbar with 64-bit channel width is used

 0

 0.5

 1

 1.5

 2

 2.5

3des
g721decode

g721encode

idct
pc1

raw
caudio

raw
daudio

rc4
rijndael

sobel

Average

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

baseline
SNS + bp$ + 32-bit Xbar

SNS + bp$ + 64-bit Xbar
SNS + bp$ + Inf. bit Xbar

Figure 8: SNS performance with variations in the crossbar channel
width. A 64-bit crossbar was found to present a good enough trade-
off between the area and the performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3des
g721decode

g721encode

idct
pc1

raw
caudio

raw
daudio

rc4
rijndael

sobel

Average

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

baseline
SNS + bp$

SNS + bp$ + MOP 3 live-ins/outs

SNS + bp$ + MOP 4 live-ins/outs
SNS + bp$ + MOP 5 live-ins/outs
SNS + bp$ + MOP 6 live-ins/outs

Figure 9: SNS pipeline, with a bypass cache and the capability
to handle macro-ops, compared to the baseline in-order pipeline.
An optimal resource constraint, which varied between benchmarks,
was found to give the best performance.

for all subsequent experiments. The average slowdown of 1.3X
was seen with the 64-bit crossbar. This might still be considered a
costly trade for the reconfiguration flexibility achieved.

SNS with bypass cache and macro-ops: The performance re-
sults shown in Figure 9 are for an SNS with the bypass cache and
the statically selected bundles of instructions (MOPs). The bypass
cache size (6) is large enough to accommodate most of the out-
standing values. Each bar in the plot (except 1 and 2) is for a differ-
ent configuration of the MOP selection algorithm. The results show
that beyond a certain limit, relaxing the macro-op selection con-
straints (live-ins and live-outs) does not result in performance im-
provement. Prior to reaching this limit, relaxing constraints helps
in forming longer macro-ops, thereby balancing transfer time with
computation time. Beyond this limit, relaxing constraints does not
result in longer macro-ops, merely wider macro-ops (more live-
ins/outs). This increases transfer time without actually increasing
the number of distinct computations that are encoded.

The best result, an average slowdown of 11%, was achieved for
the live-in/live-out constraint of 4 registers. The benchmarks with
poor branch prediction rates performed the worst, see Figure 10.
In fact, performance is strongly correlated with the number of mis-
predicts per thousand instructions. This is expected because the
use of macro-ops, and the additional cycles spent for data transfer
between stages, causes the SNS design to behave like a very deep
pipeline. Future work will look into solutions that could eliminate
hard-to-predict branches from the code by using if-conversion or
similar schemes.

Area overhead: The area overhead in the SNS design arises
from the additional microarchitectural structures that were added

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3des
g721decode

g721encode

idct
pc1

raw
caudio

raw
daudio

rc4
rijndael

sobel

 0

 5

 10

 15

 20
A

c
c
u

ra
c
y
 (

%
)

M
is

s
e

s
 /

 1
0

0
0

 i
n

s
tr

u
c
ti
o

n
s

branch prediction accuracy branch misses

Figure 10: Branch predictor accuracy and number of misses per
thousand instructions.

and the interconnection fabric composed of crossbar switches. Area
overheads are shown using OR1200 core as the baseline (see Sec-
tion 2.1) in Figure 4.2. The area for the scoreboard and bypass
cache is estimated by taking similar structures from the OR1200
core and resizing them appropriately. The scoreboard area estimate
is based on the register file. And the bypass cache is based on the
TLB, as it requires associative look-up. Finally, the area of dou-
ble buffers is based on their length and the maximum macro-op
size they have to store. The sizing of all these structures was done
according to the SNS configuration that achieved the best perfor-
mance. The crossbar switch area is based on the Verilog model
from [24]. The interconnection area for connecting the pipeline
stages to the crossbar switches is not discussed here since it is chal-
lenging to estimate that without a complete VLSI layout. Furthe-
more, the area of a 64-bit bus link is expected to be an order of
magnitude smaller than that of a 5×5 64-bit crossbar fabric.

All the design blocks were synthesized, placed and routed us-
ing industry standard CAD tools with a library characterized for a
130nm process. The overall area overhead is approximately 10.1%
for the SNS modules, and 2.1% for each of the 64-bit 5×5 cross-
bar switches. An SNS has a total of five such crossbars, making
the total area overhead 20%. However, the actual area overhead
will be slightly lower because 1) this is a conservative estimate for
the modules, and 2) the crossbar switches are shared resources in a
SN CMP system. If a five SNS StageNet CMP is constructed, each
SNS will see an area overhead of 12%.

5. RELATED WORK
Concern over reliability issues in future technology generations

has spawned a new wave of research in reliability-aware microar-
chitectures. Recent work has addressed the entire spectrum of re-
liability topics, from fault detection and diagnosis to system repair
and recovery. The following section focuses on the most relevant
subset of recent work, those that propose architectures that tolerate
and/or adapt to the presence of faults.

High-end server systems designed with reliability as a first-order
design constraint have been around for decades but have typically
relied on coarse grain replication to provide a high degree of relia-
bility [6, 30]. However, dual and triple modular redundant systems
incur significant overheads in terms of area and power. Further-
more, these systems still remain susceptible to wearout-induced
failures since TMR is based on the premise that faults are unlikely
to impact redundant modules simultaneously, a condition that is not
obeyed given that all the redundant components are executing iden-
tical workloads and experiencing similar aging effects. Without ad-
ditional cold-spare devices, traditional TMR, although effective at
detecting faults, cannot significantly extend the lifetime of a pro-

cessor. Given the cost, energy, and complexity overhead of these
approaches, they are not appropriate for low-end server, desktop,
or embedded computer systems.

ElastIC [34] is a slightly different high-level architectural vision
for multiprocessor fault tolerance. Exploiting low-level circuit sen-
sors for monitoring the health of individual cores, the authors pro-
pose dynamic reliability management that can throttle and eventu-
ally turn off cores as they age over time. Yet as with TMR, ElastIC
relies upon redundancy management at the core level similar to the
Configurable Isolation [1]. Within such a framework, the system
must be provisioned with a massive number of redundant cores or
face the prospect of rapidly declining processing throughput as sin-
gle faults disable entire cores.

Much work has also been done in fine-grained redundancy main-
tenance such as Bulletproof [15], sparing in array structures [11],
and other such microarchitectural structures [26]. These schemes
typically rely on the inherent redundancy of superscalar cores, and
can be difficult to leverage for full coverage. Nevertheless, ideas
from such approaches can be incorporated in our system for addi-
tional benefits since they too apply redundancy management at a
finer granularity.

Other research has focused on building reliable substrates out of
future nanotechnologies which are expected to be inherently fault-
prone. The NanoBox Processor Grid [20] was designed as a recur-
sive system of black box devices, each employing their own unique
fault tolerance mechanisms. While this project does boast a signifi-
cant amount of defect tolerance, it comes at a 9x overhead in terms
of redundant structures.

SNS differs dramatically from solutions previously proposed in
that our goal is to minimize the amount of hardware used solely
for redundancy. More importantly we enable reconfiguration at the
granularity of a pipeline stage, making it possible for a single core
to tolerate multiple failures at a much lower cost. The work here
is an extension of [18] where we explored the potential of pipeline
stage level reconfigurability. In parallel to our efforts, Romanescu
et al. [25] have proposed a multicore architecture, named as Core
Cannibalization Architecture (CCA), that also exploits stage level
reconfigurability. CCA allows only a subset of pipelines to lend
their stages to other broken pipelines, thereby avoiding full crossbar
interconnection. Unlike SNS, CCA pipelines maintain all feedback
links and avoid any major changes to the microarchitecture. Al-
though these design choices reduce the overall complexity, fewer
opportunities of reconfiguration exist for CCA as compared to a
SNS based CMP.

6. CONCLUSION
As CMOS technology continues to evolve so too must the tech-

niques that are employed to counter the effects of ever more de-
manding reliability challenges. Efforts in fault detection, diagno-
sis, and recovery/reconfiguration must all be leveraged together to
form a comprehensive solution to the problem of unreliable sili-
con. This work contributes to the area of recovery and reconfigura-
tion by proposing a radical architectural shift in processor design.
Motivated by the need for finer-grain reconfiguration, networked
pipeline stages were identified as an effective trade-off between
cost and reliability enhancement. Although performance suffered
at first as a result of the dramatic changes to the basic pipeline, a
few well-placed microarchitectural enhancements were able to re-
claim much of what was lost. Ultimately the SNS design exchanged
a modest amount of performance (11%) and area (12%) overhead
in return for a highly adaptable pipeline robust enough to withstand
the rapidly increasing device failure rates expected in future tech-
nology nodes.

9

Router width Area (mm
2) Percent overhead

32 bits 0.0158 1.2%

64 bits 0.028 2.1%

(a) Router area for different channel width

Design block Area (mm
2) Percent overhead

Scoreboard 0.018 1.4%

Bypass cache 0.044 3.4%

Buffers 0.067 5.3%

(b) Area for SNS specific modules

Figure 11: Area overhead for SNS modules and the crossbar switch

7. ACKNOWLEDGEMENTS
We graciously thank David Penry for his many answers to ques-

tions on the Liberty Simulation Environment and Visvesh Sathe for
his help with Cadence Encounter. Also, our gratitude goes to the
anonymous referees who provided excellent feedback on this work.
This research was supported by ARM Ltd., the National Science
Foundation grant CCF-0347411, and the Gigascale Systems Re-
search Center, one of five research centers funded under the Focus
Center Research Program, a Semiconductor Research Corporation
program. We also kindly thank Hewlett-Packard and Intel Corpo-
ration for the equipment used to carry out this research.

8. REFERENCES
[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable

isolation: building high availability systems with commodity multi-core
processors. In Proc. of the 34th Annual International Symposium on Computer

Architecture, pages 470–481, 2007.

[2] ARM. Arm11.
http://www.arm.com/products/CPUs/families/ARM11Family.html.

[3] ARM. Arm9. http://www.arm.com/products/CPUs/families/ARM9Family.html.

[4] J. S. S. T. Association. Failure mechanisms and models for semiconductor
devices. Technical Report JEP122C, JEDEC Solid State Technology
Association, Mar. 2006.

[5] T. Austin. Diva: a reliable substrate for deep submicron microarchitecture
design. In Proc. of the 32nd Annual International Symposium on

Microarchitecture, pages 196–207, 1999.

[6] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and
J. Smullen. Nonstop Advanced Architecture. In International Conference on

Dependable Systems and Networks, pages 12–21, June 2005.

[7] K. Bernstein. Nano-meter scale cmos devices (tutorial presentation), 2004.

[8] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating online wearout
detection. In Proc. of the 40th Annual International Symposium on

Microarchitecture, pages 109–120, 2007.

[9] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke. Online timing analysis for
wearout detection. In Proc. of the 2nd Workshop on Architectural Reliability,
pages 51–60, 2006.

[10] S. Borkar. Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation. IEEE Micro, 25(6):10–16,
2005.

[11] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating hard faults in
microprocessor array structures. In Proc. of the 2004 International Conference

on Dependable Systems and Networks, page 51, 2004.

[12] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for online diagnosis of
hard faults in microprocessors. In Proc. of the 38th Annual International

Symposium on Microarchitecture, pages 197–208, 2005.

[13] A. Christou. Electromigration and Electronic Device Degradation. John Wiley
and Sons, Inc., 1994.

[14] N. Clark et al. Scalable subgraph mapping for acyclic computation accelerators.
In Proc. of the 2006 International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, pages 147–157, Oct. 2006.

[15] K. Constantinides et al. Bulletproof: A defect-tolerant CMP switch architecture.
In Proc. of the 12th International Symposium on High-Performance Computer

Architecture, pages 3–14, Feb. 2006.

[16] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Software-based online
detection of hardware defects: Mechanisms, architectural support, and
evaluation. In Proc. of the 40th Annual International Symposium on

Microarchitecture, pages 97–108, 2008.

[17] D. Dumin. Oxide Reliability: A Summary of Silicon Oxide Wearout,

Breakdown, and Reliability. World Scientific Publishing Co. Pte. Ltd., 2002.

[18] S. Gupta, S. Feng, J. Blome, and S. Mahlke. Stagenet: A reconfigurable cmp
fabric for resilient systems. In Proc. of the 2nd Reconfigurable and Adaptive

Architecture Workshop, 2007.

[19] V. Kathail, M. Schlansker, and B. Rau. HPL-PD architecture specification:
Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-Packard Laboratories,
Feb. 2000.

[20] A. KleinOsowski et al. The recursive nanobox processor grid: A reliable system
architecture for unreliable nanotechnology devices. In International Conference

on Dependable Systems and Networks, page 167, June 2004.

[21] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou.
Trace-based microarchitecture-level diagnosis of permanent hardware faults. In
Proc. of the 2008 International Conference on Dependable Systems and

Networks, June 2008.

[22] A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, comprehensive error
detection in simple cores. IEEE Micro, 28(1):52–59, 2008.

[23] OpenCores. OpenRISC 1200, 2006.
http://www.opencores.org/projects.cgi/web/ or1k/openrisc_1200.

[24] L.-S. Peh and W. Dally. A delay model and speculative architecture for
pipelined routers. In Proc. of the 7th International Symposium on

High-Performance Computer Architecture, pages 255–266, Jan. 2001.

[25] B. F. Romanescu and D. J. Sorin. Core cannibalization architecture: Improving
lifetime chip performance for multicore processor in the presence of hard faults.
In Proc. of the 17th International Conference on Parallel Architectures and

Compilation Techniques, 2008.

[26] P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Exploiting
microarchitectural redundancy for defect tolerance. In Proc. of the 2003

International Conference on Computer Design, page 481, Oct. 2003.

[27] D. Siewiorek et al. Reliable Computer Systems: Design and Evaluation, 3rd

Edition. AK Peters, Ltd., 1998.

[28] J. Smolens, J. Kim, J. Hoe, and B. Falsafi. Efficient resource sharing in
concurrent error detecting superscalar microarchitectures. In Proc. of the 37th

Annual International Symposium on Microarchitecture, pages 256–268, Dec.
2004.

[29] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. In Proc. of the 39th Annual

International Symposium on Microarchitecture, pages 223–234, 2006.

[30] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault
Tolerance: A Historical Perspective. IBM Journal of Research and

Development, 43(6):863–873, 1999.

[31] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for lifetime
reliability-aware microprocessors. In Proc. of the 31st Annual International

Symposium on Computer Architecture, pages 276–287, June 2004.

[32] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of technology
scaling on lifetime reliability. In Proc. of the 2004 International Conference on

Dependable Systems and Networks, pages 177–186, June 2004.

[33] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting structural
duplication for lifetime reliability enhancement. In Proc. of the 32nd Annual

International Symposium on Computer Architecture, pages 520–531, June 2005.

[34] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive self-healing
architecture for unpredictable silicon. IEEE Journal of Design and Test,
23(6):484–490, 2006.

[35] Trimaran. An infrastructure for research in ILP, 2000. http://www.trimaran.org/.

[36] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I.
August. The liberty simulation environment: A deliberate approach to
high-level system modeling. ACM Transactions on Computer Systems,
24(3):211–249, 2006.

[37] S. Vrudhula, D. Blaauw, and S. Sirichotiyakul. Estimation of the likelihood of
capacitive coupling noise. In Proc. of the 39th Design Automation Conference,
pages 653–658, 2002.

[38] C. Weaver and T. M. Austin. A fault tolerant approach to microprocessor
design. In Proc. of the 2001 International Conference on Dependable Systems

and Networks, pages 411–420, Washington, DC, USA, 2001. IEEE Computer
Society.

[39] E. Wu et al. Interplay of voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides. Solid-State Electronics, 46:1787–1798,
2002.

[40] J. Zeigler. Terrestrial cosmic ray intensities. IBM Journal of Research and

Development, 42(1):117–139, 1998.

10

