

Uniformity Improving Page Allocation for Flash Memory
File Systemsi

Seungjae Baek
Division of Information and CS

Dankook University
Seoul, Korea

ibanez1383@dankook.ac.kr

Seongjun Ahn
Software Laboratories
Samsung Electronics

Seoul, Korea
seongjunahn@gmail.com

Jongmoo Choi
Division of Information and CS

Dankook University
Seoul, Korea

choijm@dankook.ac.kr

Donghee Lee
School of Computer Science

University of Seoul
Seoul, Korea

dhl_express@uos.ac.kr

Sam H. Noh
School of Computer and Information Engineering

Hongik University
Seoul, Korea

samhnoh@hongik.ac.kr

ABSTRACT
Flash memory is a storage medium that is becoming more and
more popular. Though not yet fully embraced in traditional com-
puting systems, Flash memory is prevalent in embedded systems,
materialized as commodity appliances such as the digital camera
and the MP3 player that we enjoy in our everyday lives. This
paper considers an issue in file systems that use Flash memory as
a storage medium and makes the following two contributions.
First, we identify the cost of block cleaning as the key perform-
ance bottleneck for Flash memory analogous to the seek time in
disk storage. We derive and define three performance parameters,
namely, utilization, invalidity, and uniformity, from characteris-
tics of Flash memory and present a formula for block cleaning
cost based on these parameters. We show that, of these parameters,
uniformity most strongly influences the cost of cleaning and that
uniformity is a file system controllable parameter. This leads us to
our second contribution, designing the modification-aware
(MODA) page allocation scheme and analyzing how enhanced
uniformity affects the block cleaning cost with various workloads.
Real implementation experiments conducted on an embedded
system show that the MODA scheme typically improves 20 to
30% in cleaning time compared to the traditional sequential allo-
cation scheme that is used in YAFFS.

Categories and Subject Descriptors

D.4.2 [Operating System]: Storage Management--Secondary stor-

age; D.4.3 [Operating System]: File Systems Management--File
organization; C.4 [Computer Systems Organization]: Performance
of Systems--Modeling techniques;

General Terms: Performance, Design, Experimentation,
Verification.

Keywords: Flash memory, File system, Modeling, Uniform-
ity, Implementation, Performance Evaluation

1. INTRODUCTION
Characteristics of storage media has been the key driving force
behind the development of file systems. The Fast File System’s
(FFS) introduction of cylinder groups and the rule of thumb of
keeping 10% of the disk as a free space reserve for effective lay-
out was, essentially, to reduce seek time, which is the key bottle-
neck for user perceived disk performance [1]. Likewise, develop-
ment of the Log-structured File System (LFS) was similarly moti-
vated by the want to make large sequential writes so that the head
movement of the disk would be minimized and to fully utilize the
limited bandwidth that is available [2]. Various other optimization
techniques that take into consideration the mechanical movement
of the disk head has been proposed both at the file system level
and the device level [3].

Similar developments have occurred for the MEMS-based storage
media. Various scheduling algorithms that consider physical char-
acteristics of MEMS devices such as the disparity of seek dis-
tances in the x and y dimensions have been suggested [4,5].

Recent developments in Flash memory technology have brought
about numerous products that make use of Flash memory. In this
paper, we explore and identify the characteristics of Flash mem-
ory and analyze how they influence the latency of data access.
We identify the cost of block cleaning as the key characteristic
that influences latency. A performance model for analyzing the
cost of block cleaning is presented based on three parameters that
we derive, namely, utilization, invalidity, and uniformity, which
we define clearly later.

The model reveals that the cost of block cleaning is strongly in-
fluenced by uniformity just like seek is a strong influence for disk

i This work was partly supported by the IT R&D program of
MIC/IITA [2006-S-040-01, Development of Flash Memory-
based Embedded Multimedia Software] and supported in part
by grant No. R01-2004-000-10188-0 from the Basic Research
Program of the Korea Science & Engineering Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’07, September 30-October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009…$5.00.

154

based storage. Also, we observe that most of algorithms trying to
improve block cleaning time in Flash memory are, essentially,
trying to maintain high uniformity of Flash memory. Furthermore,
the model gives the upper bound of performance gain expected by
developing a new algorithm. To validate the model and to analyze
our observations in real environments, we design a new modifica-
tion-aware (MODA) page allocation scheme that strives to main-
tain high uniformity by grouping files based on their update fre-
quencies.

We implement the MODA page allocation scheme on an embed-
ded system that has 64MB of NAND Flash memory running the
Linux kernel 2.4.19. The NAND Flash memory is managed by
YAFFS (Yet Another Flash File System) [7] supported in Linux.
We modify the page allocation scheme in YAFFS to MODA and
compare its performance with the original scheme. Experimental
results show that, by enhancing uniformity, the MODA scheme
can reduce block cleaning time up to 47.8 seconds with an aver-
age of 9.8 seconds for the benchmarks considered. As the utiliza-
tion of Flash memory increases, the performance enhancements
become even larger. Performance is also compared with the DAC
(Dynamic dAta Clustering) scheme that was previously proposed
[8]. Results show that both the MODA and the DAC scheme per-
forms better than the sequential allocation scheme used in YAFFS,
though there are some delicate differences causing performance
gaps between them.

The rest of the paper is organized as follows. In Section 2, we
elaborate on the characteristics of Flash memory and explain the
need for cleaning, which is the key issue that we deal with. We
then review previous works that have dealt with this issue in Sec-
tion 3. Then, we present a model for analyzing the cost of block
cleaning in Section 4. In Section 5, we present the new page allo-
cation scheme, which we refer to as MODA, in detail. The im-
plementation details and the performance evaluation results are
discussed in Section 6. We conclude the paper with a summary
and directions for future works in Section 7.

2. FLASH MEMORY AND BLOCK
CLEANING
Flash memory as a storage medium has characteristics that are
different from traditional disk storage. These characteristics can
be summarized as follows [9].

 No seek time: Access time in Flash memory is location
independent similar to RAM. There is no “seek time” in-
volved.

 Overwrite limitation: Overwrite is not possible in Flash
memory. Flash memory is a form of EEPROM (Electrically
Erasable Programmable Read Only Memory), so it needs to
be erased before new data can be overwritten.

 Asymmetric execution time: Execution time for the basic
operations in Flash memory is asymmetric. Traditionally,
three basic operations, namely, read, write, and erase, are
supported. An erase operation is used to clean used pages so
that the page may be written to again. In general, a write op-
eration takes an order of magnitude longer than a read op-
eration, while an erase operation takes another order or more
magnitudes longer than a write operation [21].

 Different operation unit: The unit of operation is also dif-
ferent for the basic operations. While the erase operation is
performed in block units, read/write operations are per-
formed in page units.

 Wear-leveling: The number of erasures possible on each
block is limited, typically, to 100,000 or 1,000,000 times.

These characteristics make designing software for Flash memory
challenging and interesting [11].

Now, let us discuss why block cleaning is required and how it
affects the performance of Flash memory file systems. Reading
data or writing totally new data into Flash memory is simply like
reading/writing to disk. A page in Flash is referenced/allocated
for the data and data is read/written from/to that particular page.
The distinction from a disk is that all reads/writes take a (much
shorter) constant amount of time (though writes take longer than
reads).

However, for updates of existing data, the story is totally different.
As overwriting updated pages is not possible, various mechanisms
for non-in-place update have been developed [7,12,13,14].
Though specific details differ, the basic mechanism is to allocate
a new page, write the updated data onto the new page, and then,
invalidate the original page that holds the (now obsolete) original
data. The original page now becomes a dead or invalid page.

Note that, from the above discussions, a page can be in three dif-
ferent states, as shown in Figure 1. That is, a page can be holding
legitimate data making it a valid page; we will say that a page is
in a valid state if the page is valid. If the page no longer holds
valid data, that is, it was invalidated by being deleted or by being
updated, then the page is a dead/invalid page, and the page is in
an invalid state. Note that a page in this state cannot be written to
until the block it resides in is first erased. Finally, if the page has
not been written to in the first place or the block in which the
page resides has just been erased, then the page is clean. In this
case, we will say that the page is in a clean state. Note that only
pages that are in a clean state may be written to. Recall that in
disks, there is no notion of an invalid state as in-place overwrites
to sectors is always possible.

From the tri-state characteristics, we find that the number of clean
pages diminishes not only as new data is written, but also as exist-
ing data is updated. In order to store more data and even to make
updates to existing data, it is imperative that invalid pages be
continually cleaned. Since cleaning is done via erase operation,
which is done in block units, valid pages in the block to be erased
must be copied to a clean block. This exacerbates the already

Figure 1. Page state transition diagram

155

large overhead incurred by the erase operation needed for clean-
ing a block.

3. RELATED WORK
The issue of segment/block cleaning is not new and has been dealt
with in both the disk and Flash memory realms. In this section, we
discuss previous research in this area, especially in relation to the
work presented in this paper.

Conceptually, the need for block cleaning in Flash memory is
identical to the need of segment cleaning in the Log-structured
File System (LFS). LFS writes data to a clean segment and per-
forms segment cleaning to reclaim space occupied by obsolete
data just like invalid pages are cleaned in Flash memory [2].
Segment cleaning is a vital issue in the Log-structured File Sys-
tem (LFS) as it greatly affects performance [15,16,17,18]. Black-
well et al. use the terms ‘on-demand cleaning’ and ‘background
cleaning’ separately and try to reduce user-perceived latency by
applying heuristics to remove on-demand cleaning [15]. Matthews
et al. propose a scheme that adaptively incorporates hole-plugging
into cleaning according to the changes in disk utilization [16].
They also consider how to take advantage of cached data to re-
duce the cost of cleaning.

Some of the studies on LFS are in line with an aspect of our study,
that is, exploiting modification characteristics. Wang and Hu pre-
sent a scheme that gathers modified data into segment buffers and
sorts them according to the modification frequency and writes two
segments of data to the disk at one time [17]. This scheme writes
hot and cold modified data into different segments. Wang et al.
describe a scheme that applies non-in-place update for hot-
modified data and in-place updates for cold-modified data [18].
These two schemes, however, are disk-based approaches, and
hence, are not appropriate for Flash memory.

In the Flash memory arena, studies for improving block cleaning
have been suggested in many studies [8,11,12,19,20]. Kawaguchi
et al. propose using two separate segments for cleaning: one for
newly written data and the other for data to be copied during
cleaning [12]. Wu and Zwaenepoel present a hybrid cleaning
scheme that combines the FIFO algorithm for uniform access and
locality gathering algorithm for highly skewed access distribution
[19]. These approaches differ from ours in that their classification
is mainly based on whether data is newly written or copied.

Chiang et al. propose the CAT (Cost Age Time) and DAC (Dy-
namic dAta Clustering) schemes [8]. CAT chooses blocks to be
reclaimed by taking into account the cleaning cost, age of data in
blocks, and the number of times the block has been erased. The
DAC partitions Flash memory into several regions and place data
into different regions according to their update frequencies. Later,
we compare the performance of DAC that we implemented with
the MODA scheme we propose, and explain what the differences
are between the two schemes. One key difference between this
work and ours is that we identify the parameters that influence the
cost of block cleaning in Flash memory and provide a model for
the cost based on these parameters. The model gives us what fun-
damental we need to focus on and how much gain we can expect,
when we develop a new algorithm for Flash memory such as page

allocation, block selection for cleaning, and background cleaning
scheme.

There are also some noticeable studies regarding Flash memory.
Kim et al. describe the difference between block level mapping
and page level mapping [21]. They propose a hybrid scheme that
not only handles small writes efficiently, but also reduces re-
sources required for mapping information. Gal and Toledo present
a recoverable Flash file system for embedded systems [13]. They
conjecture that a better allocation policy and a better reclamation
policy would improve endurance and performance of Flash mem-
ory. The same authors also present a nice survey, where they
provide a comprehensive discussion of algorithms and data struc-
tures regarding Flash memory [11]. Chang et al. discuss a block
cleaning scheme that considers deadlines in real-time environ-
ments [20]. Ben-Aroya analyzes wear-leveling problems mathe-
matically and suggests separating the allocation and cleaning
policies from the wear-leveling problems [24].

4. BLOCK CLEANING COST ANAYSIS
4.1. Model for Flash Memory
As mentioned in Section 3, Log-structured File System (LFS)
requires segment cleaning to reclaim space occupied by obsolete
data [2]. The authors of LFS have presented a formula for estimat-
ing the cleaning cost, that is:

The above formula provides a reasonable model for LFS, reveal-
ing that the cleaning cost increases as the utilization increases. It
also serves as a policy-making guideline when choosing the block
to be cleaned. However, there are some limitations in adopting
this formula to Flash memory file systems. First, the cleaning cost
depends not only on the utilization, but also on the distribution of
invalid pages. However, Equation (1) does not reflect this in the
cost model. Second, due to the overwrite limitation of Flash
memory, block cleaning includes the erase operation for invalid
pages, which also affects the block cleaning cost. Hence, a model
for Flash memory should have the capability to reflect the amount
of invalid pages on the cost analysis. Finally, the equation pro-
vides a relative performance measure. That is, the write cost in
Equation (1) is expressed as a multiple of the time required when
there is no cleaning overhead. What we desire in a model, how-
ever, is the absolute time required to clean blocks for a given
Flash memory.

To derive an appropriate model for Flash memory, we first iden-
tify three parameters that affect the cost of block cleaning. They
are defined as follows:

 Utilization (u): the fraction of valid pages in Flash memory
 Invalidity (i): the fraction of invalid pages in Flash memory
 Uniformity (p): the fraction of blocks that are uniform in

Flash memory, where a uniform block is a block that does
not contain both valid and invalid blocks simultaneously.

Figure 2 shows three page allocation situations where utilization
and invalidity are the same, but uniformity is different. Since
there are eight valid pages and eight invalid pages among the 20
pages for all three cases, utilization and invalidity are both 0.4.

156

However, there is one, three, and five uniform blocks in Figure
2(a), (b), and (c), respectively, hence uniformity is 0.2, 0.6, and 1,
respectively. (Another definition of uniformity would be “1 – the
fraction of blocks that have both valid and invalid pages.”) Note
that, for the case of Figure 2(a), 8 page copies and 4 block erases
are required to reclaim all invalid pages. For the case of Figure
2(b), 4 page copies and 3 block erases are required, while only 2
block erases are needed for case Figure 2(c).

Utilization determines, on average, the number of valid pages that
need to be copied. Invalidity determines the number of blocks that
are candidates for erasing. Finally, uniformity determines the
actual number of pages and blocks to be copied and erased. From
these observations, we can formulate the cost of block cleaning as
follows:

In Equation (2), B*((1‐ p)+i*p)) represents the number of blocks

to be erased. Specifically, B*(1‐ p) denotes the number of non-
uniform blocks (containing both valid and invalid pages) and
B*(i*p) denotes the number of uniform blocks that have invalid
pages only. The number of pages to be copied is represented as
the term P*(1‐ p)*u / (u+i). P*(1‐ p)*u refers to the average

number of valid pages in non-uniform blocks. However, when

there are clean blocks in Flash memory, P*(1‐ p)*u has a ten-
dency to underestimate the number of valid pages by uniformly
distributing u evenly among the clean blocks. To handle this spe-
cial case, we divide P*(1‐ p)*u by (u+i). Validation of this
model is presented in Section 6.3.2.

4.2. Implication of the Parameters on Block
Cleaning Costs
Figure 3 shows the analytic results of the cost of block cleaning
based on the derived model. In the figure, the x-axis is utilization,
the y-axis is uniformity, and the z-axis is the cost of block clean-
ing. For this graph, we set invalidity as 0.1 and use the raw data of

a small block 64MB NAND Flash memory [10]. The execution
times for read, write, and erase operations are 15us, 200us, and
2000us, respectively. Each block has 32 pages where the size of
each page is 0.5KB.

The main observation from Figure 3 is that the cost of cleaning
increases dramatically when utilization is high and uniformity is
low. We also conduct analysis with different values of invalidity
and with the raw data of a large block 1GB NAND Flash mem-
ory[10], which shows similar trends observed in Figure 3.

Figure 4 depicts how each parameter affects the cost of block
cleaning. In each figure, the initial values of the three parameters
are all set to 0.5. Then, we decrease utilization in Figure 4(a),
decrease invalidity in Figure 4(b), and increase uniformity in

Figure 4(c). From these figures, we find that the impact of utiliza-
tion and uniformity on block cleaning cost is higher than that of
invalidity. Since utilization is almost uncontrollable at the file
system level, this implies that to keep cleaning cost down keeping
uniformity high may be a better approach than trying to keep
invalidity low through frequent cleaning.

5. PAGE ALLOCATION SCHEME THAT
STRIVES FOR UNIFORMITY
When pages are requested in file systems, in general, pages are
allocated sequentially [7,12]. Flash file systems tend to follow this
approach and simply allocate the next available clean page when
a page is requested, not taking into account any of the characteris-
tics of the storage media.

We propose an allocation scheme that takes into account the file
modification characteristics such that uniformity may be maxi-
mized. The allocation scheme is modification-aware (MODA) as
it distinguishes data that are hot-modified, that is, modified fre-
quently and data that are cold-modified, that is, modified infre-
quently. Allocation of pages for the distinct type of data is done
from distinct blocks.

Figure 2. Situation where utilization (u=0.4) and in-
validity (i=0.4) remains unchanged, while uniformity
(p) changes (a) p = 0.2 (b) p = 0.6 (c) p = 1

Figure 3. Block cleaning costs

157

The motivation behind this scheme is that by classifying hot-
modified pages and allocating them to the same block, we will
eventually turn the block into a uniform block filled with invalid
pages. Likewise, by classifying cold-modified pages and allocat-
ing them together, we will turn this block into a uniform block
filled with valid pages. Pages that are neither hot-modified nor
cold-modified are sequestered so that they may not corrupt the
uniformity of blocks that hold hot and cold modified pages.

The natural question, then, is how to classify hot/cold-modified
data. Our solution is to use two levels of modification-aware clas-
sifications as shown in Figure 5. At the first level, we make use of
static properties, and dynamic properties are used at the second
level. This classification is based on the skewness in page modifi-
cation distribution [18, 20], exploited many other previous re-
search [8, 11, 17, 18, 25].

As static property, we distinguish system data and user date as the
modification characteristics of the two are quite different. The
superblock and inodes are examples of system data, while data
written by users are examples of user data. We know that inodes
are modified more intensively than user data, since any change to
the user data in a file causes changes to its associated inode.

User data is further classified at the second level, where its dy-
namic property is used. In particular, we make use of the modifi-
cation count. Keeping the modification count for each page, how-
ever, may incur considerable overhead. Therefore, we choose to
monitor at a much larger granularity and keep a modification

count for each file which is updated when the modification time is
updated.

For classification with the modification count, we adopt the MQ
(Multi Queue) algorithm [25]. Specifically, it uses multiple LRU
queues numbered Q0, Q1,…, Qm-1. Each file stays in a queue for a
given lifetime. When a file is first written (created), it is inserted
into Q0. If a file is modified within its lifetime, it is promoted from
Qi to Qi+1.On the other hand, if a file is not modified within its
lifetime, it is demoted from Qi to Qi-1. Then, we classify a file
promoted from Qm-1 as hot-modified data, while a file demoted
from Q0 as cold-modified data. Files within queues are defined as
unclassified data. In our experiments, we set m as 2 and lifetime
as 100 time-ticks (time is virtual that ticks at each modification
request). In other words, a file modified more than 2 times is clas-
sified as hot, while a file in Q0 that has not been modified within
the recent 100 modification requests is classified as cold. We find
that MODA with different values of m = 3 and/or lifetime = 500
shows similar behavior.

6. PERFORMANCE EVALUATION
6.1. Platform and Implementation
We have implemented the MODA scheme on an embedded sys-
tem. Hardware components of the system include a 400MHz
XScale PXA CPU, 64MB SDRAM, 64MB NAND Flash memory,
0.5MB NOR Flash memory, and embedded controllers such as
LCD, UART and JTAG [22]. The same NAND Flash memory
that was used to analyze the cost of block cleaning in Figures 3
and 4 is used here.

The Linux kernel 2.4.19 was ported on the hardware platform and
YAFFS is used to manage the NAND Flash memory [7]. We
modify the page allocation scheme in YAFFS and compare the
performance with the native YAFFS. We will omit a detailed
discussion regarding YAFFS, but only describe the relevant parts
below. Interested readers are directed to [6,7] for details of
YAFFS.

The default page allocation scheme in YAFFS is the sequential
allocation scheme. We implemented the MODA scheme in
YAFFS and will refer to this version of YAFFS, the MODA-
YAFFS or simply MODA. In MODA-YAFFS, we modified func-
tions such as yaffs_WriteChunkDataToObject(), yaffs_FlushFile(),
yaffs_UpdateObjectHeader() in yaffs_guts.c and init_yaffs_fs(),
exit_yaffs_fs() in yaffs_fs.c.

Figure 5. Two level (static and dynamic property)
classification used in MODA scheme

Invalidity

Figure 4. How block cleaning cost is affected by (a) utilization, (b) invalidity, and (c) uniformity as the other
two parameters are kept constant at 0.5

158

The block cleaning scheme in YAFFS is invoked at each write
request. There are two modes of cleaning: normal and aggressive.
In normal mode, YAFFS chooses the block that has the largest
number of invalid pages among the predefined number of blocks
(default setting is 200). If the chosen block has less than 3 valid
pages, it reclaims the block. Otherwise, it gives up on the reclaim-
ing. If the number of clean blocks is lower than a predefined
number (default setting is 6), the mode is converted to aggressive.
In aggressive mode, YAFFS chooses a block that has invalid
pages and reclaims the block without checking the number of
valid pages in it. The block cleaning scheme in MODA-YAFFS is
exactly the same. We do add a new interface for block cleaning
that may be invoked at the user level for ease of measurement.

6.2. The Workload
To gather sufficient workloads for evaluating our scheme, a com-
prehensive survey of Flash memory related papers was done. The
result of this survey is the following 7 benchmarks used in our
implementation experiments.

 Camera benchmark : This benchmark executes a number of
transactions repeatedly, where each transaction consists of
three steps; creating, reading and deleting some of these
files randomly. Such actions of taking, browsing, and eras-
ing pictures are common behaviors of digital camera users,
as observed in [21, 26].

 Movie player benchmark : This benchmark simulates the
workload of a Portable Media Players [26].

 Phone benchmark : This benchmark simulates the behavior
of a cellular phone [13].

 Recorder benchmark : This benchmark models the behav-
ior of an event recorder such as an automotive black box and
remote sensors [13].

 Fax machine benchmark : This benchmark initially creates
two files. Then, it creates four new files and updates a his-
tory file (200 bytes) when it receives a fax. This behavior
can be observed in fax machines, answering machines, and
music players [13].

 Postmark benchmark: This benchmark creates a large
number of randomly sized files. It then executes read, write,
delete, and append transactions on these files [23].

 Andrew benchmark : This benchmark was originally de-
veloped for testing disk based file systems, but many Flash
memory studies have used it for performance evaluation [12,
21]. The Andrew benchmark consists of 5 phases, but in our
study, we only execute the first two phases.

These benchmarks can be roughly grouped into three categories:
sequential read/write intensive workloads, update intensive work-
loads, and multiple files intensive workloads. The first group
includes the Camera and Movie benchmarks that access large files
sequentially. The Phone and Recorder benchmarks are typical
examples of update intensive workloads that manipulate a small
number of files and update them intensively. The Fax, Postmark
and Andrew benchmarks access multiple files with different ac-
cess probabilities and can be group into the third category.

6.3. Performance Evaluation
6.3.1 Performance results
Table 1 shows performance results both measured by executing
benchmarks and estimated by the model. Before each execution
the utilization of Flash memory is set to 0, that is, the Flash mem-
ory is reset completely. Then, we execute each benchmark on
YAFFS and MODA-YAFFS and measure its execution time re-
ported in the ‘Benchmark Running Time’ column. Note that the
only difference between YAFFS and MODA-YAFFS is the page

Performance
Parameters Estimated Results Measured Results

Benchmark Scheme
Benchmark

Running
Time U I P # of

Erase
of

Copy
Cleaning

Time
of

Erase
of

Copy
Cleaning

Time

YAFFS 38 0.3 0.002 0.98 76 2192 2.83 69 1516 9.60
Camera

MODA 37 0.3 0.002 0.99 17 317 0.42 10 62 7.56

YAFFS 481 0.99 0.0001 0.99 10 319 0.41 10 7 24.56
Movie

MODA 481 0.99 0.0001 0.99 1 31 0.04 1 3 24.54

YAFFS 90 0.05 0.32 0.62 2151 6047 11.18 1398 6047 12.08
Phone

MODA 90 0.05 0.22 0.72 1606 6052 10.24 1011 6063 10.80

YAFFS 32 0.005 0.16 0.83 1128 692 2.81 626 699 2.00
Recorder

MODA 32 0.005 0.08 0.90 636 692 1.95 344 690 1.76

YAFFS 100 0.86 0.0087 0.73 1024 31710 40.74 1001 30996 60.99 Fax
machine MODA 99 0.86 0.0087 0.97 76 2407 3.14 76 1383 23.19

YAFFS 17 0.08 0.0107 0.90 393 10158 13.17 357 10147 16.18
Postmark

MODA 17 0.08 0.0107 0.93 285 7057 9.17 248 6652 11.39

YAFFS 33 0.09 0.0008 0.90 372 10174 13.16 345 10060 16.32
Andrew

MODA 32 0.09 0.0008 0.98 92 1828 2.40 62 1004 3.64

Table 1. Performance comparison of YAFFS and MODA-YAFFS for the benchmarks when utilization at
start of execution is 0 (The unit of time measurement is in seconds)

159

allocation scheme. Also, after executing the benchmark, we
measure the performance parameters, namely utilization, invalid-
ity, and uniformity of Flash memory denoted as ‘U’, ‘I’, ‘P’ in the
Table 1

Using the measured performance parameters and the model pro-
posed in Section 4.1, we can estimate the number of erase and
copy operations required to reclaim all the invalid pages. Also,
the model gives us the expected cleaning time. These estimated
results are reported in the ‘Estimated Results’ column. Finally,
we actually measure the number of erase and copy operations and
cleaning times to reclaim all invalid pages, which are reported in

the ‘Measured Results’ column. The measured results reported are
averages of three executions for each case unless otherwise stated.

6.3.2 Model Validation
Table 1 shows that the number of erase and copy operations
estimated by the model are similar to those measured by real
implementaion, though the model tends to overestimate the erase
operations when invalidity is high. These similarities imply that
the model is fairly effective to predict how many operations are
required under given status of Flash memory.

However, there are noticable differences between the measured
and estimated block cleaning times. Through sensitive analysis,
we find two main reasons behind these differences. The first
reason is that the model requires the read, write, and erase times
to estimate the block cleaning time. The simplest way to
determine these values is by using the data sheet provided by the
Flash memory chip vendor. However, through experiments we
observe that the values reported in the datasheet and the actual
time seen at various levels of the system differ considerably.
Figure 6 shows these results. The results shows that while the
datasheet reports read, write, and erase times of 0.01ms, 0.2ms,
and 2ms, respectively, for the Flash memory used in our
experiments, the times observed for directly accessing Flash
memory at the device driver level is 0.19ms, 0.3ms, and 1.7ms,
respectively. Furthermore, when observed just above the
MTD(Memory Technology Device) layer, the read, write, and
erase times are 0.2ms, 1.03ms, and 1.74ms, respectively, with
large variances. These variances influence the accuracy of the
model drastically. Since the YAFFS runs on the basis of the MTD
layer, the estimated results reported in Table 1 use the times
observed above the MTD layer.

The second reason is that block cleaning not only causes copy and
erase overhead, but it also incurs software manipulating overhead.
Specifically, YAFFS does not manage block and page status
information in main memory in order to minimize the RAM
footprint. Hence, it needs to read Flash memory to detect the
blocks to be cleaned and how many valid pages the blocks have.
Due to this overhead, there are differences between the measured
and estimated cleaning times. The overhead also explains why the
difference increases as utilization increases. However, the
cleaning time difference between YAFFS and MODA for the
estimates derived from the model and the measurements are quite
similar, which implies that the model is a good indicator of the
performance characteristics of Flash memory.

6.3.3 Effects of Uniformity
By comparing the results of YAFFS and those of MODA, we
make the following observations.

 The benchmark execution time is the same for YAFFS and
MODA. This implies that there is minimal overhead for the
additional computation that may be incurred for data classi-
fication.

 The MODA scheme maintains high uniformity, which leads
to block cleaning time reductions of up to 47.8 seconds (for
Fax machine benchmark) with an average of 9.8 seconds for
the benchmarks considered.

 The performance gains of MODA for Movie and Camera
benchmarks are minimal. Our model reveals that the original
sequential page allocation scheme used in YAFFS also
keeps high uniformity making it difficult to obtain consider-
able gains.

 The gains of MODA for Phone and Recorder benchmark
are also trivial, even though there is room for enhancing uni-
formity. Careful analysis reveals these benchmarks access
only a small number of files; six files for Phone and two
files for Recorder. Since the MODA classifies hot/cold data
on the file-level granularity, the classification turns out to be
ineffective. These experiments disclose the limitation of the
MODA scheme and suggest that page-level classification
may be more effective for some benchmarks.

We also experiment with combinations of two or more bench-
marks such as ‘Camera + Phone’ simulating activities of recent
cellular phone that have digital camera capabilities and ‘Movie +
Recorder + Postmark’ simulating a PMP player that uses an em-
bedded database to maintain movie titles, actor libraries and digi-
tal rights. Experiments show that the trends for multiple bench-
mark executions are similar to those of the Postmark results re-
ported in Table 1. For example, for the combination of ‘Movie +
Recorder + Postmark’, the block cleaning time of YAFFS and
MODA are 34.82 and 22.58 seconds, while uniformity are 0.73
and 0.84, respectively. We also find that the interferences among
benchmarks drive uniformity of Flash memory low, even for large
sequential multimedia files.

6.3.4 Effects of Utilization

In real life, utilization of Flash memory will rarely be 0. Hence,
we conduct similar measurements as was done for Table 1, but
varying the initial utilization value. Figure 7 shows the results of
executing Postmark under the various initial utilization values.

Figure 6. Execution time at each level

160

Utilization was artificially increased by executing the Andrew
benchmark before each of the measurements. Exact same experi-
ments were conducted with utilization adjusted by pre-executing
the Postmark benchmark, but the result trend is similar, hence we
only report one set of these results.

For the moment, ignore the results reported when utilization is 0.9,
which shows somewhat different behavior. We come back to
discuss these results shortly. The results in Figure 7 show that
block cleaning time increases as utilization increases confirming
what we had observed in Figure 4(a). In Figure 3, our model
shows that under high utilization, enhancement of uniformity
leads to greater reduction in cleaning time. Figure 7 validates this
expectation by showing that the difference in block cleaning time
between YAFFS and MODA-YAFFS increases as utilization
increases.

Let us now discuss results reported when the initial utilization is
0.9. Observe that the results are different from results with lower
utilization values, in that the benchmark running time is much

higher, more so for YAFFS. This is because YAFFS is confronted
with a lack of clean blocks during execution, and hence, turns the
block cleaning mode to aggressive. As a result, on-demand block
cleaning occurs frequently increasing the benchmark running time
to 72 seconds, four times the running time compared to when
utilization is lower. Note that in MODA-YAFFS, the running time
does increase, but not as significantly. This is because the MODA
allocation scheme allows for more blocks to be kept uniform, and
hence aggressive on-demand block cleaning is invoked less.

6.3.5 Effects of Periodic block cleaning
In YAFFS, block cleaning is invoked at each write request and
attempts to reclaim at most one block at each trial. In other file
system, block cleaning is invoked when free space becomes
smaller than a predefined lower threshold and attempts to reclaim
blocks until it becomes larger than an upper threshold [2, 12]. On
the contrary, block cleaning can happen when the system is idle
[15]. Ideally, if this can happen, then all block cleaning costs may
be hidden from the user. Whether this is possible or not will de-
pend on many factors including the burstiness of request arrival,
idle state detection mechanism, and so on.

To see how periodic block cleaning affects performance we con-
duct the following sequence of executions. Starting from utiliza-
tion zero, that is, a clean Flash memory state, we repeatedly exe-
cute Postmark until the benchmark can no longer complete as
Flash memory completely fills up. During this iteration, two dif-
ferent actions are taken. For Figures 8(a) and (c), nothing is done
between each execution. That is, no form of explicit cleaning is
performed. For Figures 8(b) and (d), block cleaning is performed
between benchmark executions. This represents a case where
block cleaning is occurring periodically. Figures 8(a) and (b) are
the measurement results for YAFFS, while Figures 8(c) and (d)
are results for MODA. The utilization values reported on the x-
axis is the value before each benchmark execution.

Figure 7. Results reported under various initial
utilization values

Figure 8. Execution time for Postmark for YAFFS (a) without periodic cleaning, (b) with periodic
cleaning and for MODA (c) without periodic cleaning, (d) with periodic cleaning

161

The results here verify what we would expect based on observa-
tions from Section 6.3.4. As utilization is kept under some value,
YAFFS and MODA perform the same (with or without periodic
cleaning). Without periodic cleaning, once past that threshold,
0.87 in Postmark, the benchmark execution time abruptly in-
creases for YAFFS, while for MODA, it increases only slightly.
This is because enough clean blocks are being maintained in
MODA. When block cleaning is invoked periodically, the bench-
mark execution time may be maintained at a minimum. However,
the problem with this approach is that periodic cleaning itself
incurs overhead, and the issue becomes whether this overhead can
be hidden from the user or not. As this issue is beyond the scope
of this paper, we leave this matter for future work. Note that the
periodic cleaning times are smaller in MODA than those in
YAFFS, implying the periodic cleaning also get benefits from
keeping uniformity high.

6.4. MODA vs DAC
In this subsection, we compare MODA with the DAC scheme
proposed by Chiang et al. [8]. In the DAC scheme, Flash memory
is partitioned into several regions and data are moved toward
top/bottom region if their update frequencies increase/decrease.
Both MODA and DAC try to cluster data not only at block clean-
ing time, but also at data updating time. We implement the DAC
schemes into YAFFS and set the number of regions as 4 as this is
reported to have shown the best performance [8].

Figure 9 shows the results between for the MODA and DAC
schemes. (The results for YAFFS are shown for comparisons
sake.) We execute each benchmark under the same conditions
described in Table 1. The results show that the MODA scheme
performs better than the DAC scheme.

Detailed examinations reveal that the performance gap between
the MODA and the DAC schemes comes from two sources. One
is that the DAC scheme clusters data into the cold region if their
update frequency is low. This may cause the real cold-modified
data and newly written data (which may actually be hot-modified
data) to coexist on the same block, which reduces uniformity.
However, the MODA scheme groups newly written data into
separate blocks managed by the unclassified manager shown in
Figure 5, segregating them from the cold-modified data.

The second source is that the MODA scheme uses a two-level
classification scheme distinguishing system data and user data

(static property) at the first level, then further classifying user data
based on their modification counts (dynamic property) at the sec-
ond level. But, by only considering the dynamic property of the
data, the DAC scheme is not able to gather enough information to
make a timely distinction between the two types. When we apply
static property based classification into the DAC scheme, its per-
formance comes close to MODA.

7. CONCLUSION
Two contributions are made in this paper. First, we identify the
cost of block cleaning as the key performance bottleneck for
Flash memory analogous to the seek time in disk storage. We
derive three performance parameters from features of Flash mem-
ory and present a formula for block cleaning cost based on these
parameters. We show that, of these parameters, uniformity is the
key controllable parameter that has a strong influence on the cost.
This leads us to our second contribution, which is a new modifi-
cation-aware (MODA) page allocation scheme that strives to
maintain high uniformity. Using the MODA scheme, we validate
our model and evaluate performance characteristics with the
views of uniformity, unitization and periodic cleaning.

We are considering two research directions for future work. One
direction is enhancing the proposed MODA scheme that can keep
uniformity high for benchmarks manipulating small number of
files. Another direction is in the development of an efficient block
cleaning scheme. Uniformity is influenced by not only the page
allocation scheme, but also by the block cleaning scheme. We
need to investigate issues such as defining and finding idle time to
initiate block cleaning and deciding which blocks and how many
of these blocks should be reclaimed once reclaiming is initiated.

ACKNOWLEDGEMENT
We would like to thank to Prof. Sang Lyul Min, Seoul National
University. Without his contribution, this paper would not be
possible. We would also like to thank the anonymous reviewers
for their constructive suggestions and comments.

8. REFERENCES
[1] M. McKusick, W. Joy, S. Leffler, and R. Fabry, "A Fast File

System for UNIX", ACM Transactions on Computer Sys-
tems, 2(3), pp. 181-197, Aug., 1984.

[2] M. Rosenblum and J. K. Ousterhout, "The design and im-
plementation of a log-structured file system", ACM Trans-
actions on Computer Systems, vol. 10, no. 1, pp. 26-52,
1992.

[3] William Stalling, "Operating Systems: Internals and Design
Principles", 5th Edition, Pearson Prentice Hall, 2004.

[4] H. Yu, D. Agrawal, and A. E. Abbadi, “Towards optimal
I/O scheduling for MEMS-based storage,” Proceedings of
the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS’03), 2003.

[5] S. W. Schlosser and G. R. Ganger, “MEMS-based storage
devices and standard disk interfaces: A square peg in a
round hole?” Proceedings of 3rd USENIX Conference on
File and Storage Technologies (FAST’04), 2004.

[6] S. Lim, K. Park, “An Efficient NAND Flash File System for
Flash Memory Storage”, IEEE Transactions on Computers,
Vol. 55, No. 7, July, 2006.

[7] Aleph One, "YAFFS: Yet another Flash file system",
www.aleph1.co.uk/yaffs/.

Figure 9. Performance Comparison between
MODA and DAC

162

[8] M-L. Chiang, P. C. H. Lee, and R-C. Chang, "Using data
clustering to improve cleaning performance for Flash mem-
ory", Software: Practice and Experience, vol. 29, no. 3, pp.
267-290, 1999.

[9] Ashok K. Sharma, "Advanced Semiconductor Memories:
Architectures, Designs, and Applications", WILEY Inter-
science, 2003.

[10] Samsung Electronics, “NAND Flash Data Sheet”,
www.samsung.com/Products/Semiconductor/NANDFlash.

[11] E. Gal and S. Toledo, "Algorithms and Data Structures for
Flash Memories", ACM Computing Surveys, vol. 37, no. 2,
pp 138-163, 2005.

[12] A. Kawaguchi, S. Nishioka and H. Motoda, "A Flash-
memory based file system", Proceedings of the 1995
USENIX Annual Technical Conference, pp. 155-164, 1995.

[13] E. Gal and S. Toledo, "A transactions Flash file system for
microcontrollers", Proceedings of the 2005 USENIX Annual
Technical Conference, pp. 89-104, 2005.

[14] D. Woodhouse, "JFFS: The journaling Flash file system",
Ottawa Linux Symposium, 2001,
http://source.redhat.com/jffs2/jffs2.pdf.

[15] T. Blackwell, J. Harris, and M. Seltzer, "Heuristic cleaning
algorithms in log-structured file systems", Proceedings of
the 1995 Annual Technical Conference, pp. 277-288, 1993.

[16] J. Matthews, D. Roselli, A. Costello, R. Wang, and T.
Anderson, "Improving the performance of log-structured file
system with adaptive methods", ACM Symposiums on Op-
erating System Principles (SOSP), pp. 238-251, 1997.

[17] J. Wang and Y. Hu, "WOLF - a novel reordering write
buffer to boost the performance of log-structured file sys-
tem", Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), pp. 46-60, 2002.

[18] W. Wang, Y. Zhao, and R. Bunt, "HyLog: A High Perform-
ance Approach to Managing Disk Layout", Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), pp. 145-158, 2004.

[19] M. Wu and W. Zwaenepoel, "eNVy: a non-volatile, main
memory storage system", Proceeding of the 6th International
Conference on Architectural Support for Programming Lan-
guages and Operation Systems (ASPLOS), pp. 86-97, 1994.

[20] L. P. Chang, T. W. Kuo and S. W. Lo, "Real-time garbage
collection for Flash memory storage systems of real time
embedded systems", ACM Transactions on Embedded
Computing Systems, Vol. 3, No. 4, pp. 837-863, 2004.

[21] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, Y. Cho, "A space-
efficient Flash translation layer for CompactFlash systems",
IEEE Transactions on Consumer Electronics, vol. 48, no. 2,
pp. 366-375, 2002.

[22] EZ-X5, www.falinux.com/zproducts.
[23] J. Katcher, "PostMark: A New File System Benchmark",

Technical Report TR3022, Network Appliance Inc., 1997.
[24] A. Ben-Aroya, “Competitive analysis of flash-memory algo-

rithms”, M.Sc. paper, Apr. 2006,
www.cs.tau.ac.il/~stoledo/Pubs/flash-abrhambe-msc.pdf.

[25] Y. Zhou, P. M. Chen, and K. Li, “The Multi-Queue Re-
placement Algorithm for Second-Level Buffer Caches, Pro-
ceeding of the 2001 USENIX Annual Technical Conference,
June, 2001.

[26] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee, ”FAB: Flash-
Aware Buffer Management Policy for Portable Media Play-
ers”, IEEE Transactions on Consumer Electronics, Vol. 52,
No. 2, May, 2006.

163

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

