
Slice-Balancing H.264 Video Encoding for Improved
Scalability of Multicore Decoding

Michael Roitzsch
Technische Universität Dresden

Department of Computer Science
01062 Dresden, Germany

mroi@os.inf.tu-dresden.de

ABSTRACT
With multicore architectures being introduced to the mar-
ket, the research community is revisiting problems to evalu-
ate them under the new preconditions set by those new sys-
tems. Algorithms need to be implemented with scalability
in mind. One problem that is known to be computationally
demanding is video decoding. In this paper, we will present
a technique that increases the scalability of H.264 video de-
coding by modifying only the encoder stage. In embedded
scenarios, increased scalability can also enable reduced clock
speeds of the individual cores, thus lowering overall power
consumption.

The key idea is to equalize the potentially differing de-
coding times of one frame’s slices by applying decoding time
prediction at the encoder stage. Virtually no added penalty
is inflicted on the quality or size of the encoded video. Be-
cause decoding times are predicted rather than measured,
the encoder does not rely on accurate timing and can there-
fore run as a batch job on an encoder farm as is current
practice today. In addition, apart from a decoder capable
of slice-parallel decoding, no changes to the installed client
systems are required, because the resulting bitstreams will
still be fully compliant to the H.264 standard.

Consequently, this paper also contributes a way to accu-
rately predict H.264 decoding times with average relative
errors down to 1 %.

Categories and Subject Descriptors
C.4 [Performance of Systems]; D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming

General Terms
Algorithms, Performance

Keywords
H.264, Video Encoding, Slices, Multicore, Scalability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

1. INTRODUCTION
The industry is currently seeing the advent of multi-

core processor technology: Because of the well known en-
ergy consumption and heat dissipation problems with high-
speed single-core CPUs, the mainstream computer market
is switching to systems with lower nominal clock frequency,
but with multiple CPU cores. Right now we see dual-core
processors even in entry-level notebook computers and with
research chips companies like Intel have proven the success-
ful integration of 80 cores [9]. The trend towards multiple
CPU cores on a single chip emerges in the world of embed-
ded computing as well [5, 11], the major benefit being the
reduced power consumption caused by distributing compu-
tations across multiple slower-clock cores and the resulting
prolonged battery life of mobile devices.

But this new technology comes with a downside: In the
bygone days of yearly increasing clock-speeds, algorithm de-
velopers and application programmers had to do virtually
nothing to translate the technological advances into an ap-
plication speed boost. Today however, to approach peak
performance, algorithms have to take advantage of more
than one CPU, otherwise they may even run slower than
on yesterday’s hardware. Never before has the continuing
advancement of Moore’s law relied so much on software.

Parallelizing algorithms is no easy task. And parallelizing
them close to linear speedup is even harder. This paper fo-
cuses on the problem of decoding H.264 video [10]. This is
known to be computationally demanding and even the lat-
est single-core machines are just outside the recommended
requirements for full HD resolution (1920×1080) H.264 play-
back [4]. Hence, this task is an obvious candidate for paral-
lelization. We not only cover the problem theoretically, but
also demonstrate implementations of the encoder and the
decoder sides to retrieve real-life measurements and prove
the practical applicability of our solution. Additionally, this
work makes no assumptions on the decoder other than it
being prepared for parallel decoding using slices (see next
section). We deliver our solution entirely within a modified
encoder, which allows end users to continue using the player
application they are used to.

Section 2 briefly elaborates, how the H.264 standard sup-
ports parallelization. However, this is not the main contri-
bution of this work, but is given to provide the reader with
some insights into H.264. In Section 3, we present the scal-
ability problems of the resulting parallelization and discuss
the approaches to overcome them. Section 4 features the in-
tended solution of applying video decoding time prediction,
with Section 5 evaluating the improvement of scalability at

269

virtually no cost. Section 6 compares against related work
and Section 7 concludes the paper.

This work was presented as a work-in-progress on the 27th
IEEE Real-Time Systems Symposium (RTSS 06) [12].

2. PARALLELIZING H.264 DECODING
Modern video codecs such as those in the MPEG stan-

dard family allow parallel decoding through a coding feature
called slice. This is a set of macroblocks within one frame
that are decoded consecutively in raster scan order. For the
following reasons and solution details, slices are the most
promising candidates for independent decoding by multiple
cores:

• Individual frames have complex interdependencies due
to the very flexible usage of reference pictures in
H.264. Therefore it is hard to parallelize at frame
level without limiting the encoders choice of reference
frames. Such a limitation can inflict a bitrate or qual-
ity penalty.

• Other than frames, slices are the only syntactical bit-
stream element, whose boundaries can be found in the
H.264 bitstream without decompressing the entropy
coding layer. This decompression accounts for a large
portion of the entire decoding process (see Figure 4),
so for the sake of good scalability, it needs to be par-
allelized efficiently. Searching for slice boundaries and
then distributing work packages to the individual cores
allows for that.

• H.264 uses spatial prediction, which extrapolates al-
ready decoded parts of the final picture into yet to be
decoded areas to predict their appearance. Only the
residual difference between the prediction and the ac-
tual content is encoded. However, this coding feature
was carefully crafted in the standard so that such pre-
dictions never cross slice boundaries and thus do not
introduce dependencies among the slices of one frame.

• For global picture coding parameters (e.g., video res-
olution), which must be known before a slice can be
decoded, the standard ensures that they do not change
between different slices of the same frame.

• H.264 also uses a mandatory deblocking filter. This
filter can operate across slice boundaries, which would
defer the deblocking to the end of the decoding process
of each frame, outside the slice context. If this is not
desired, a deblocking mode which honors slice bound-
aries is available, but must be requested by the video
bitstream. Therefore, it is an option that has to be
enabled in the encoder. But since we plan to modify
the encoder anyway, this does not pose a problem.

• Decoders usually organize the final picture and any
temporary per-macroblock data storage maps as two-
dimensional arrays in memory. Because the mac-
roblocks of one slice are usually spatially compact and
not scattered over the entire image, every decoder
thread will operate on different memory areas when
reading from or writing to such arrays. This mini-
mizes the negative effects of false cacheline sharing.
The notable exception to this is an H.264 coding fea-
ture called flexible macroblock ordering, which allows

the encoder to arrange macroblocks in patterns other
than the default raster scan order. But this feature is
not commonly used.

In our work, we parallelized the open-source H.264 decoder
from the FFmpeg project [8] to decode multiple slices si-
multaneously in concurrent POSIX threads. Each thread
decodes a single slice. This allows us to perform measure-
ments on real-life decoder code.

3. SCALABILITY CONCERNS
In this section, we examine the scalability problems with

naively encoded slices and provide possible solutions to over-
come those problems.

3.1 Scalability of Uniform Slices
To demonstrate and evaluate our ideas, we obtained some

of the common uncompressed high-definition test sequences
available from [2, 1], namely those listed in Table 1. Us-
ing the x264 encoder [17], which has been shown to per-
form competitively [15], we encoded an ensemble of H.264
test sequences. Every one of the uncompressed source se-
quences was encoded with 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, and 1024 slices per frame, keeping the quality constant
at the level shown in Table 1.1 We made sure that the slices
within each frame are uniform, meaning that they are all of
the same size in terms of macroblocks they contain2, because
this is what naive encoding usually yields. Using our par-
allelized FFmpeg encoder, we measured the decoding time
for each slice when every thread runs on its own CPU core.
Since CPUs with a parallelism of up to 1024 threads are
not commercially available yet, we simulated the dedicated,
interference-free execution by running all threads on a single
CPU core, forcing sequential execution of one thread after
another. This is similar to a standard decoder run on a sin-
gle CPU, but it still contains the overhead caused by the
code added to enable parallelization. All results presented
in this paper have been obtained on a 2GHz Intel Core Duo
machine.

In the uniprocessor case, a frame is complete, when all
slices of that frame are fully decoded. In the multiprocessor
case, each frame’s decoding is finished after the slice with
the longest execution time is fully decoded. Thus, for each
encoded video, the speedup can be calculated by dividing
the time required on a uniprocessor by the time required
on a multiprocessor. The results can be seen in Figure 1.
Although the parallel efficiency is acceptable, it still offers
room for improvement.

3.2 Target Clock Speed of Uniform Slices
One of the goals of multicore computing is to reduce the

clock speed of the individual cores to reduce power consump-
tion. The same idea applies to power-aware computing when
systems can adapt their clock frequency on demand. Thus,
it is interesting to see, what clock speed reductions are possi-
ble with the given parallelization using uniform slices. Since
1The exact encoder command line options were:
x264 --qp quality --threads slices --ref 15
--mixed-refs --bframes 5 --b-pyramid --weightb
--bime --8x8dct --analyse all --direct auto
2Differences of one macroblock have to be tolerated, because
the overall macroblock count per frame of the given video
resolutions might not be integer divisible by the desired slice
count.

270

Table 1: Test sequences used for measurements and simulations.
Name Content Frames Resolution Properties

Parkrun man running through park 504 1280×720 steady motion, high detail
Knightshields man points at shield on a wall 504 1280×720 steady motion, zoom at the end
Pedestrian people walking by in a pedestrian area 375 1920×1080 lots of erratic motion
Rush Hour cars in a rush hour traffic jam 500 1920×1080 cars moving, heat haze
BBC reel with broadcast quality clips 2237 1280×720 clips with very different properties

Figure 1: Speedup of parallel decoding.

every single video frame must be readily decoded within
a fixed time interval, the target clock speed of the system
cannot be designed for the average load of a video stream,
but it must be designed for the peak load, which is the
frame that takes the longest time to decode. To not catch
a runaway value and also because today’s video players are
capable of tolerating a limited overload by buffering some
decoded frames, we decided not to use the single longest
per-frame decoding time, but rather the 95% quantile of all
frame decoding times. The resulting target clock speeds of
the individual cores, scaled to the single-slice case, can be
seen in Figure 2.

Figure 2: Clock speed envelope of parallel decoding.

3.3 Improving Parallel Efficiency
Parallel efficiency suffers because of sequential portions of

the code that cannot be parallelized or because of synchro-
nization overhead or idle time. The latter appears to be the
main issue here: The frame is not fully decoded until the
last of its slices is finished. The decoding of the upcoming
frame cannot commence either, because inter-frame depen-
dencies usually require the previous frame to be complete.
Therefore, all threads that already finished decoding their
respective slice must wait for the last thread to finish. This
situation is common with uniform slices, because the time
it takes to decode a slice does not depend so much on the
macroblock count, but instead largely depends on the cod-
ing features that are used, which in turn are chosen by the
encoder according to properties of the frame’s content like
speed, direction and diversity of motion in the scene.

One obvious way to overcome this problem is to replace
the static mapping of slices to threads with a dynamic one:
When the video is encoded with more slices than the in-
tended parallelism, the slices can be scheduled to threads
dynamically. For example, each thread that has finished de-
coding one slice can start to decode the next unassigned slice
until all slices are decoded. Since the individual slices will
take less time to decode, the waiting times for the longest
running thread to finish up are also reduced.

However, this implies using more slices than strictly re-
quired, which does not come for free. Every slice starts with
a slice header and due to the requirement of no dependencies
to other slices of the same frame, all predictions like spa-
tial prediction and motion vector prediction H.264 applies
to reduce bitstream size are disrupted by slice boundaries.
Consequently, to encode a video with more slices while main-
taining the same quality level, one has to dedicate a larger
bit budget to the encoder. Figure 3 shows the bitstream
growth at constant quality level. Of course this penalty
cannot be eliminated completely, because if a parallelism of
n is intended, the video has to be encoded with at least n
slices. What can be avoided is the extra price to be paid,
when even more slices are used to increase parallel efficiency.
In some applications this extra size increase may be unac-
ceptable, especially since we provide a way to achieve the
same result without this size overhead.

3.4 Balanced Slices
Our idea is to considerably reduce waiting times by encod-

ing the slices for balanced decoding time: The slice bound-
aries shall no longer be placed in a uniform fashion, but
they are placed so that, for each frame, the decoding times
of all slices of that frame are equal. This invariably means
that slice boundaries in adjacent frames will generally not
be at the same position, but this does not pose a problem,
since the H.264 standard allows different slice boundaries
for each frame without any penalty. It also does not hin-

271

Figure 3: Bitstream size increase for BBC sequence
due to the usage of multiple slices.

der parallelization, because the slice header always contains
the position of the slice’s first macroblock, so the slice de-
coder threads will know where to write the decoded data to.
Further, this method is compatible to H.264’s advanced re-
ordering feature called flexible macroblock ordering, which
organizes arbitrary macroblock patters in slice groups. As
these are in turn subdivided into slices, the same balancing
can be applied to the slices of these slice groups.

4. APPLYING DECODING TIME
PREDICTION

Balancing the slices according to their decoding time is
possible with a feedback process: The encoding is done in
a first pass with uniform slices, then information about the
resulting decoding times of the slices is fed back into the
encoder so it can iteratively change the slice boundaries to
approach equal decoding times.

The decoding times in this feedback loop could be deter-
mined by simple measurement: Running the encoded video
through a decoder yields exact decoding times. However,
this may not be applicable, since encoding jobs might run
on hardware that differs from the systems targeted for end-
user decoding. In addition, the encoding could be running in
a distributed environment (encoder farm) or it might share
one machine with other computation tasks, so exact mea-
sures cannot be determined. Furthermore, it would be very
helpful to not only have decoding time information on the
slice level, but for individual macroblocks. This would allow
much faster convergence of the feedback loop towards bal-
anced decoding times. But measurements on such a small
scale might be subject to imprecisions due to measurement
overhead. For those reasons, we propose to use decoding
time prediction instead of actual measurement to determine
the decoding times.

4.1 H.264 Decoder Model
We introduced a new technique to predict decoding times

of MPEG-1/2 and MPEG-4 Part 2 video in [13]. The over-
all idea is to find a vector of metrics extractable from the
bitstream for each frame. This vector’s dot product with a
vector of fixed coefficients gives an estimate of the decoding
time. The coefficients are determined by the predictor au-

 23%

29%

2%6%

37%

4%

Bitstream Parsing

CABAC

H.264 IDCT

Spatial Prediction

Temporal Prediction

Deblocking

Figure 4: Execution time breakdown by functional
block for BBC sequence.

tomatically in a training phase. To ease finding the set of
metrics to use, decoding is broken down into small subtasks.
The metrics chosen for each subtask have to provide a good
linear fit with the execution time of this subtask. Given
such metrics and actual, measured decoding times, a linear
least square problem solver calculates the coefficient vector
that estimates the decoding time with the smallest error.
The solver has been enhanced to avoid negative coefficients
and to provide numerically stable and transferable results.
The resulting coefficient vector is then stored and used for
subsequent predictions.

We will not reiterate the entire method here, but explain
the steps needed to apply the technique to H.264, which
involve:

• mapping the functional blocks of H.264 to those of the
general decoder model reproduced in Figure 5 and

• finding metrics to extract from the bitstream that cor-
relate well with the execution times of the individual
functional blocks.

To judge the relative contribution of the individual parts to
the total decoding time, an execution time breakdown can
be seen in Figure 4. In the following, we will discuss the
modeling and metrics selection by functional blocks.

4.1.1 Bitstream Parsing and Decoder Preparation
The decoder reads in and prepares the bitstream of the

upcoming frame and processes any header information avail-
able. The preparation part mainly consists of precomput-
ing symbol tables to speed up the upcoming decompression.
Its execution time is negligible, so we chose to treat these
two steps as one. Because each pixel is represented some-
how in the bitstream and the parsing depends on the bit-
stream length, the candidate metrics here are the pixel and
bit counts. Figure 6a shows that a linear fit of both actually
matches the execution time.

4.1.2 Decompression and Inverse Scan
The execution time breakdown (see Figure 4) shows the

decompression step to be the most expensive. This sets
H.264 apart from other coding technologies like MPEG-
4 Part 2, where the temporal prediction step was by far
the most expensive [13]. The reason for this shift is that
the H.264 Main Profile uses a new binary arithmetic coding
(CABAC) for compression, that is much harder to compute

272

decoder
prepare decom− coefficient

predictionpression
inverse
scan

post
processingquant.

inverse inv. block
transform1 2 3 4 5 6 7 10

per−frame loop per−macroblock loop

temporal
prediction

spatial
prediction 8 9

parsing
bitstream

Figure 5: Decoder model.

(a) Bitstream parsing (b) CABAC decompression (c) Inverse block transform

(d) Spatial prediction (e) Temporal prediction (f) Post processing

Figure 6: Execution time estimation for individual functional blocks (BBC sequence).

than the previous Huffman-like schemes. A less expensive
variable length compression (CAVLC) is also available in
H.264 and is used in the Baseline and Extended Profiles,
where CABAC is not allowed. Both methods decompress
the data for the individual macroblocks and already sort the
data according to a scan pattern, so the inverse scan is a part
of this step. Using the same rationale as for the preceding
bitstream parsing, a linear fit of pixel and bit counts predicts
the execution time well. We restrict ourselves to CABAC
with results shown in Figure 6b. As this step accounts for a
large share of total execution time, it is fortunate that the
match is tight.

4.1.3 Coefficient Prediction
Because H.264 contains a spatial prediction step, the coef-

ficient prediction found in earlier standards is not used any
more.

4.1.4 Inverse Quantization and Inverse Block Trans-
form

These two steps convert the macroblock coefficients from
the frequency domain to spatial domain, similarly to the
IDCT in previous standards. However, H.264 knows two
different transform block sizes of 4×4 or 8×8 pixels, which

can even be applied hierarchically. Therefore, we account,
how often each block size is transformed and use a linear fit
of these two counts to predict the execution time. Figure 6c
shows that this works. The remaining deviations are most
likely caused by optimized versions of the block transform
function for blocks, where only the DC coefficient is nonzero.
But given the small percentage of total execution time this
step contributes, we refrained from trying to improve this
prediction any further.

4.1.5 Spatial Prediction
In this step, already decoded image data from the same

frame is extrapolated with various patterns into the target
area of the current macroblock. This prediction can use
block sizes of 4×4, 8×8, or 16×16 pixels, so we account
those prediction sizes separately. A linear fit of those counts
adequately predicts the execution time (see Figure 6d).

4.1.6 Temporal Prediction
This step was the hardest to find a successful set of metrics

for, because it is exceptionally diverse. Not only can motion
compensation be used with square and rectangular blocks of
different sizes, each block can also be predicted by a motion
vector of full, half or quarter pixel accuracy. In addition

273

to that, bi-predicted macroblocks use two motion vectors
for each block and can apply arbitrary weighting factors to
each contribution. In [13], we broke this problem down for
MPEG-4 Part 2 to counting the number of memory accesses
required. A similar approach was used here: by consulting
the H.264 standard [10] and some empirical improvements
we came up with motion cost values, depending on the pixel
interpolation level (full, half or quarter pixel, independently
for both x- and y-direction). These cost values are then
accounted separately for the different block sizes of 4×4,
8×8, or 16×16 pixels. The possible rectangular block sizes
of 4×8, 8×4, 8×16, or 16×8 are treated as two adjacent
square blocks. Bidirectional prediction is treated as two
separate motion operations. The resulting fit can be seen in
Figure 6e.

4.1.7 Post Processing
The mandatory post processing step tries to reduce block

artifacts by selective blurring of macroblock edges. A suffi-
ciently precise execution time prediction is possible by just
counting the number of edges being treated (see Figure 6f).

4.1.8 Metrics Summary
The metrics selected for execution time prediction there-

fore are:

• pixel count,

• bit count,

• count of intracoded blocks of size 4×4,

• count of intracoded blocks of size 8×8,

• count of intracoded blocks of size 16×16,

• motion cost for intercoded blocks of size 4×4,

• motion cost for intercoded blocks of size 8×8,

• motion cost for intercoded blocks of size 16×16,

• count of block transforms of size 4×4,

• count of block transforms of size 8×8,

• count of deblocked edges.

4.2 Decoding Time Prediction and Balanced
Slices

To balance the slices of one frame for equalized decoding
times, we have to pass decoding time information to the en-
coder. Therefore, the decoding time prediction is trained
according to [13] on the hardware end-users will decode the
resulting videos on. Even if a single hardware platform can-
not be pinpointed, there may be a typical embedded or even
mobile target, for which the vendor wants to optimize power
consumption and thus battery life. For example, a 3G net-
work provider might want to optimize broadcast feeds for
its common brand of cell phones. Videos and TV shows en-
coded for Apple’s iTunes Store could be optimized for the
iPod. In addition to that, content optimized for one plat-
form will likely show improved scalability on other multicore
platforms as well, unless their architecture differs radically.

The encoder can then use the training data obtained on
the target hardware to balance the slices’ decoding time in
the resulting H.264 video. This is done in a way that sup-
ports the current practice of encoder use in the industry:

• The encoding uses no time measurements, but decoding
time prediction only. No actual execution of decoder
code and wall-clock sampling is performed. This allows
setups that would interfere with timing behavior, like
encoders running as background jobs or distributed
on an encoder farm. Additionally, the predictor runs
faster than the actual decoding.

• Decoding time prediction is trained on separate hard-
ware. This enables the encoder to run on hardware en-
tirely different from the end-user decoding hardware.
Even custom silicon for H.264 encoding can be used,
if it can adhere to slice boundaries from our balancing
algorithm.

• The prediction can be applied on the macroblock level.
This results in accurate decoding times for each indi-
vidual macroblock. With such information available,
balancing does not require many encoder iterations
with boundaries for the balanced slices guessed from
coarse timing information.

In the following section, we will validate the above claims.
Practically, the slice balancing works as follows: The video

is first encoded traditionally, resulting in uniform slices. For
each frame of the resulting video, decoding time prediction
is applied to each macroblock. Ignoring not parallelizable
leading and trailing housekeeping, the total decoding time t
of a frame is the sum of its per-macroblock decoding times.
If that frame should be divided into n balanced slices, each
slice has to contain so many macroblocks that their cumula-
tive decoding time is as close to t

n as possible. This idea is
easily implemented by iterating over all macroblocks of one
frame in raster-scan order and accounting their decoding
time.

5. EVALUATION
We will start by evaluating the decoding time prediction

with both frame and macroblock granularity. After that, we
demonstrate the scalability improvements and clock speed
reductions of balanced slices. Unless noted otherwise, all
results have been obtained on a 2GHz Intel Core Duo ma-
chine.

5.1 Accuracy of Decoding Time Prediction
The predictor was trained [13] with the sequences BBC

and Pedestrian (see Table 1), each in the single-slice vari-
ant. Applying the prediction to all test videos at frame level
yields the results shown in Table 2. With average relative
errors between -4.54% and +4.55 %, the frame-level predic-
tion is very accurate. Figures 7 and 8 present detailed results
for the BBC sequence. You can see that the prediction does
not only work in average, but closely follows decoding time
fluctuations of individual frames.

Table 2: Frame-level decoding time prediction.
Name Avg. Relative Error Std. Deviation

Parkrun 3.98% 6.68%
Knightshields 4.55% 3.41%
Pedestrian -1.25% 3.34%
Rush Hour -4.54% 3.00%
BBC 1.69% 5.67%

274

Figure 7: Actual decoding time, predicted decoding
time and absolute error plotted over the runtime of
the BBC sequence.

Figure 8: Histogram of the frame-level relative pre-
diction error for BBC sequence.

However, as we plan to apply the prediction to individual
macroblocks, it has to work with an even finer granularity.
Figure 9 demonstrates this for BBC sequence, while Table 3
shows the results for all videos. With average relative er-
rors for macroblock-level prediction as low as 0.86%, the
results are promising. Unfortunately, the standard devia-
tion is higher than for frame-level prediction, which is most
likely due to the noisier behavior on the macroblock-level
caused by effects like cache misses.

Table 3: Macroblock-level decoding time prediction.
Name Avg. Relative Error Std. Deviation

Parkrun 0.86% 11.13%
Knightshields 0.91% 9.56%
Pedestrian -5.42% 10.84%
Rush Hour -8.77% 8.70%
BBC -1.04% 10.70%

5.2 Speedup of Balanced Slices
To assess the increase in scalability, we first demonstrate

the effect of the balancing encoding. Using decoding time
prediction, we reencoded a balanced 2-slices version of the
Parkrun sequence. Figure 10 visualizes slice boundaries and
per-slice decoding times before and after balancing. You

Figure 9: Histogram of the macroblock-level relative
prediction error for BBC sequence.

can see that the slice boundaries move between subsequent
frames, resulting in more equalized decoding times.

The resulting increase in speedup can be seen in Figure 11
for a selection of test sequences. The plots show practically
achieved speedup with uniform slices and balanced slices as
well as the hypothetical speedup with perfectly balanced
slices, that experience only the penalty caused by not par-
allelizable code [3]. As CPUs with the shown number of
cores are not yet available, measurements have been made
with a single CPU as discussed in Section 3.1: Measuring
the decoding times per slice allows estimates of the behavior
on multiple cores, since parallel decoding of H.264 slices is
largely interference-free.

5.3 Clock Speed Reduction
As introduced in Section 3.2, scalability improvements

also offer the potential of reducing the clock speed of the
individual cores. Because the cores must still be fast enough
to decode the frame with the longest decoding time, the 95%
quantile of the decoding times is an interesting indicator (see
Figure 12).

5.4 Bitstream Size Considerations
If quality is kept constant, slice balancing has negligible

influence on bitstream sizes as can be seen in Table 4. Anal-
ogously, if average bitrate and thus bitstream size is kept
constant, as is commonly done when given bit budget or
storage constraints apply, the quality will not change visi-
bly when using balanced slices.

Table 4: Bitstream size impact of balanced slices.
Shown are the sizes in bytes for the four-slice ver-
sions.
Name Unbalanced Balanced Rel. Difference

Parkrun 87172446 87164298 -0.009%
Knightshields 45549457 45552631 +0.007%
Pedestrian 23850582 23617081 -0.979%
Rush Hour 34148349 33807077 -0.999%
BBC 47386673 47441590 +0.116%

6. RELATED WORK
The idea to use slices to parallelize H.264 decoding is not

new. Wiegand et al. formulated it in [16] for H.264. For

275

(a) Relative slice boundary with uniform slices (b) Measured per-slice decoding time with uniform slices relative
to per-frame decoding time

(c) Relative slice boundaries with balanced slices (d) Measured per-slice decoding time with balanced slices relative
to per-frame decoding time

Figure 10: The effect of slice balancing.

(a) Parkrun sequence (b) BBC sequence (c) Pedestrian Area sequence

Figure 11: Speedup of parallel decoding with balanced slices.

preceding video decoding standards, the potential of slices
for parallel decoding was evaluated even earlier. Bilas et
al. analyzed parallel decoding of MPEG-2 in [6] and came
up with two alternative approaches: GOP-level parallelism
and slice-level parallelism. The former dispatches very large
chunks of data to the individual processing units as GOPs
are independent groups of pictures, separated by fully in-
tracoded frames (I-frames). With MPEG-2, GOPs are typi-
cally 15 frames long. However, this idea is not suited for
H.264, because I-frames in H.264 are more sparsely dis-
tributed, which is one source of H.264’s increased coding
efficiency compared to MPEG-2. In addition, to allow long-
term prediction, an I-frame does not necessarily separate
the stream into independently decodable units. Only IDR-
frames (internal decoder reset frames) completely inhibit all
inter-frame dependencies. As these can be seconds apart, us-

ing IDR-separated-GOPs as parallelizable workloads would
introduce large delays until the decoder has received enough
data to fully utilize the multicore CPU. Users would expe-
rience this as longer player response times and increased
latency for live streams.

But [6] also analyzes slice-level parallelism for MPEG-2
and also recognizes speedup penalties caused by imbalances
in the workload. However, they use a dynamic assignment
of slices to threads and propose to start decoding slices from
the next frame when cores are waiting. With MPEG-2,
this approach may be viable, because most frames in typi-
cal MPEG-2 streams are B-frames, which are never used as
references. Thus, decoding slices from the next frame be-
comes possible, whenever the current frame is a B-frame,
as the next frame does not depend on the current frame in
this case. Again, this idea is not suited for H.264, because

276

(a) Parkrun sequence (b) BBC sequence (c) Pedestrian Area sequence

Figure 12: Clock speed envelope of parallel decoding with balanced slices.

any frame can be a reference frame. Limiting the encoder
in its choice of reference frames to allow this optimization
is unwise, because it would prevent usage of the preceding
frame, which is regularly the most effective one.

Therefore, due to the advances of H.264, work on par-
allelizing MPEG-2 does not directly apply. Some work on
multicore H.264 decoding is available, like [14]. The authors
also conclude that data partitioning is the enabling method.
They also dismissed frame-level parallelism, but went even
beyond slices to exploit the parallelism of individual mac-
roblocks by decomposing their dependencies and selecting
groups of independent macroblocks for concurrent decod-
ing. While this is an intriguing idea and does not require
special encoding, it requires modifications to decoders. The
author’s evaluation focuses more on memory load instead
of scalability, so it is difficult to project, how far this con-
cept scales. We could imagine inter-macroblock dependen-
cies and inter-core cacheline transfers caused by the fine-
grained workload dispatching to impede speedup for large
numbers of cores.

In summary, while previous work optimizing either the
encoder [7] or the decoder [6, 14] for multiprocessing is avail-
able, the novelty of our approach is the modification of only
the encoder to improve performance of the decoder.

7. OUTLOOK AND CONCLUSION
We presented a new technique to improve parallel effi-

ciency of multithreaded H.264 decoding. By using slices
balanced for decoding time, this method can achieve im-
provements in terms of scalability or clock speed reduction.
The latter is especially important on multicore systems and
in power-aware computing since it allows to run the cores at
lower clock speeds, which can help conserving energy. Our
idea imposes virtually no overhead on encoding workload
or video bitstream size. The current practice of using en-
coders as background jobs or in distributed encoder farms is
supported. No modifications to the decoder other than en-
abling it for parallel decoding are necessary, so for example
out-of-the-box QuickTime installations, which are capable
of multithreaded decoding, should work.

The results are not dramatic, but as the improvement
comes for free, we find the results still interesting. However,
the first and foremost task for future work is to improve
the balancing even further to push the speedup closer to
the theoretical maximum for perfectly balanced slices. For
this, we will evaluate the quality of the decoding time pre-
diction to assess, whether it is accurate enough to achieve

the scalability level we desire. Maybe an iterative approach
with multiple balancing steps can help improving scalabil-
ity. To counteract the resulting overhead, we will consider
integrating the balancing steps with the multiple runs of
a traditional multipass encoder. We also intend to evalu-
ate, how a video balanced for one specific platform scales
on different hardware to analyze the degree of architecture
dependencies of the solution.

The implementation is not yet fully integrated into the
encoding. Instead of two separate encoding passes, it would
be beneficial to reencode on the frame level: Every frame is
encoded first with uniform slices, balanced slice boundaries
are determined and the frame is reencoded with balanced
slices right away. This would speedup the encoding because
of warm caches, but has no effect on the results presented
here.

A potential improvement for the decoding is to have the
encoder embed core affinity hints in the video bitstream:
Depending on what reference frame the decoder needs to
access, some slices can be decoded more efficiently on cores,
where a certain reference slice has been decoded earlier, be-
cause the reference image data will still be in a cache close
to that core. If the encoder has such intimate knowledge on
the target hardware, it can anticipate such effects and ad-
vise the decoder with affinity hints it embeds in the H.264
bitstream.

Despite these opportunities for future work, we think we
have helped to establish a technology leading towards a
production-ready H.264 encoder capable of improving par-
allel efficiency for decoding on everyday systems.

8. REFERENCES
[1] BBC Motion Gallery Reel. http://www.apple.com/

quicktime/guide/hd/bbcmotiongalleryreel.html.
[2] High-Definition Test Sequences.

http://www.ldv.ei.tum.de/liquid.php?page=70.
[3] Amdahl, G. Validity of the Single Processor

Approach to Achieving Large-Scale Computing
Capabilities. In Proceedings of the AFIPS Conference
(1967), pp. 483–485.

[4] Apple Inc. QuickTime HD Gallery System
Recommendations. http://www.apple.com/
quicktime/guide/hd/recommendations.html.

[5] ARM. ARM11 MPCore. http://www.arm.com/
products/CPUs/ARM11MPCoreMultiprocessor.html.

[6] Bilas, A., Fritts, J., and Singh, J. P. Real-Time
Parallel MPEG-2 Decoding in Software. In

277

Proceedings of the 11th International Parallel
Processing Symposium (1997), pp. 197–203.

[7] Chen, Y. K., Tian, X., Ge, S., and Girkar, M.
Towards efficient multi-level threading of H.264
encoder on Intel hyper-threading architectures. In
Proceedings of the 18th International Parallel and
Distributed Processing Symposium (2004).

[8] FFmpeg Project. http://www.ffmpeg.org/.
[9] Intel News Release. Intel Develops Tera-Scale

Research Chips. http://www.intel.com/pressroom/
archive/releases/20060926corp b.htm.

[10] ISO/IEC 14496-10. Coding of audio-visual objects,
Part 10: Advanced Video Coding.

[11] Raytheon Company. MONARCH Processor Enables
Next-Generation Integrated Sensors.
http://wwwxt.raytheon.com/technology today/
2006 i2/eye on tech processing.html.

[12] Roitzsch, M. Slice-Balancing H.264 Video Encoding
for Improved Scalability of Multicore Decoding. In
Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 06) (Rio de Janeiro, Brazil,
December 2006), IEEE, pp. 77–80.

[13] Roitzsch, M., and Pohlack, M. Principles for the
Prediction of Video Decoding Times applied to
MPEG-1/2 and MPEG-4 Part 2 Video. In Proceedings
of the 27th IEEE Real-Time Systems Symposium
(RTSS 06) (Rio de Janeiro, Brazil, December 2006),
IEEE, pp. 271–280.

[14] van der Tol, E. B., Jaspers, E. G., and
Gelderblom, R. H. Mapping of H.264 decoding on a
multiprocessor architecture. In Proceedings of the
SPIE (May 2003), pp. 707–718.

[15] Vatolin, D., Parshin, A., Petrov, O., and
Titarenko, A. Subjective Comparison of Modern
Video Codecs. Tech. rep., CS MSU Graphics and
Media Lab Video Group, January 2006.

[16] Wiegand, T., Sullivan, G. J., Bjøntegaard, G.,
and Luthra, A. Overview of the H.264/AVC Video
Coding Standard. IEEE Transactions on Circuits and
Systems for Video Technology 13, 7 (July 2003),
560–576.

[17] x264 Project.
http://www.videolan.org/developers/x264.html.

278

