
Block Recycling Schemes and Their Cost-based
Optimization in NAND Flash Memory Based Storage

System
Jongmin Lee

School of Computer Science
University of Seoul

Seoul, Korea

jmlee@uos.ac.kr

Choulseung Hyun
School of Computer Science

University of Seoul
Seoul, Korea

cshyun@venus.uos.ac.kr

Sunghoon Kim
Center for the Info. Security Tech.

Korea University
Seoul, Korea

kimsunghoon@korea.ac.kr

Seongjun Ahn
Software Laboratories

Samsung Electronics Co.
Seoul, Korea

Seongjunahn@gmail.com

Hunki Kwon
School of Computer Science

University of Seoul
Seoul, Korea

kwonhunki@uos.ac.kr

Jongmoo Choi
Division of Information and CS

Dankook University
Seoul, Korea

choijm@dankook.ac.kr

Donghee Lee*
School of Computer Science

University of Seoul
Seoul, Korea

dhl_express@uos.ac.kr

Sam H. Noh
School of Computer and Information Engineering

Hongik University
Seoul, Korea

Samhnoh@hongik.ac.kr

ABSTRACT
Flash memory has many merits such as light weight, shock
resistance, and low power consumption, but also has limitations like
the erase-before-write property. To overcome such limitations and
to use it efficiently as storage media in mobile systems, Flash
memory based storage systems require special address mapping
software called the FTL (Flash-memory Translation Layer). Like
cleaning in Log-structured file system (LFS), the FTL often
performs a merge operation for block recycling and its efficiency
affects the performance of the storage system. To reduce the block
recycling costs in NAND Flash memory based storage, we
introduce another block recycling scheme that we call migration.
Our cost-models and experimental results show that cost-based
selection of merge or migration for each block recycling can
decrease block recycling costs and, therefore, improve performance
of Flash memory based storage systems. Also, we derive the
macroscopic optimal migration/merge sequence minimizing block
recycling costs for each migration/merge combination period.

Experimental results show that the performance of Flash memory
based storage can be further improved by the macroscopic
optimization than the simple cost-based selection.

Categories and Subject Descriptors
C.5.3 [Microcomputers]: Portable Devices; D.4.2 [Operating
System]: Storage Management—Secondary storage

General Terms
Design, Performance, Experimentation

Keywords
Flash memory based storage system, merge operation, migration
operation, FTL (Flash-memory Translation Layer)

1. INTRODUCTION
Flash memory has been used as storage media in mobile devices
such as cellular phones and PDAs and is now to be used in personal
computers in the name of solid state disks (SSD). Flash memory has
advantages over conventional magnetic disks in terms of weight,
shock resistance, and power consumption. However, it also has
some inherent limitations such as the erase-before-write requirement
and different unit sizes for read/write and erase operations.
Therefore, special address mapping software called the Flash-
memory Translation Layer (FTL) was introduced into Flash
memory based storage systems to overcome these limitations [6].
The FTL is a software layer that emulates an array of logical sectors

* Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’07, September 30-October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009...$5.00.

174

over the Flash memory media by translating a logical sector address
to a physical data location on Flash memory.
When a read request is given with a sector address, the FTL
searches a map to find the location of the sector data on Flash
memory and, if the search is successful, it reads and delivers the
sector data. In case of a write request, the FTL allocates a new
empty space for that sector and writes the sector data on it. It then
modifies the mapping information for the sector. Overall, the
operations of the FTL is similar to Log-structured file system (LFS)
[16] in that it remaps the sector location to a new area for each write
request and space need to be reclaimed via a space recycling scheme
[13]. Specifically, in NAND Flash memory, erase units called
blocks need to be recycled and, henceforth, we call the space
recycling scheme in NAND Flash memory FTL as a block recycling
scheme. This block recycling scheme in NAND Flash memory FTL
is also often called a merge operation because it collects sectors
scattered on two or more blocks into a block and the other blocks
are reclaimed. In this paper, we assume that the FTL uses the merge
operation for its recycling scheme.
Like the LFS where its performance depends on the efficiency of
the space recycling scheme, the block recycling efficiency of the
FTL, specifically the merge efficiency, affects the performance of
Flash memory based storage systems. Moreover, its efficiency
varies according to the data write pattern as can be similarly
observed with the LFS. If data were written sequentially, the merge
operation can reclaim a whole block with low cost and, conversely,
for randomly or repeatedly written data the block reclaiming cost is
quite expensive. Unfortunately, we can observe both sequential and
repeated write patterns in file system requests and, thus, we need to
find an efficient block recycling scheme for repeated write as well
as for sequential write.
To improve block recycling efficiency for the repeated write
pattern, we introduce a new block recycling scheme, which we call
the migration operation. Specifically, the migration operation can
reduce the block recycling costs for repeated write patterns that
forces the costly merge operation to reclaim a block. Also, we
present cost models of the merge and the migration operations that
enable the FTL to select a low cost operation between them when it
comes to recycle a block. Experiments with the Postmark
benchmark and embedded system workloads show that the cost-
based selection of migration or merge operation reduces block
recycling costs of FTL and, as a result, improves the performance of
Flash memory based storage. During the experiments, we found the
existence of a macroscopic optimal migration/merge sequence that
minimizes block recycling costs for each migration/merge
combination period. Experimental results of the benchmark and the
workloads show that the performance of Flash memory based
storage can be further improved with the macroscopic optimization
than the simple cost-based selection.
This paper is organized as follows. In the next section, we describe
characteristics of Flash memory and related works. In Section 3, we
provide basic knowledge regarding the block recycling scheme,
specifically the merge operation in FTL. In Section 4, we introduce
the migration operation and then derive the cost models of the
migration and merge operations. In Section 5, we present a
macroscopic optimization that minimizes block recycling costs for
each migration/merge combination period. Section 6 presents the
experimental results of the cost-based selection and the macroscopic
optimization, and finally we conclude this paper in Section 7.

2. FLASH MEMORY CHARACTERISTICS
AND RELATED WORKS
NAND Flash memory has unique characteristics as follows. NAND
Flash memory consists of the same size blocks, each of which in
turn consists of the same size pages. The block size and the page
size are typically 16 to 256 KB and 0.5 to 4 KB, respectively.
Read/write data from/to NAND Flash memory is performed in page
units. SLC (Single Level Cell) Flash memory typically takes 25 μs
for page read and 300 μs for page write, respectively, while for
MLC (Multi Level Cell) Flash memory it takes considerably longer
for both page read and page write operations. Data in Flash
memory, once written to a page, cannot be updated in place. This
means that to update a page without an FTL the block containing
the page must be erased and that all pages in the block must be
written again along with the new data. Such an erase operation is
performed in block units and typically takes 2 ms in SLC Flash
memory and 1.5 ms in MLC Flash memory, respectively [1, 2].
According to their mapping unit, typical FTLs can be divided into
two categories, a page mapping FTL and a block mapping FTL. A
page mapping FTL calculates a logical page number with a
requested sector number and then translates the logical page number
to a physical location (a page in a block) through a map. In case of
block mapping FTL, a physical block has a fixed number of sectors
in ordered manner on its pages. When a sector read/write request is
given, a block mapping FTL calculates a logical block number by
dividing the requested sector number with the number of sectors in a
block and then translates the logical block number to a physical
block number through a map [4, 10, 14]. Then, the FTL can easily
find a sector location within the physical block because sectors are
stored at that block typically in ascending order.
Page mapping FTLs have been used in low-capacity NOR Flash
memory cards while block mapping FTLs have been used in most
high-capacity NAND Flash memory cards [3, 5] because the map
size for block mapping is much smaller than for page mapping. As
mentioned earlier, performance of a page mapping FTL depends on
space recycling efficiency just as the performance of LFS depends
on cleaning efficiency [13]. Also, as performances of LFS and LFS-
like Flash memory file systems such as JFFS [17] and YAFFS [7]
have been improved by separating hot and cold data, space
recycling efficiency of a page mapping FTL could be improved by
separating hot and cold data [8, 9].
Block mapping FTLs have some advantages in that the map size is
small and overall operation is simple. Also, HW/SW co-design of
frequent operations can boost the performance of an FTL as we can
see in solid state disks. However, the performance of a block
mapping FTL is degraded in case of random and repeated write
patterns. To overcome this problem, Kang et al. proposed a hybrid
scheme in which a mapping unit is a super block (a group of
logically adjacent blocks) while page mapping is used inside a super
block [12]. Also, Lee et al. proposed another hybrid approach called
FAST (Fully Associative Sector Translation) [15], where the sector
mapping (similar to page mapping) was introduced restrictively to
the write buffer area (Log blocks described in Section 3) while the
mapping unit for the data area is still in blocks. Experimental results
of the FAST scheme show that the complementary sector mapping
is helpful in improving the performance of Flash memory storage,
specifically, in case of random and repeated write patterns.
However, these hybrid schemes require additional implementations
of page mapping features and garbage collection mechanisms for

175

page mapping areas aside from the original block mapping FTL. In
contrast, the migration operation proposed in this paper can be
implemented with minor modifications of the original merge
operation, but the improvement in performance is limited to
repeated write patterns only. Eventually, the FTL designers will
have to choose between the hybrid schemes or our approach to
improve performance of non-sequential write patterns based on the
given resources and performance requirements,

3. FLASH-MEMORY TRANSLATION
LAYER AND MERGE OPERATION
As mentioned earlier, an FTL makes Flash memory appear to the
upper file system layer like a virtual block device. For this purpose,
the FTL creates virtual sectors on Flash memory and manages them
so that they seem to be updated in place. Also, the FTL reclaims
blocks with a block recycling scheme when it needs free space for
virtual sector updates. Before we introduce the new block recycling
scheme that we call migration, we will explain an existing bock
recycling scheme called the merge operation. In explaining these
FTL operations, we assume that the FTL uses a block mapping
scheme in translating the logical address to a physical address.
Though the commercial FTL used in our experiments has
sophisticated features such as multi-level mapping, wear-leveling,
and other performance and reliability enhancement schemes, those
features do not conflict with the fundamentals of the block recycling
schemes and the cost functions described in this paper.
As existing data in a Flash memory block cannot be updated in
place, FTL redirects a sector write request to an unused page in a
temporary block which we call henceforth a log block. In Fig. 1(b),
repeated write requests to sectors 8 and 9 are redirected to pages in a
log block. Subsequent write requests will eventually consume all
pages in the log block. Then, a merge operation will need to be
performed to reclaim a log block to service subsequent write
requests. A merge operation is composed of erasing a new empty
log block and copying all valid sectors from either the old log block
or the old data block to the new empty log block (Fig. 1(c)). In the
example in Fig. 1(c), after copying all sectors, the new log block
becomes the data block for sectors 8~11 and both the old data block
and the old log block become free log blocks that will be used for
subsequent write requests or later merge operations. Last of all, the
relevant map is updated to reflect the new status of the data and log
blocks.
If all sectors 8~11 are written sequentially in the log block, an
optimized form of the merge operation, sometimes called the switch
merge, is possible. For switch merge, the FTL, without erasing a
new log block and the copying of pages, simply updates the map to
designate the log block as the new data block for sectors 8~11, and
the old data block for those sectors is designated a free log block.
With this optimization, block recycling costs for sequential write
patterns become much lower than those for random or repeated
write patterns that require the full merge procedure of erasing a
block and copying all pages as depicted in Fig. 1.
By the way, we can easily observe not only sequential write patterns,
but also repeated such patterns from the upper layer file system. In
Fig. 2, we see a mixture of two types of write requests, sequential
write of file data and repeated update of metadata such as FAT and
directories. We think that these mixed write patterns are common in
many file systems and that an optimization is also needed for this
repeated write besides the already efficient sequential write.

Figure 1. Merge operation in FTL

NIKON Trace Access Pattern (Write)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Write command

Se
ct

or
 n

um
be

r

Figure 2. Write pattern of a FAT file system running on Flash

memory based storage of a Nikon camera

4. MIGRATION OPERATION AND COST
MODELS
This section describes the new block recycling scheme for repeated
write patterns that we refer to as the migration operation. Also, we
derive the cost models for the merge and migration operations that
are used by the FTL to select the more cost effective method when
reclaiming a block.
If writes to some sectors are repeatedly requested, then those sectors
will be redirected to a log block until all pages in the log block are
consumed. When all the pages have been used, as we know, a
merge operation must be performed to generate a free block and,
after the merge, all pages in the new free block can be used again

176

for subsequent write requests. Observe in Fig. 3(b), that only two
pages are written repeatedly in the log block. When a relatively
small number of pages are written repeatedly in a log bock, we have
an opportunity to apply a migration operation and eventually, to
reduce block recycling costs. Unlike the merge operation that erases
a new log block and copies all pages from the old data block and/or
the old log block, the migration operation erases a new log block
and copies only the valid pages, two pages in Fig. 3(b), from the old
log block to the new log block. The old log block, then, becomes a
free block, while the new log block becomes a write buffering area
for sectors 8~11 to which all incoming write requests for those
sectors will be redirected.

Figure 3. Migration operation

Assume that the number of pages in a block is Np and the number of
valid unique pages in the old log block is p (p=2 in Fig. 3(b)). Then,
the migration operation copies p pages from the old log block to a
new log block and, as a result, Np-p pages are available in the new
log block after migration. Generally, the merge operation pays a
high price, but produces all Np pages available in the new log block,
while the migration operation pays a lower price, but produces a
relatively small number of pages that are available in the new log
block. Therefore, a cost-benefit analysis is required about which
operation is more cost-efficient for each block recycling.
To identify the more cost-efficient operation between the migration
and merge operations, we derive cost-per-benefit models for both
operations. Let us assume that CE is the block erase cost (or time)
and Ccp is the page copy cost (or time) from a block to another.
Many contemporary SLC Flash memory chips provide a copyback
operation, which copies a page from a block to another through an
internal buffer in the Flash memory chip. For those chips, a page
copy could be done with a single copyback operation. Otherwise, as

for MLC Flash memory chips, this would be done via two
operations, that is, a page read and a subsequent page write.
To calculate the merge cost per available page, let us begin from
when the merge operation has finished in Fig. 1(c) and a write
request for sector 8 follows it. To service the write request, the FTL
allocates and erases an empty log block with cost CE. Then, all
subsequent write requests are redirected to one of the Np pages in
the newly allocated log block. Later when all the pages are
consumed, a merge operation is performed by erasing a new log
block with cost CE and copying all Np pages from either the old data
block or from the old log block with cost NpCcp. Then, the relevant
map is updated and a period of block life cycle (interval between
successive merge operations) ends. If a write request for sector 8~11
follows, then a new period of block life cycle begins again and the
FTL will allocate an empty log block to serve that request. In total,
the FTL pays merge cost, Cmerge, to acquire Np available pages for
each period. Summing up, we can define merge cost as 2CE + NpCcp
and its benefit as Np (available pages in the new log block) for each
period. Hence, the merge cost per available page, Wmerge, is as
follows;

To calculate migration cost per available page, let us again begin
from when the migration operation has completed in Fig. 3(c) and a
write request for sector 8 follows it. To service the write request, the
FTL redirects the write request to one of Np-p unused pages in the
log block. After Np-p write requests are served with that log block,
either a migration or a merge operation should be performed. Let us
assume that a migration operation is preferred. Then it will erase a
new log block with cost CE and copy p valid pages from the old log
block to the new log block with cost pCcp. In total, FTL pays
migration cost, Cmig, to acquire Np-p available pages for each period,
where the migration cost, Cmig, is CE +pCcp. Hence, the migration
cost per available page, Wmig, is as follows.

These cost models for migration and merge operations do not
consider the map update cost because it is almost identical for both
operations and makes up only a small portion in the total block
recycling cost. For example, our FTL is highly optimized to gather
in a single map page all information that is to be modified during
block recycling and, thus, it writes a single map page after block
recycling.
With the cost models, an FTL can select a cost-effective operation
for each block recycling. Note that the migration cost for an
available page, Wmig, varies according to p, the number of copied
pages during migration. At a certain value of p, Wmig becomes equal
to Wmerge and we call it the equilibrium p. The existence of an
equilibrium p suggests that the migration operation be preferred
when p is smaller than equilibrium p and vice versa.

2

2

p

p

cpE

p

cppE

N
pmequilibriu

pN
CpC

N
CNC

=

−

⋅+
=

⋅+

pN
CpC

W
p

cpE
mig −

⋅+
=

p

cppE

p

merge
merge N

CNC
N

C
W

⋅+
==

2

177

5. MACROSCOPIC OPTIMAL
MIGRATION/MERGE SEQUENCE
We implemented the cost-based selection between merge and
migration operations and measured the performance with the
Postmark benchmark. However, the performance improvements
were much lower than we expected as will be shown later in Section
6. Also, better performance was observed by applying a merge
operation even when p was much smaller than the equilibrium p.
These observations lead us to recognize the existence of a
macroscopic optimal migration/merge sequence that minimizes
block recycling costs for each migration/merge combination period.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000
Number of successive migration operations

N
um

be
r o

f c
op

ie
d

pa
ge

s

Figure 4. Number of copied pages during migration operation

Before we introduce the macroscopic optimization, we need to
define Pn, a function for value p. Assume that a new period begins
after a migration that copied p pages from an old log block to a new
log block. In the next period, if only pages that already reside in the
log block are written again, then the next migration will still copy p
pages. On the other hand, if a write request for a new sector that
does not exist in the log block arrives and is written to the log block,
then the next migration will copy p+1 pages. In every case, the
number of copied pages never decreases until a merge operation is
performed; in fact, also it often increase as new sectors enter the log
block. To confirm this analysis, we observed with the Postmark
benchmark the number of copied pages of a block containing FAT
and root directory sectors. The results, depicted in Fig. 4, show that
the number of copied pages during migration increases almost
linearly for successive migrations. This suggests a non-decreasing
function Pn with an increasing rate α , where n is the number of
successive migrations since an originating merge operation.
Let us now assume that a macroscopic period begins right after a
merge operation and it ends by performing another merge operation.
Also, we assume that migration operations are applied n times until
the ending merge operation. Then, the objective becomes finding
the n value such that the sequence minimizes the total block
recycling costs for the macroscopic period, as described below.
Let us now elaborate using Fig. 5. In Fig. 5, Np pages are available
in a log block at the beginning of the macroscopic period. If all Np
pages are consumed, the FTL performs a migration operation that
copies P1 pages. This first migration produces Np-P1 pages available
in the new log block, and now the FTL can serve Np-P1 write

requests with those pages. Again if all pages in the log block are
consumed, the FTL performs the second migration operation and
produces Np-P2 pages available in the new log block. Similarly,
migration operations are performed a total of n times and finally, a
merge operation follows to end the macroscopic period. After the
merge operation, all Np pages are available in the new log block and
another overall macroscopic migration/merge sequence begins. Now
we define the macroscopic optimization as finding an optimal
migration/merge sequence minimizing total block recycling costs
for the macroscopic period. Specifically, when function Pn is given,
the macroscopic optimization is identifying how many times the
migration operations should be applied before the concluding merge
operation by which the total block recycling cost becomes minimal.

Figure 5. Migration/merge sequence

To figure out the optimal number of migration operations, we need
to change some cost functions. With given Pn, Cmig

n, the nth
migration cost, can be defined as follows (see Fig. 3).

After the (n-1)th migration, Np-Pn-1 pages are available in the new
log block and dn refers to the number of available pages after the (n-
1)th migration.

Now we can define W(n), the migration/merge cost per an available
page, for Tn, a macroscopic period of migration/merge sequence, as
follows;

As the macroscopic optimization of migration/merge sequence is
finding n that minimizes W(n), we differentiate W(n) to produce
W’(n) and solve for n0 that makes W’(n0) = 0.1

1 In order to differentiate, we assume that n and n0 are real.

EcpEcpn
n

mig CCnCCPC +⋅⋅=+⋅= α

1),1(1 >=−−=−= − nnNPNd PnPn α

PP

mergeE
cpcp

n

k
k

merge

n

k

k
mig

NnNn

CnC
C

n
C

d

CC
nW

+⎟
⎠
⎞

⎜
⎝
⎛ −+⋅−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
+

⋅

=
+

=

∑

∑
+

=

=

αα

αα

2
1

2
1

22
)(

2

2

1

1

1

()
2

2

2

2
1

2
1

22
1

2
1

)('
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −+⋅−

⋅−⋅+
⋅+⋅⋅

+⋅+⋅+⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅+

=

PP

mergePEP
mergePcp

mergePcpPcpE

NnNn

CNCN
CNC

nCNCnNCC
nW

αα

αα
αα

nPn ⋅=α

178

This solution means that, when α is given, we can minimize the
block recycling cost of a macroscopic period by performing
migration operations n0 times and then, subsequently perform a
merge operation.

6. EXPERIMENTAL RESULTS OF
MIGRATION/MERGE SEQUENCE
We implemented the migration operation by simply modifying
the existing merge operation in our FTL that has been used
commercially for MP3 players and camcorders. As a result, the
FTL could select a cheaper operation between migration and
merge for each block recycling. Also, the macroscopic
optimization was implemented by estimating the increasing rate
α of each log block with accumulated history of p. With the
increasing rate α , the FTL calculates on-line the optimal number
of migrations before a merge for each log block.
In our experiments, a benchmark or a workload-generating
program runs on an MS-DOS FAT compatible file system and
again the file system runs on our FTL. In turn, the FTL runs on a
Flash memory emulator. The Flash memory emulator mimics the
operations of Flash memory chips and also has an additional
feature to calculate the elapsed time of Flash memory operations
using time information provided in Flash memory chip datasheets.
As we are interested in supporting high-capacity MLC Flash
memory chips, typical Flash memory operation times specified in
an MLC Flash memory datasheet were used in the experiments
(Table 1). However, because the emulator ignores many chores
encountered in real systems, the elapsed time of the emulator may
differ from that of real systems.
To validate the elapsed time of the Flash memory emulator, we
compared it with a measured elapsed time of a real embedded
board that has a 200 Mhz S3C2410 (ARM920T core) processor
and a 128 Mbyte NAND Flash memory chip.2 As the elapsed time
of the real board includes both Flash memory operation times and
code execution times of test applications, the file system, and the
FTL, we expected that the elapsed time of the real board would be
larger than that of the emulator. Indeed, file read time of the board
was greater than the emulator time as shown in Fig. 6.
Surprisingly, however, file write time of the board exactly
matched the emulator time. The reason was that actual page read
time of the Flash memory chip was closely matched with that
specified in the datasheet, but actual page write and block erase
times were much smaller than those specified in the datasheet. As
a result, in case of the file write test, the real board consumed less
time for Flash memory operations than the emulator, but
consumed additional time for code execution. These effects
compensated for each other to generate almost the same file write
time as shown in Fig. 6. From these observations, we can
conclude that the emulator produces very realistic results for write
operations, but underestimates for read operations.

2 The Flash memory emulator used Flash memory operation times

specified in the datasheet except for the bus transfer time, which
was measured in a real board and used in the emulator.

Table 1. Typical Flash memory operation times [1]

Flash memory operation Execution time (ms)

Page read (2112 bytes) 0.113

Page write (2112 bytes) 1.013

Page copy (2112 bytes) 1.128

Block erase 1.5

0

0.5

1

1.5

2

2.5

0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M
File s ize

El
ap

se
d

Ti
m

e
(s

ec
)

Write (Board)
Write (Emulator)
Read (Board)
Read (Emulator)

Figure 6. Elapsed time comparisons of emulator and real

board

In the experiments, we used two test programs, the Postmark
benchmark and embedded system workloads that had been used
by Gal and Toledo [11]. With these test programs, we
experimented with the following four schemes, that is, 1) merge
only for block recycling, 2) cost-based selection between the
migration or the merge operations, 3) cost-based selection with
periodic merge, and 4) macroscopic optimization. In presenting
the experimental results, these four schemes will be denoted as
“merge-only”, “merge+migration”, “merge+migration (periodic
merge)”, and “merge+migration (optimization)”, respectively. For
the third scheme, the FTL counts the number of consecutive
migration operations and if the count exceeds a predefined limit
value, Np/2 in our experiments, then it applies a merge operation
even though the cost model recommends performing a migration
operation. In other words, the “merge+migration (periodic
merge)” is a blind version of “merge+migration (optimization)”
because the former does not estimate the optimal number of
migrations before merge, but simply guesses it.
Like the LFS, the performance of a page mapping FTL depends
on the remaining free space. Also, the performance of the FAST
scheme, which adopts sector mapping in log blocks, varies
according to the number of log blocks. However, the
performance of a block mapping FTL is not directly related to
the number of log blocks except for when the number of log
blocks is extremely small. In our experiments, only eight blocks
were used as log blocks compared to the thousands of data
blocks, and the performance was insensitive to the number of
log blocks in this range.

() () () ()
α

ααααα
)(

2222

0
PcpE

mergePEPmergePcpPcpEmergePcpmergePcp

NCC
CNCNCNCNCCCNCCNC

n
⋅+

⋅⋅−⋅⋅+⋅+⋅⋅⋅⋅⋅+−⋅+⋅±+⋅−
=

179

6.1 Experiments with Postmark benchmark
The Postmark benchmark allows us to generate various
workloads by setting parameters for behavior of transactions,
number of transactions, numbers of files/directories to be
created/deleted, file size, etc. We set those parameters to
generate two different workloads that we will denote as
“directory/small file workload” and “large file workload” in our
experiments. In the former workload, the Postmark benchmark
executes transactions that create/delete 50 directories and files
of 512 bytes. In the latter workload, it executes transactions that
create/delete 1 Mbytes files.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

Number of Transactions

Fl
as

h
M

em
or

y
O

pe
ra

tio
ns

 E
la

ps
ed

 T
im

e
(s

ec
)

merge- only

merge+migration

merge+migration(periodic merge)

merge+migration(optimization)

Figure 7. Elapsed times of Flash memory operations under
“directory/small file workload” of Postmark benchmark

Fig. 7 shows that “merge+migration” improves performance
about 5% over original “merge-only” scheme. Also,
“merge+migration (periodic merge)” and “merge+migration
(optimization)” improve performance up to 26~27% over “merge-
only” scheme. In “merge+migration” scheme, the FTL executes
the migration operation when p was smaller than 64 (=Np /2), the
equilibrium p; otherwise it executes the merge operation for block
recycling. However, “merge+migration (optimization)” preferred
merge to migration even when p was much smaller than 64. For
example, in the Postmark benchmark, the increasing rate α of a
log block for FAT and directory sectors was estimated to 0.1 and
n0 to 49, respectively, and the total block recycling costs became
minimal by applying successively migration operations 49 times
and then applying a merge operation and, at that time, p, the
number of copied pages during migration, was about 5.
To investigate the benefits of the migration/merge sequence in
detail, we analyzed the costs per available page of the “merge-
only” scheme, Wmerge, and the migration/merge sequence, W(n)
where n is the number of successive migration operations before
merge (α =0.1). In Fig. 8, W(n) plunges down as migration
operations are applied for several times since the originating
merge operation. It then becomes minimal when n is 49 and then
increases slightly as n increases beyond the minimal point. At the
minimal point, the migration/merge sequence cost is only 5% of
the “merge-only” scheme for an available page.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600
Number of successive migrations (n)

M
ig

/m
er

ge
 c

os
t p

er
 a

va
ila

bl
e

pa
ge

Wmerge
W(n)

Figure 8. Cost per available page when α =0.1

Wmerge represents cost-per-page of “merge-only”
scheme and W(n) represents cost-per-page of
migration/merge sequence when migrations are
performed successively n times before a merge
operation is applied.

In our experiments, the “merge+migration (optimization)”
calculates the optimal number of consecutive migrations on-line
by estimating the increasing rate α while the “merge+migration
(periodic merge)” fixes it with a predefined period value, Np/2. In
Fig. 7, surprisingly, the performance of “merge+migration
(periodic merge)” is only a little better than “merge+migration
(optimization)”. We had chosen the period value, 64 (=Np/2),
arbitrarily, but further investigation showed that the chosen value
was almost the off-line optimal for that workload. Fig. 9 shows
the performance of “merge+migration (periodic merge)” for
various period values from 20 to 120. In the figure, we observe
that the off-line optimal performance of migration/merge
sequence is around the period value 64 and it is better than that of
the on-line “merge+migration (optimization)”. However, the
optimal period value may differ from workload to workload and
the “merge+migration (periodic merge)” scheme would generally
be blind to the workload characteristics. In Section 6.2, indeed,
you can find that the blind “merge+migration (periodic merge)”
performs worse than the workload adaptive “merge+migration
(optimization)” for the embedded system workloads in which the
predefined period value is not optimal any more. However, we
should note that the “merge+migration (periodic merge)” scheme
can be an alternative to “merge+migration (optimization)” if we
already know the workload characteristics or if we want a trade-
off between implementation overhead and performance.

180

886

888

890

892

894

896

898

900

20 30 40 50 60 70 80 90 100 110 120
Period

Fl
as

h
M

em
or

y
O

pe
ra

tio
ns

 E
la

ps
ed

 T
im

e
(s

ec
)

Figure 9. Elapsed times of “merge+migration (periodic

merge)” scheme for various period values

Fig. 10 shows the performance of the four schemes under “large
file workload” of the Postmark benchmark. Under the “large file
workload”, three schemes including migration performed better
than the “merge-only” scheme, but the performance improvement
rates were somewhat smaller than those under the
“directory/small file workload”. This is because most write
activity of “large file workload” is sequential and that is not the
target of the migration operation. However, some metadata such
as FAT and directories are repeatedly modified while file data are
sequentially written and the migration operation improves
performance for those repeated updates of metadata as can be
observed in Fig. 10.

0

5000

10000

15000

20000

25000

30000

35000

0 100 200 300 400 500 600 700 800 900 1000
Number of Transactions

Fl
as

h
M

em
or

y
O

pe
ra

tio
ns

 E
la

ps
ed

 T
im

e
(s

ec
)

merge- only

merge+migration

merge+migration(periodic merge)

merge+migration(optimization)

Figure 10. Elapsed times of Flash memory operations under

“large file workload” of Postmark benchmark

6.2 Experiments with embedded system
workloads
Embedded system workloads are a collection of Flash memory
references of three different embedded devices such as a fax, a
cellular phone, and an event recorder. Fig. 11 shows the
performance of the four schemes under these workloads. In the
figure, all workloads show a similar pattern in that performance

increases more in the order of “merge-only”, “merge+migration”,
“merge+migration (periodic merge)”, and “merge+migration
(optimization)” except for the one case with the event recorder
where “merge-only” performs better than “merge+migration”.
Specifically, “merge+migration (optimization)” increases
performance up to 5% over the “merge-only” scheme under the
fax workload, 22% under the cellular phone workload, and 14%
under the event recorder workload, respectively.

0

20

40

60

80

100

120

140

160

180

Fax Cellular Phone Event Recorder
Workloads

Fl
as

h
M

em
or

y
O

pe
ra

tio
ns

 E
la

ps
ed

 T
im

e
(s

ec
)

merge- only
merge+migrat ion
merge+migrat ion(periodic merge)
merge+migrat ion(optimization)

Figure 11. Elapsed times of Flash memory operations for the

embedded system workloads

Under the event recorder workload, “merge+migration”
performed slightly worse than “merge-only”, and we investigated
the reason behind this. Before the experiments, we formatted the
file system and all the FAT sectors were written during the
format. As a result, the log block for FAT sectors had already
almost Np/2 unique pages before the experiments. As the event
recorder workload modifies only a small set of data repeatedly,
only a few pages in the log block were repeatedly updated, but
each migration copied almost Np/2 pages all the time and
produced Np/2 available pages in the new log block. As only half
of the pages are available in the new log block, block recycling
incurred so frequently as to increase the burden of map updates
and, as a matter of course, this is the worst case encountered by
the “merge+migration” scheme.
If a merge operation was executed just once after the format,
however, repetition of this worst case migration could be avoided.
With the merge operation, the FTL would flush the already half-
full log block and produce a whole-empty new log block.
Thereafter then, each migration would copy only a small number
of pages modified since the merge. In this case, the copy overhead
and block recycling frequency would be much smaller than the
previous case. This example explains why the “merge+migration
(periodic merge)” and the “merge+migration (optimization)”,
which occasionally flush cold pages from log blocks with the
merge operation, show better performance than the
“merge+migration” scheme that does not. Also, under the
embedded system workloads, the “merge+migration
(optimization)” performs better than the “merge+migration
(periodic merge)” because the former applies the merge operation
at the best time determined via best-effort, while the latter does it

181

in a blind manner. These experimental results strongly suggest
that a merge operation be applied among successive migrations to
flush cold pages from log blocks, specifically when the workloads
change.

7. CONCLUSION
As Flash memory has some inherent limitations, Flash memory
based storage requires a software layer called the FTL that
redirects modified data to a new location on Flash memory and
recycles blocks with the so-called merge operation. In this paper,
aside from the existing merge operation, we introduced another
block recycling scheme that we call migration. Experiments with
the Postmark benchmark and embedded system workloads show
that a cost-based selection of migration or merge operation for
each block recycling can reduce block recycling costs and
therefore improve the performance of Flash memory based
storage systems. Also, preliminary experiments suggested the
existence of an optimal migration/merge sequence minimizing
block recycling costs and, indeed, experiments with various
workloads show that macroscopic optimization delivers much
better performance than the simple cost-based selection. Finally,
it should be noted that, as the macroscopic optimization suggests
analytically, a periodic flushing of log blocks, that is, executing a
merge operation among successive migration operations, is
needed when combination of migration and merge is used for
block recycling. In the future, we will investigate whether our
scheme has a beneficial effect on other file systems such as the
Linux Ext3 file system.

8. ACKNOWLEDGMENTS
This work was partly supported by the IT R&D program of
MIC/IITA [2006-S-040-01, Development of Flash Memory-based
Embedded Multimedia Software]] and supported in part by grant
No. R01-2004-000-10188-0 from the Basic Research Program of
the Korea Science & Engineering Foundation.
We would also like to thank Prof. Sang Lyul Min of the Seoul
National University for providing us with the Nikon Camera trace
and other valuable advise.

9. REFERENCES
[1] 1G x 8Bit / 2G x 8Bit NAND Flash memory

(K9L8G08U0M) Data Sheets, Samsung Electronics, Co.,
2005.

[2] 512M x 8Bit / 256M x 16Bit NAND Flash Memory
(K9K4Gxxx0M) Data Sheets, Samsung Electronics, Co.,
2003.

[3] CF+ and CompactFlash Specification Revision 3.0,
CompactFlash Association, 2004.

[4] Flash-Memory translation layer for NAND flash (NFTL),
M-Systems.

[5] The MultiMediaCard System Summary, MMCA Technical
Committee, 2005.

[6] Understanding the Flash Translation Layer (FTL)
Specification, Intel Corporation, 1998.

[7] YAFFS (Yet Another Flash File System) Specification
Version 0.3, http://www.aleph1.co.uk/yaffs/, 2002.

[8] Chiang, M.-L., Lee, P.C.H. and Chang, R.-C. Using Data
Clustering to Improve Cleaning Performance for Flash
Memory. Software: Practice and Experience, 29 (3). 267-
290.

[9] Chiang, M.-L., Lee, P.C.H. and Chang, R.C., Managing
Flash Memory in Personal Communication Devices. in
Proceedings of the 1997 International Symposium on
Consumer Electronics (ISCE'97), (1997), 177-182.

[10] Gal, E. and Toledo, S. Algorithms and Data Structures for
Flash Memories. ACM Computing Surveys, 37 (2). 138-163.

[11] Gal, E. and Toledo, S., A Transactional Flash File System
for Microcontrollers. in USENIX Annual Technical
Conference, (2005), 89-104.

[12] Kang, J.-U., Jo, H., Kim, J.-S. and Lee, J., A Superblock-
based Flash Translation Layer for NAND Flash Memory. in
Proceedings of the 6th ACM & IEEE International
conference on Embedded software, (Seoul, 2006), 161-170.

[13] Kawaguchi, A., Nishioka, S. and Motoda, H., A Flash-
Memory Based File System. in Proceedings of the Winter
1995 USENIX Technical Conference, (1995), 155-164.

[14] Kim, J., Kim, J.M., Noh, S.H., Min, S.L. and Cho, Y. A
Space-efficient Flash Translation Layer for CompactFlash
Systems. IEEE Transactions on Consumer Electronics, 28
(2). 366-375.

[15] Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S.
and Song, H.-J. A Log Buffer based Flash Translation Layer
using Fully Associative Sector Translation. ACM
Transactions on Embedded Computing Systems, 6 (1).

[16] Rosenblum, M. and Ousterhout, J.K. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10 (1). 26-52.

[17] Woodhouse, D. JFFS: The Journaling Flash File System
Ottawa Linux Symposium, 2001.

182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

