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ABSTRACT
We provide an algebraic formalisation of connectors in BIP. These
are used to structure interactions in a component-based system. A
connector relates a set of typed ports. Types are used to describe
different modes of synchronisation: rendezvous and broadcast, in
particular.

Connectors on a set of ports P are modelled as terms of the al-
gebra AC(P ), generated from P by using a binary fusion operator
and a unary typing operator. Typing associates with terms (ports
or connectors) synchronisation types — trigger or synchron —,
which determine modes of synchronisation. Broadcast interactions
are initiated by triggers. Rendezvous is a maximal interaction of a
connector including only synchrons.

The semantics of AC(P ) associates with a connector the set of
its interactions. It induces on connectors an equivalence relation
which is not a congruence as it is not stable for fusion. We provide
a number of properties of AC(P ) used to symbolically simplify
and handle connectors. We provide examples illustrating applica-
tions of AC(P ), including a general component model encompass-
ing synchrony, methods for incremental model decomposition, and
efficient implementation by using symbolic techniques.

Categories and Subject Descriptors
C.0 [General]: System architectures; Systems specification meth-
odology; C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms
Design, Theory

1. INTRODUCTION
A key idea in systems engineering is that complex systems are

built by assembling components (building blocks). Components
are systems characterised by an abstraction, which is adequate for
composition and re-use. Large components are obtained by com-
posing simpler ones. Component-based design confers many ad-
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vantages such as reuse of solutions, modular analysis and valida-
tion, reconfigurability, controllability etc.

Component-based design relies on the separation between coor-
dination and computation. Systems are built from units processing
sequential code insulated from concurrent execution issues. The
isolation of coordination mechanisms allows a global treatment and
analysis.

One of the main limitations of the current state-of-the-art is the
lack of a unified paradigm for describing and analysing the coordi-
nation between components. Such a paradigm would allow system
designers and implementers to formulate their solutions in terms of
tangible, well-founded and organised concepts instead of using dis-
persed low-level coordination mechanisms including semaphores,
monitors, message passing, remote call, protocols etc. A unified
paradigm should allow a comparison and evaluation of otherwise
unrelated architectural solutions, as well as derivation of imple-
mentations in terms of specific coordination mechanisms.

A number of paradigms for unifying interaction in heteroge-
neous systems have been proposed in [1, 2, 3, 12]. In these works
unification is achieved by reduction to a common low-level seman-
tic model. Interaction mechanisms and their properties are not stud-
ied independently of behaviour.

We propose the algebra of connectors for modelling interaction
in component-based systems. This algebra considers connectors as
the basic concept for modeling coordination between components.
Different formalisations for connectors in component frameworks
have been proposed. In most of them, connectors are specified in an
operational setting, usually a process algebra. In [21], a connector
is defined as a set of processes: there is one process for each role
of the connector, plus one process for the “glue” that describes how
all the roles are bound together. In [7], a process algebra is used
to define an architectural type as a set of component/connector in-
stances related by a set of attachments among their interactions.
In [1], Reo is a channel-based exogenous coordination model for
multi-agent systems. It uses connectors compositionally built out
of different types of channels formalised in data-stream semantics.
Our approach considers connectors as relations between ports with
synchronisation types. It is close to [10, 13], where the notion of
“higher-order” connectors is investigated in a categorical frame-
work for component composition. Nonetheless, the categorical se-
mantic underpinnings of their work gives a very different frame-
work.

The algebra of connectors allows the description of coordina-
tion between components in terms of structured stateless connec-
tors involving communication ports. It formalises mechanisms and
concepts that have been implemented in the Behaviour-Interaction-
Priority (BIP) component framework developed at Verimag [4, 20].
BIP distinguishes between three basic entities: 1) Behaviour, de-
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Figure 1: Graphical representation of rendezvous (a) and
broadcast (b) connectors.

scribed as extended automata, including a set of transitions labelled
with communication ports. 2) Interaction, described by structured
connectors relating communication ports. 3) Dynamic priorities,
used to model simple control policies, allowing selection amongst
possible interactions. BIP uses a powerful composition operator
parametrised by a set of interactions.

We present an algebraic formalisation of the concept of connec-
tor, introduced in [14, 15] as a set of communication ports belong-
ing to different components that may be involved in some interac-
tion. To express different types of synchronisation, the ports of a
connector have a type (attribute) trigger or synchron. Given a con-
nector involving as set of ports {p1, . . . , pn}, the set of its inter-
actions is defined by the following rule: an interaction is any non
empty subset of {p1, . . . , pn} which contains some port that is a
trigger; otherwise, (if all the ports are synchrons) the only possible
interaction is the maximal one that is, {p1, . . . , pn}.

In Figure 1, we show two connectors modelling respectively ren-
dezvous and broadcast between ports p1, p2, and p3. For ren-
dezvous, all the involved ports are synchrons (represented by bul-
lets) and the only possible interaction is p1p2p3. As usual, we sim-
plify notation by writing p1p2p3 instead of the set {p1, p2, p3}. For
broadcast, p1 is a trigger (represented by a triangle). The possible
interactions are p1, p1p2, p1p3, and p1p2p3. A connector may have
several triggers. For instance, if both p1 and p2 are triggers in the
above connector, then p2 and p2p3 should be added to the list of
possible interactions.

The main contributions of this paper are the following:

• The algebra of connectors extends the notion of connectors to
terms built from a set of ports by using a binary fusion oper-
ator and a unary typing operator (trigger or synchron). Given
two connectors involving sets of ports s1 and s2, it is possible
to obtain by fusion a new connector involving the set of ports
s1 ∪ s2 (cf. Figure 2(a)). Ports preserve their types except
for the case where some port occurs in both connectors with
different types. In this case, the port in the new connector is
a trigger. It is also possible to structure connectors hierarchi-
cally as shown in Figure 2(b), where terms p1 p2 and p3 p4

are typed and then fused to obtain a new connector.

• The semantics of the algebra of connectors associates with a
connector (a term) the set of its interactions. This induces an
equivalence on terms. We show that this equivalence is not
a congruence as it is not preserved by fusion. This fact has
deep consequences on composability of interaction models
investigated in the paper. We show that for the subset of the
terms where all the connectors have the same type (synchron
or trigger) the semantic equivalence is a congruence.

• The algebra and its laws can be used to represent and han-
dle symbolically complex interaction patterns. The number
of interactions of a connector can grow exponentially with
its size. We provide applications of the algebra in modelling
languages, such as BIP, and show that the use of symbolic in-
stead of enumerative techniques can drastically enhance effi-
ciency in execution and transformation.
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Figure 2: Fusion (a) and structuring (b) of connectors.

The paper is structured as follows. Section 2 provides a succinct
presentation of the basic semantic model for BIP and in particu-
lar, its composition parametrised by interactions. In Section 3, we
present the Algebra of Interactions. It is a simple algebra used to in-
troduce the Algebra of Connectors presented in Section 4. The last
section discusses possible applications of the algebra of connec-
tors to efficient design, analysis, and execution of languages with
complex interaction structure, such as BIP.

2. BIP COMPONENT FRAMEWORK
BIP is a component framework for constructing systems by su-

perposing three layers of modelling: Behaviour, Interaction, and
Priority. The lower layer consists of a set atomic components rep-
resenting transition systems. The second layer models interactions
between components, specified by connectors. These are relations
between ports equipped with synchronisation types. Priorities are
used to enforce scheduling policies applied to interactions of the
second layer.

The BIP component framework has been implemented in a lan-
guage and a tool-set. The BIP language offers primitives and con-
structs for modelling and composing layered components. Atomic
components are communicating automata extended with C func-
tions and data. Their transitions are labelled with sets of communi-
cation ports. The BIP language also allows composition of compo-
nents parametrised by sets of interactions as well as application of
priorities.

The BIP tool-set includes an editor and a compiler for generating
from BIP programs, C++ code executable on a dedicated platform
(see [4, 8]).

We provide a succinct formalisation of the BIP component model
focusing on the operational semantics of component interaction and
priorities.

Definition 2.1. For a set of ports P , an interaction is a non-empty
subset a ⊆ P of ports.

Definition 2.2. We call a labelled transition system is a triple B =
(Q, P,→), where Q is a set of states, P is a set of communication
ports, and →⊆ Q × 2P × Q is a set of transitions, each labelled
by an interaction.

For any pair of states q, q′ ∈ Q and an interaction a ∈ 2P , we
write q

a→ q′, iff (q, a, q′) ∈→. When the interaction is irrelevant,
we simply write q → q′.

An interaction a is enabled in state q, denoted q
a→, iff there

exists q′ ∈ Q such that q
a→ q′. A port P is active, iff it belongs to

an enabled interaction.

In BIP, a system can be obtained as the composition of n com-
ponents, each modelled by a transition system Bi = (Qi, Pi,→i),
for i ∈ [1, n], such that their sets of ports are pairwise disjoint: for
i, j ∈ [1, n] (i �= j), we have Pi ∩Pj = ∅. We take P =

Sn
i=1 Pi,

the set of all ports in the system.
The composition of components {Bi}n

i=1, parametrised by a set
of interactions γ ⊂ 2P is the transition system B = (Q, P,→γ),
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Figure 3: A system with four atomic components

where Q =
Nn

i=1 Qi and →γ is the least set of transitions satisfy-
ing the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi �= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn)
a→γ (q′1, . . . , q

′
n)

, (1)

where qi = q′i for all i ∈ [1, n] such that a ∩ Pi = ∅. We write
B = γ(B1 . . . , Bn).

An interaction a ∈ γ is enabled in γ(B1, . . . , Bn), only if, for
each i ∈ [1, n], the interaction a ∩ Pi is enabled in Bi ; the states
of components that do not participate in the interaction remain un-
changed.

Several distinct interactions can be enabled at the same time, thus
introducing non-determinism in the product behaviour, which can
be restricted by means of priorities.

Definition 2.3. Given a system B = γ(B1, . . . , Bn), a priority
model π is a strict partial order on γ. For a, a′ ∈ γ, we write
a ≺ a′ iff (a, a′) ∈ π, meaning that interaction a has less priority
than interaction a′.

For B = (Q, P,→), and a priority model π, the transition sys-
tem π(B) = (Q, P,→π), is defined by the rule

q
a→ q′ ∧ � ∃ a′ : (a ≺ a′ ∧ q

a′
→)

q
a→π q′

. (2)

Notice that an interaction is enabled in π(B) only if it is enabled
in B, and maximal according to π.

Example 2.4 (Sender/Receivers). Figure 3 shows a component
π γ(S, R1, R2, R3) obtained by composition of four atomic com-
ponents: a sender, S, and three receivers, R1, R2, R3. The sender
has a port s for sending messages, and each receiver has a port ri

(i = 1, 2, 3) for receiving them. The following table specifies γ for
four different coordination schemes.

Name of the scheme Set of interactions

Rendezvous {s r1 r2 r3}
Broadcast {s, s r1, s r2, s r3, s r1 r2, s r1 r3,

s r2 r3, s r1 r2 r3}
Atomic Broadcast {s, s r1 r2 r3}
Causality Chain {s, s r1, s r1 r2, s r1 r2 r3}

Rendezvous means strong synchronisation between S and all Ri.
This is specified by a single interaction involving all the ports.
This interaction can occur only if all the components are in
states enabling transitions labelled respectively by s, r1, r2,
r3.

Broadcast means weak synchronisation, that is a synchronisation
involving S and any (possibly empty) subset of Ri. This is
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Figure 4: Modulo-8 counter.

specified by the set of all interactions containing s. These
interactions can occur only if S is in a state enabling s. Each
Ri participates in the interaction only if it is in a state en-
abling ri.

Atomic broadcast means that either a message is received by all
Ri, or by none. Two interactions are possible: s, when at
least one of the receiving ports is not enabled, and the inter-
action s r1 r2 r3, corresponding to strong synchronisation.

Causality chain means that for a message to be received by Ri it
has to be received at the same time by all Rj , for j < i. This
coordination scheme is common in reactive systems.

For rendezvous, the priority model is empty. For all other coor-
dination schemes, whenever several interactions are possible, the
interaction involving a maximal number of ports has higher prior-
ity, that is we take π = {(a, a′) | a ⊂ a′}.

Throughout the paper, the above rule is applied. In other words,
amongst the enabled interactions, are preferred the ones involving
a maximal number of ports.

Example 2.5 (Modulo-8 counter). Figure 4 shows a model for the
Modulo-8 counter presented in [17], obtained by composition of
three Modulo-2 counter components. Ports p, r, and t correspond
to inputs, whereas q, s, and u correspond to outputs. It can be easily
verified that the interactions p q r, p q r s t, and p q r s t u happen,
respectively, on every second, fourth, and eighth occurrence of an
input interaction through the port p.

Notice that the composition operator can express usual parallel
composition operators [9], such as the ones used in CSP [16] and
CCS [18]. By enforcing maximal progress, priorities allow to ex-
press broadcast.

3. THE ALGEBRA OF INTERACTIONS
We define the algebra of interactions that will serve as a basis for

building the algebra of connectors.

3.1 Syntax, axioms, and semantics

Syntax. Let P be a set of ports, such that 0, 1 �∈ P . The syntax of
the algebra of interactions, AI(P ), is defined by

x ::= 0 | 1 | p ∈ P | x · x | x + x | (x) , (3)

where ‘+’ and ‘·’ are binary operators, respectively called union
and synchronisation. Synchronisation has a higher order of prece-
dence than union.

Axioms. The operations satisfy the following axioms.
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1. Union ‘+’ is idempotent, associative, commutative, and has
an identity element 0, i.e. the structure (AI(P ), +, 0) is a
commutative monoid;

2. Synchronisation ‘·’ is idempotent, associative, and commu-
tative, has an identity element 1, and an absorbing element
0; synchronisation distributes over union, i.e. the structure
(AI(P ), +, ·, 0, 1) is a commutative semi-ring.

Semantics. The semantics of AI(P ) is given by the function ‖·‖ :

AI(P ) → 22P

, defined by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
n
{p}

o
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

n
a1 ∪ a2

˛̨̨
a1 ∈ ‖x1‖, a2 ∈ ‖x2‖

o
,

‖(x)‖ = ‖x‖,

(4)

for p ∈ P , x, x1, x2 ∈ AI(P ). Terms of AI(P ) represent sets of
interactions between the ports of P .

Proposition 3.1. The axiomatisation of AI(P ) is sound and com-
plete, that is, for any x, y ∈ AI(P ),

x = y ⇐⇒ ‖x‖ = ‖y‖ .

PROOF. The proof of this proposition is straightforward. Com-
pleteness is shown by applying distributivity to flatten the elements
and verifying that the normal forms, obtained in this way for ele-
ments having same sets of interactions, coincide.

Example 3.2 (Sender/Receiver continued). In AI(P ), the interac-
tion for the four coordination schemes of Example 2.4 are:

Name of the scheme Set of interactions

Rendezvous s r1 r2 r3

Broadcast s (1 + r1) (1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3)

Causality Chain s (1 + r1 (1 + r2 (1 + r3)))

Clearly, this representation is more compact and exhibits more
information: e.g. the expression (1 + ri) suggests that the port ri

is optional.

3.2 Correspondence with boolean functions
AI(P ) can be bijectively mapped to the free boolean algebra

B[P ] generated by P . We define a mapping β : AI(P ) → B[P ]
by setting:

β(0) = false , β(1) =
^

p∈P

p ,

β(pi1 . . . pik ) =

k̂

j=1

pij ∧
^

i�=ij

pi ,

β(x + y) = β(x) ∨ β(y) ,

for pi1 , . . . pik ∈ P , and x, y ∈ AI(P ), where in the right-hand
side the elements of P are considered to be boolean variables. For
example, consider the correspondence table for P = {p, q} shown
in Figure 5.

The mapping β is an order isomorphism, and each expression
x ∈ AI(P ) represents exactly the set of interactions correspond-
ing to boolean valuations of P satisfying β(x).

Although techniques specific to boolean algebras can be applied
to the boolean representation of AI(P ) (e.g. BDDs), AI(P ) pro-
vides a more natural representation of interactions for two reasons.

1. Representation in AI(P ) is more intuitive as it gives directly
all the interactions. For example, the term p + p q of AI(P )
represents the set of interactions {p, p q} for any set of ports
P containing p and q. The boolean representation of p + p q
depends on P : if P = {p, q} then β(p + pq) = p, whereas
if P = {p, q, r, s} then β(p + pq) = p r s.

2. Synchronisation of two interactions in AI(P ) is by simple
concatenation, whereas for their boolean representation there
is no simple context-independent composition rule, e.g. to
obtain the representation of p q from β(p) = p q r s and
β(q) = p q r s.

4. THE ALGEBRA OF CONNECTORS
We provide an algebraic formalisation of the concept of connec-

tor, supported by the BIP language [4]. Connectors can express
complex coordination schemes combining synchronisation by ren-
dezvous and broadcast.

4.1 Syntax, axioms, and semantics

Syntax. Let P be a set of ports, such that 0, 1 �∈ P . The syntax of
the algebra of connectors, AC(P ), is defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x + x | (x) ,

(5)

for p ∈ P , and where ‘+’ is binary operator called union, ‘·’ is a
binary operator called fusion, and brackets ‘[·]’ and ‘[·]′’ are unary
typing operators. Fusion has a higher order of precedence than
union.

Union has the same meaning as union in AI(P ). Fusion is a
generalisation of the synchronisation in AI(P ). Typing is used to
form typed connectors: ‘[·]′’ defines triggers (which can initiate an
interaction), and ‘[·]’ defines synchrons (which need synchronisa-
tion with other ports in order to interact).

Definition 4.1. A term x ∈ AC(P ) is a monomial, iff it does not
involve union operators.

Notation 4.2. We write [x]α, for α ∈ {0, 1}, to denote a typed
connector. When α = 0, the connector is a synchron, otherwise it
is a trigger. When the exact type is irrelevant, we write ‘[·]∗’.

In order to simplify notation, we will omit brackets on 0, 1, and
ports p ∈ P , as well as ‘·’ for the fusion operation.

Definition 4.3. The degree of a term x ∈ AC(P ) of the formQ
i∈I [xi]

∗, denoted by #x, is the number of its trigger sub-terms.

The algebraic structure on AC(P ) inherits most of the axioms
from AI(P ) except for the associativity of fusion.

Axioms. The operations satisfy the following axioms.

1. Union ‘+’ is associative, commutative, idempotent, and has
the identity element [0].

2. Fusion ‘·’ is associative, commutative, distributive, and has
an identity element [1]. It is idempotent on monomial con-
nectors, i.e. for any monomial x ∈ AC(P ) we have x · x =
x.

3. Typing ‘[·]∗’ satisfies the following axioms, for x, y, z ∈
AC(P ) and α, β ∈ {0, 1}:

(a) [0]′ = [0],
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AI(P ) B[P ]

0 false

1 p q p q p q p q p q p q

p + 1 q + 1 p q + 1 p + q p + p q q + p q q p p q ∨ p q p q ∨ p q p q

p + q + 1 p q + p + 1 p q + q + 1 p q + p + q p ∨ q p ∨ q p ∨ q p ∨ q

p q + p + q + 1 true

Figure 5: Correspondence between AI({p, q}) and boolean functions with two variables.

(b)
h
[x]α

iβ

= [x]β ,

(c) [x + y]α = [y]α + [x]α,

(d) [x]′ [y]′ = [x]′ [y] + [x] [y]′.

Lemma 4.4. For xi ∈ AC(P ), where i = 1, . . . , n,

nY
i=1

[xi]
′ =

nX
i=1

0@[xi]
′

nY
i�=j

[xj ]

1A .

Notice that, by application of the above lemma, it is possible
to reduce the degree of the terms to one. For example, consider
a connector between two independent senders and three receivers
s′1 s′2 [r1 + r2 r3]. This connector is equal to s′1 s2 [r1 + r2 r3] +
s1 s′2 [r1 + r2 r3].

Semantics. The semantics of AC(P ) is given by the function | · | :
AC(P ) → AI(P ), defined by the rules

|[p]| = p , (6)

|x1 + x2| = |x1| + |x2| , (7)˛̨̨ nY
i=1

[xi]
˛̨̨

=
nY

i=1

|xk| , (8)

˛̨̨ nY
i=1

[xi]
′ ·

mY
j=1

[yj ]
˛̨̨

=
nX

i=1

|xi| ·

0@Y
k �=i

“
1 + |xk|

”
·

·
mY

j=1

“
1 + |yj |

”!
, (9)

for x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ) and p ∈ P ∪ {0, 1}.

Notice that, through the semantics of AI(P ), connectors repre-
sent sets of interactions.

Rule (9) can be decomposed in two steps: 1) the application of
Lemma 4.4, to reduce the degree of all terms to one; 2) the applica-
tion of rule (9) for n = 1, expressing the fact that the single trigger
in each term must participate in all interactions, while synchrons
are optional. Compare Example 4.8 in the following section with
Examples 2.4 and 3.2.

Example 4.5. Consider a system consisting of two Senders with
ports s1, s2, and three Receivers with ports r1, r2, r3. The meaning
of the connector s′1 s′2 [r1 + r2 r3] is computed as follows.

|s′1 s′2 [r1 + r2 r3]| =

(9)
= |s1| (1 + |s2|) (1 + |r1 + r2 r3|)

+|s2| (1 + |s1|) (1 + |r1 + r2 r3|)

(7)
= |s1| (1 + |s2|) (1 + |r1| + |r2 r3|)

+|s2| (1 + |s1|) (1 + |r1| + |r2 r3|)
(8)
= |s1| (1 + |s2|) (1 + |r1| + |r2| |r3|)

+|s2| (1 + |s1|) (1 + |r1| + |r2| |r3|)
(6)
= s1 (1 + s2) (1 + r1 + r2 r3)

+s2 (1 + s1) (1 + r1 + r2 r3) ,

which corresponds to exactly the set of all possible interactions
containing at least one of s1 and s2, and possibly either r1 or both
r2 and r3.

Proposition 4.6. The axioms of AC(P ) are sound with respect to
the semantics defined by (6)–(9), that is, for x, y ∈ AC(P ), x = y
implies |x| = |y|.

PROOF. To prove this proposition, we have to verify that all the
axioms preserve the semantics in any fusion context, i.e. for an
axiom x = y and arbitrary z ∈ AC(P ), we have to verify that
|x z| = |y z|. However, it is clear that it is sufficient to verify this
property only for monomial z, which is straightforward.

Definition 4.7. Two connectors x, y ∈ AC(P ) are equivalent (de-
noted x � y), iff they have the same sets of interactions, i.e.

x � y
def⇐⇒ |x| = |y| . (10)

In Section 4.3, we show that this equivalence relation is not a
congruence.

4.2 Examples

Example 4.8 (Sender/Receiver continued). In AC(P ), the interac-
tions for the four coordination schemes of Example 2.4 are:

Name of the scheme Set of interactions

Rendezvous s r1 r2 r3

Broadcast s′ r1 r2, r3

Atomic Broadcast s′ [r1 r2 r3]

Causality Chain s′ [r′1 [r′2 r3]]

Notice that AC(P ) allows compact representation of interac-
tions, and, moreover, explicitly captures the difference between
broadcast and rendezvous. The four connectors are shown in Fig-
ure 6. The typing operator induces a hierarchical structure. Con-
nectors can be represented as sets of trees, having ports at their
leaves. We use triangles and circles to represent types: triggers and
synchrons, respectively.
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Figure 6: Graphic representation of connectors.
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Figure 7: Two connectors realising a broadcast.

The following example illustrates the distinction between paren-
theses ‘(·)’ and the typing operator ‘[·]∗’.

Example 4.9. Consider two terms p′ (a′ c + b) and p′ [a′ c + b] of
AC(P ). For the first term we have

|p′ (a′ c + b)| = |p′ a′ c + p′ b| =

= p (1 + a) (1 + c) + a (1 + p) (1 + c) + p (1 + b)

= p + p a + p c + p a c + a + a c + p b ,

whereas for p′ [a′ c + b] we have

|p′ [a′ c + b]| = |p| (1 + |a′ c + b|)
= p (1 + a + a c + b) = p + p a + p a c + p b .

Example 4.10 (Broadcast). For the broadcast connector s′ r1 r2 r3

(Figure 6(b)), we have

|s′ r1 r2 r3| = s (1 + r1) (1 + r2) (1 + r3) .

This connector can be constructed incrementally. For example,
one can start from the connector s′r1, having |s′r1| = s(1 + r1).
By typing this connector as a trigger and adding the synchron r2,
we obtain

|[s′ r1]
′ r2| = |s′ r1| (1 + |r2|) = s (1 + r1) (1 + r2) .

Connecting r3 in a similar manner gives [[s′r1]
′r2]

′r3 (see Fig-
ure 7(a)). The two connectors are equivalent:

|[[s′ r1]
′ r2]

′ r3| = s (1 + r1) (1 + r2) (1 + r3)

It is easy to verify that another incremental construction results
in the equivalent connector [s′ r1]

′ [r′2 r′3] (see Figure 7(c)).

Example 4.11 (Modulo-8 counter). In the model shown in Fig-
ure 8, the causality chain pattern (cf. Figure 6(d)) is applied to
connectors p, q r, s t, and u. Thus interactions are modelled by a

single structured connector p′
h
[q r]′ [[s t]′ u]

i
:˛̨̨

p′
h
[q r]′

h
[s t]′ u

ii˛̨̨
= p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter of Fig-
ure 4.
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Figure 8: Modulo-8 counter.

Example 4.12 (Ethernet). Consider n components, each equipped
with a send port, si, and a receive port ri, for i ∈ [1, n]. We model
two types of interactions:

• successful communication, where some component k sends
data through the port sk, and all the others listen on their
respective receive ports ri for i �= k;

• collision, where several components try to send data on their
respective send ports {si}i∈I for some I ⊆ [1, n], while the
others listen on {ri}i�∈I .

Thus, the connector modelling the possible interactions is

nX
i=1

s′k
Y
i�=k

(s′i + ri) .

4.3 Congruence relation on AC(P )

Definition 4.13. We denote by ‘∼=’ the largest congruence relation
contained in ‘�’, that is the largest relation satisfying, for x, y ∈
AC(P ), and z �∈ P ,

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) � E(y/z) , (11)

where e.g. E(x/z) denotes the expression, obtained from E by
replacing all occurrences of z by x.

Notice that, in general, two equivalent terms are not congruent.
For example, p′ � p, but p′ �∼= p as p′ q �� p q, for p, q ∈ P .

Proposition 4.14. Similarly typed equivalent terms are congruent,
i.e. for x, y ∈ AC(P ), and α ∈ {0, 1}, we have

x � y =⇒ [x]α ∼= [y]α . (12)

Note 4.15. Clearly, the converse implication in (12) is also true.

Lemma 4.16. For x, y ∈ AC(P ),

x ∼= y ⇐⇒ ∀z ∈ AC(P ), (z is monomial ⇒ x · z � y · z) .

Theorem 4.17. For two non-zero monomial connectors x, y ∈
AC(P ), we have

x ∼= y ⇐⇒

8><>:
x � y

x · 1′ � y · 1′

#x > 0 ⇔ #y > 0 .

(13)

The following two corollaries are used for the axiomatisation of
the algebra of triggers, defined in the next section.

Corollary 4.18. For x ∈ AC(P ) such that #x > 0, we have
x · 0′ ∼= x.

Corollary 4.19. For x, y ∈ AC(P ), [x]′ [y]′ ∼= [[x]′ [y]′]′.
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4.4 Sub-algebras
The subsets of the terms of AC(P ), involving only triggers or

only synchrons, define two sub-algebras: the algebra of triggers,
AT (P ), and the algebra of synchrons, AS(P ). The terms of these
algebras model, respectively, coordination by rendezvous and by
broadcast.

It can be shown [9] that, for AS(P ), fusion of typed connectors
is also associative, that is for x, y, z ∈ AS(P )h

[x] [y]
i
[z] = [x] [y] [z] = [x]

h
[y] [z]

i
.

It follows that dropping the brackets immediately provides an iso-
morphism between AS(P ) and AI(P ).

Corollary 4.19 shows that fusion of typed connectors is equally
associative in AT (P ), that is for x, y, z ∈ AT (P )h

[x]′ [y]′
i′

[z]′ = [x]′ [y]′ [z]′ = [x]′
h
[y]′ [z]′

i′
.

Notice that [1] �∈ AT (P ). The identity element for fusion in
AT (P ) is [0]′ (cf. Corollary 4.18).

Proposition 4.20.

1. The axiomatisation of AS(P ) is sound and complete.

2. The axiomatisation of AT (P ) is sound. It becomes complete
with the additional axiom

[x]′ y = [x]′ y + [x]′ . (14)

PROOF. 1. This affirmation follows from the associativity of
synchronisation in AI(P ) and the rule (8) in the definition of the
semantics of AC(P ).

2. The soundness of the axiomatisation of AT (P ) follows from
Corollary 4.18 and Corollary 4.19, the idempotence of union and
synchronisation in AI(P ), and the rule (9). The completness is
proven by showing that the associativity of fusion and the absorb-
tion axiom (14) allow to define a normal form, coinciding for equiv-
alent terms.

5. APPLICATIONS
The algebra of connectors formalises the concept of structured

connector already used in the BIP language. It finds multiple ap-
plications in improving both the language and its execution engine.
The three applications presented in this section show its expressive
power and analysis capabilities.

5.1 Efficient execution of BIP
The proposed algebraic framework can be used to enhance per-

formance of the BIP execution Engine. The Engine drives the ex-
ecution of (the C++ code generated from) a BIP program. A key
performance issue is the computation of the set of the possible in-
teractions of the BIP program from a given state. The Engine has
access to the set of the connectors and the priority model of the
program. From a given global state, each atomic component of the
BIP program, waits for an interaction through a set of active ports
(ports labelling enabled transitions) communicated to the Engine.
The Engine computes from the connectors of the BIP program and
the set of all the active ports, the set of the maximal interactions
(involving active ports). It chooses one of them, computes associ-
ated data transformations and notifies the components involved in
the chosen interaction.

Currently, the computation of the maximal set of interactions in-
volves a costly exploration of enumerative representations for con-
nectors. This leads to a considerable overhead in execution times.

For instance, for an MPEG4 encoder in BIP obtained by compo-
nentisation of a monolithic C program of 11,000 lines of code, we
measured almost 100% of overhead in execution time. We provide
below the principle of a not yet implemented, symbolic method
which could be used to drastically reduce this overhead.

Given a set a of active ports, we use the following algorithm to
find the maximal interactions contained in a and a connector K.

1. Let {p1, . . . , pk} be the set of ports that do not belong to
a. Compute K(0/p1, . . . , 0/pk) (substitute 0 for all pi, with
i = 1, . . . , k).

2. In the resulting connector, erase all primes to obtain a termeK ∈ AI(P ).

3. Consider eK as a star-free regular expression and build the
associated (acyclic) automaton with states labelled by inter-
actions contained in a.

4. The final states of the obtained automaton correspond to max-
imal enabled interactions within K.

Example 5.1. Suppose that only ports q, r, s, and t are active, and
compute the maximal interactions of the connector p′ [q [s + r] +
r q′]′[t + u].

Substitute 0 for p and u to obtain

0′
h
q [s + r] + r q′

i′
[t + 0] =

h
q [s + r] + r q′

i′
t ,

which becomes
h
q [s + r] + r q

i
t by erasing the primes. The as-

sociated automaton is:

����
		


�q

�r
�

��



q r

q s





q r t

q s t

The final states of this automaton correspond to two interactions,
q r t and q s t, and it can be easily verified that these are, indeed,
the two maximal interactions in the given connector, when ports p
and u are not active.

5.2 d-Synchronous component model
Modelling heterogeneous models in BIP, and in particular syn-

chronous models, has shown that some coordination schemes need
a number of connectors increasing exponentially with the number
of ports. Nonetheless, these connectors can be obtained by combi-
nation of a reasonably small number of basic connectors.

To avoid tedious and error prone enumerative specification, we
propose an extension of the current component model where a tran-
sition of the product component may involve synchronous execu-
tion of interactions from several connectors. This leads to a d-
synchronous extension of the BIP component model discussed be-
low.

To motivate the proposed extension, we model joint function call
inspired from constructs found in languages such as nesC and Poly-
phonic C# [11, 19]. A function call for a function fi, involves
two strong synchronisations between the Caller and the Calleei:
1) through the connector Ki = ci bi to begin the execution of fi;
2) through the connector Li = ri fi for finish and return (see Fig-
ure 9 for an example with two Callees).

Joint function calls involve the parallel computation of several
functions. The Caller awaits for all the invoked functions to com-
plete their execution. For instance, modelling a joint function call
for functions f1 and f2, entails a modification of existing connec-
tors by adding the links in dashed lines, shown in Figure 9, to obtain

[b1 c1]
′ [b2 c2]

′ � b1 c1 + b2 c2 + b1 c1 b2 c2 .
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Figure 9: Modelling a joint call of two functions.

Depending on the number of ports involved in the call, an expo-
nential number of connectors can be required. To avoid connector
explosion, we extend the composition operator of BIP in the fol-
lowing manner.

Definition 5.2. An interconnected system is given by a pair
({Bi}n

i=1, {Kj}m
j=1), where Bi = (Qi, Pi,→i) with →i⊆ Qi ×

2Pi × Qi, are components, and Kj ∈ AC(P ) with P =
Sn

i=1 Pi.
For an integer parameter d ∈ [1, m], the d-synchronous seman-

tics of ({Bi}n
i=1, {Kj}m

j=1) is the system γd(B1, . . . , Bn) defined
by applying the rule (1) with γ = γd, where

γd =
X

I⊆[1,m]
|I|=d

Y
i∈I

[Ki]
′ .

Synchronous semantics corresponds to the case, where d is maxi-
mal (i.e. d = m).

Notice that γd contains all the interactions obtained by synchro-
nisation of at most d connectors. Thus, in particular, we have
γ1 ⊆ γ2 ⊆ · · · ⊆ γm.

The application of rule (1) for the d-synchronous semantics with
d > 1, requires the nontrivial computation of all the possible inter-
actions. For this the following proposition can be used.

Proposition 5.3. Let ({Bi}n
i=1, {Kj}m

j=1) be an interconnected
system. The set of possible interactions for its d-synchronous se-
mantics is

nY
i=1

[Gi]
′ ∩ γd , (15)

where, for i ∈ [1, n], we put Gi =
P

qi∈Qi
Gqi with Gqi =P

qi
a→ a.

Notice that Gi, in (15), is the set of all interactions offered by
the component i alone. Thus,

Qn
i=1[Gi]

′ is the set of all the in-
teractions offered by the components, whereas γd is the set of the
interactions allowed by the d-synchronised connectors. Therefore,
the intersection of the two sets characterises all the possible inter-
actions for the d-synchronous semantics.

Example 5.4 (Causality loop). Consider the interconnected system
shown in Figure 10. For d = 2 (synchronous semantics), the only
possible interaction is

[p′ q]′ [r′ s]′ ∩ [q r]′ [p s]′ = p q r s ,

which corresponds to a causality loop, in the terminology of syn-
chronous languages [6].

Notice that, for d = 1, the set of possible interactions is empty:

[p′ q]′ [r′ s]′ ∩
“
q r + p s

”
= ∅ .

�

�

�p + p q

p

q

�

� �

�

�r + r s

s

r

�

�

Figure 10: Causality loop.
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Figure 11: Synchronous modulo-8 counter.

Example 5.5 (Modulo-8 counter). For synchronous semantics the
system in Figure 11 is equivalent to the Modulo-8 counter given in
Example 4.11 of Section 4.2. The synchronous model is a more
natural representation of this system. Its interactions can be com-
puted by application of Proposition 5.3:

[p + p q]′ [r + r s]′ [t + t u]′ ∩ p′ [q r]′ [s t]′ u′ =

= p + p q r + p q r s t + p q r s t u .

As shown in the above examples, it is important to compute ef-
ficiently the interactions of a system for d-synchronous semantics
with d > 1. To avoid costly enumeration, we have developed an al-
ternative technique, based on dependency graph analysis. We illus-
trate this technique below, by applying it to the Modulo-8 counter.

The dependency graph analysis consists in building a directed
acyclic graph, based on relations induced by connectors between
the components of an interconnected system and labels of the tran-
sitions of these components. The resulting graph allows to deter-
mine the set of the possible interactions in the synchronous seman-
tics, without having to enumerate them explicitly.

For the Modulo-8 counter, the interconnected system in Fig-
ure 11 provides the following relations: p → q (p can trigger q,
i.e. p is a necessary condition for q), r → s, and t → u; on the
other hand, q and r must synchronise, as well as s and t. All these
relations together, are represented by the graph

p → q r → s t → u . (16)

Each path in such dependency graph represents a causality chain.
The graph shown in (16) represents the connector p′[[q r]′[[s t]′u]],
shown in Figure 12 (cf. also Figure 8). In general, this technique
allows the synthesis of the connectors of a 1-synchronous model
equivalent to a given synchronous model.

5.3 Incremental decomposition of connectors
In [15, 20], it has been argued that incrementality, which means

that models can be constructed by adding and removing compo-
nents in such a way that the resulting system is not affected by the
order of operations, is an important property of the system compo-
sition.

����
� � � � �

p q r s t u
����

�
����

�

Figure 12: Synthesised connector for mod-8 counter.
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For instance, the following incremental construction for the
broadcast connector s′r1r2r3 is given in Example 4.10.

s′ r1 r2 r3 � [s′ r1 r2]
′ r3 �

h
[s′ r1]

′ r2

i′
r3 .

We studied techniques for computing incremental decomposi-
tions for connectors. These techniques are based on the iterative
application of decompositions as defined by the following problem.

Problem 5.6 (Decomposition of Connectors). Given a connector
K ∈ AC(P ) and a subset of ports P0 ⊂ P , construct two families
Ki ∈ AC(P0) and eKi ∈ AC(P \ P0), for i = 1, . . . , n, such that

K �
nX

i=1

Ki · eKi .

Clearly, it is possible to solve this problem by computing explic-
itly all the interactions of K, and, for each interaction, separating
the ports of P0. This involves exhaustive enumeration of possible
interactions, and thus leads to a combinatorial explosion of terms.
We have developed two techniques for decomposing connectors,
avoiding this explosion.

Both techniques, involve an iterative application of decompo-
sitions. The first technique [9] is based on term rewriting rules,
whereas the second technique, presented below, uses the notion of
derivation.

Theorem 5.7. For p ∈ P and K ∈ AC(P ) there exists a unique,
up to equivalence, derivative dK/dp ∈ AC(P \ {p}) such that

K � p ·
»

dK

dp

–
+ K(0/p) . (17)

Derivatives can be computed by applying the axioms of AC(P )
and the following rules.

Proposition 5.8. For K ∈ AC(P ) and α, β ∈ {0, 1},

1. K(1) � dK

dp
+ K(0),

2. K ∈ AI(P \{p}) ⇒ d(p K)

dp
� K and

d(p′ K)

dp
� 1′ K ,

3.
d

dp

“
K1 + K2

”
� dK1

dp
+

dK2

dp
,

4.
d

dp

“
[K1]

α[K2]
β

”
�

»
dK1

dp

–α

[K2(1)] + [K1(1)]

»
dK2

dp

–β

.

Example 5.9. Consider the connector K =
h
[s′ r1]

′ r2

i′
r3 mod-

elling a broadcast. Let us decompose it with respect to s. We have

dK

ds
�

h
[1′ r1]

′ r2

i′
r3 and K(0) � 0 . (18)

Substituting (18) into (17), and applying the equivalence x [1′ y] �
[x]′ y, we obtain

K � s
hh

[1′r1]
′r2

i′
r3

i
� s

hh
r′2r1 + 1′r1

i′
r3

i
� s

h
[r′2r1]

′r3 + r′3r1 + 1′r1

i
� s

h
[r′2r1]

′r3 + r′3r1

i
+ s′r1.

6. CONCLUSION
AC(P ) provides an abstract and powerful framework for mod-

elling control flow between components. It allows the structured
combination of two basic synchronisation protocols: rendezvous
and broadcast. It is powerful enough to represent any kind of coor-
dination by interaction, avoiding combinatorial explosion inherent
to broadcast.

Connectors are constructed by using two operators having a very
intuitive interpretation. Triggers initiate asymmetric interactions;
they are sources of causal interaction chains. Synchrons are passive
ports which either can be activated by triggers or can be involved in
some maximal symmetric interaction. Fusion allows the construc-
tion of new connectors by assembling typed connectors. Typing
induces a hierarchical structuring, naturally represented by trees.

The concept of structured connectors is directly supported by
the BIP language where connectors describe a set of interactions
as well as associated data transformations. Its interest has been
demonstrated in many case studies including an autonomous plan-
etary robot, wireless sensor networks [5], and adaptive data-flow
multimedia systems. The BIP language is used in the framework
of industrial projects, as a semantic model for the HRC component
model (IST/SPEEDS integrated project), and for AADL (ITEA/
SPICES project).

We believe that AC(P ) provides an elegant mathematical frame-
work to deal with interactions. The comparison with boolean al-
gebra shows its interest: fusion becomes a context-sensitive and
rather complicated operation on boolean functions. Boolean al-
gebra representation allows the use of existing powerful decision
techniques, e.g. to decide that an interaction belongs to a connector
or equivalence between connectors. The relations between AC(P )
and boolean algebra should be further investigated.

Due to space limitations, we could not provide detailed results
about applications of AC(P ). The notation has been instrumen-
tal for formalising the semantics of the synchronous component
model. Axiomatisation and properties of derivatives in AC(P ) al-
low an efficient incremental decomposition of connectors avoiding
enumeration of interactions. Finally, algebraic representation is a
basis for symbolic manipulation and transformation of connectors
which is essential for efficient implementation of the BIP frame-
work.

To our knowledge, AC(P ) is the first algebraic framework for
modelling interaction independently from computation. It can be
a semantic model for formalisms used for modelling architecture,
and provides a basis for comparing coordination mechanisms sup-
ported by existing languages, such as coordination languages.
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