
Energy Efficient Co-scheduling in Dynamically
Reconfigurable Systems

Pao-Ann Hsiung†, Pin-Hsien Lu, and Chih-Wen Liu
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan–62102, ROC.

†hpa@computer.org

ABSTRACT
Energy consumption is a major issue in dynamically recon-
figurable systems because of the high power requirements
during repeated configurations. Hardware designs employ
low power techniques such as configuration prefetch and
reuse. Software designs restrain energy usage by dynami-
cally scaling the voltage of processors. However, when these
techniques are implemented in a system, they might be con-
flicting and thus cancel their mutual benefits, which results
in high power consumption and low performance. We pro-
pose run-time co-scheduling of hardware and software tasks
by using the slack time, which is introduced due to reusing
hardware task configurations, for dynamically scaling the
processor voltage such that preceding software tasks con-
sume lesser power. At the same time, the reuse of hardware
task configurations also result in lower power consumption
and higher performance due to fewer number of reconfigura-
tions. The combined effects of hardware configuration reuse
and software dynamic voltage scaling result in schedules
with a lower power consumption and higher performance
than that obtained through individual techniques applied
to hardware and software separately. We performed exten-
sive experiments whose results show that irrespective of dif-
ferent slack ratios, number of voltage levels, or hardware
partitions, the schedules generated by our proposed method
are more energy efficient than methods that either do not
apply any runtime techniques or only apply hardware con-
figuration prefetch and reuse.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—schedul-
ing ; C.0 [Computer Systems Organization]: General—
hardware/software interfaces

General Terms
algorithms, design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

1. INTRODUCTION
Low power design has permeated each and every level of

a system design, including the hardware circuits, software
applications, operating systems, compilers, and architecture
designs. However, often we observe that the low power in-
frastructure is not used optimally in a system design because
there is little integration between the different low power
schemes embedded in each system component or level. For
example in reconfigurable systems, a single reconfiguration
requires as much as 450mW , thus configuration reuse has
been proposed as a low power design technique [12]; at the
same time, dynamic voltage scaling (DVS) in a processor al-
lows the software to execute with a lower power. Under cer-
tain circumstances, when these hardware specific and soft-
ware specific low power design techniques are both made
available in a system, the result could counter intuitively
require more power, instead of lesser power. The reason is
because the low power techniques might affect each other
resulting in either an increase in the number of reconfigu-
rations or a decrease in the possibility of dynamically low-
ering the processor voltage. We propose to integrate these
two techniques such that they work together collaboratively,
instead of contradictorily.

As a motivating example, consider two tasks with task
graphs as shown in Fig. 1, where task A consists of four se-
quential functions f0, f1, f2, f3 and task B consists of func-
tions f1, f4, f2, f5. Each function represents a basic unit
of execution in a task and is also an indivisible unit for
partitioning into hardware or software implementations. A
function has several attributes as shown in Fig. 1. With-
out the proposed scheduling method, the resulting schedule
takes 51 ms as shown in Fig. 2, while using our method, the
schedule takes only 45 ms as shown in Fig. 3. Not only is the
total time reduced, but the total energy consumption is also
reduced from 50.2 mJ to 46.3 mJ, where the reconfiguration
power is 450 mW, the execution power of reconfigurable logic
is 1000 mW, and the processor power is 5.3 W. Further, the
number of reconfiguration also dropped from 7 to 5. In this
example, we can see that, using our method, the configu-
rations of the two hardware functions f1 and f2, which are
common to both tasks, can be reused or shared between the
tasks. Thus, we eliminate two reconfigurations, which also
reduced the total time and energy. Further in this example,
we use the slack time generated between the functions f0 and
f1, due to configuration reuse of f1, for dynamically scaling
down the processor voltage, so that the software function f0

executes under a lower power consumption (lower voltage
means lower power) and takes up the slack time.

87

f4

f5f2

f1

task A

f1f0

task B

f2

f3

Function attributes for motivation example
Function f0 f1 f2 f3 f4 f5

Partition SW HW HW HW HW HW
Worst case exec time 10 11 11 5 10 15
CLB columns 0 1 1 1 1 1

Figure 1: Task graphs for motivation example

f1

f1

f2

f0

f2

f5

f3

 Column 1 f4

 Column 2

f4

f1

f2

f5

f3

Reconfiguration

 Processor

time (ms) 0 51

f1 f2

Figure 2: Scheduling without any acceleration

f1

f1 f2

f0

f2

f5

f3

 Column 1

f4 Column 2

f4

f1 f2

f5

f3

Reconfiguration

 Processor

time (ms) 0 45

Figure 3: Scheduling with configuration prefetch,
configuration reuse, and DVS

The rest of this article is organized as follows. Section
2 gives some related previous work. Section 3 describes
the system model and related terminologies. Section 4 de-
scribes the proposed energy efficient co-scheduling method
in details. Section 5 describes the experiments conducted to
show the benefits of the proposed method. Section 6 con-
cludes the article with future work.

2. PREVIOUS WORK
In any system, low power design strategies can be applied

to either software or hardware, or both. As far as we know,
scheduling policies have considered low power designs for ei-
ther only software or only hardware, but not simultaneously
both hardware and software, in dynamically reconfigurable
systems, which is the major focus of our work. Here, we
first briefly describe the work related to low power design
techniques applied to software and then those applied to
reconfigurable hardware.

We can statically or dynamically change the voltage and
frequency of processors, such as ARM 11 or Intel PXA250,
to adapt to system load variations. This technique has been
proved to be an effective technology to reduce energy con-
sumption because the lower the voltage a processor runs at,
the lower is the power consumption. Several scheduling al-
gorithms [13] have been proposed for such processors. While
satisfying time constraints, a set of tasks is scheduled such
that the the processor voltage is tuned as low as possible.
We take advantage of this technique to minimize the energy
consumption by software in our method.

For dynamically reconfigurable systems, one of the ma-
jor energy consumers is the frequent reconfiguration. Re-
configuration can account for half of the FPGA power con-
sumption [12]. This overhead also causes poor performance.
Various methods were proposed to reduce the reconfigura-
tion overhead such as configuration compression [7], config-
uration caching [4], configuration prefetching [8], configura-
tion reuse [5], difference-based configuration [11], and early
partial reconfiguration [3]. The above techniques were inte-
grated into static scheduling methods. For dynamic schedul-
ing, two-phase scheduling methods such as hybrid design-
time/run-time scheduling [10] and replacement / prefetch
scheduling [9] were proposed so that most of the computa-
tion load is performed at design time and less computation

overhead is introduced at run time by the scheduler. In the
above work, performance is the only concern. Few work
[12], [5], [3] have investigated static hardware-software co-
scheduling in reconfigurable systems. Much fewer work [6]
have discussed the dynamic hardware-software co-scheduling
in such systems. In [6], the system-level power performance
tradeoff in dynamic hardware software co-scheduling is ad-
dressed, where clock gating and hardware frequency scaling
are adopted to reduce power consumption.

Different from the above static and dynamic scheduling
methods, the proposed method in this work adopts a two-
phase scheduling approach to integrate static and dynamic
scheduling, where configuration prefetch and reuse are in-
tegrated with DVS. Instead of predicting the next config-
uration to be loaded, we use configuration prefetching for
scheduling the configurations of the next ready application
functions. We use configuration reuse for grouping common
hardware functions in different tasks. Compared to [6], our
proposed method makes use of configuration prefetching and
reuse as well, but with DVS instead of hardware frequency
scaling. Furthermore, the configuration reuse in their work
is passively adopted, i.e., at each scheduling point, if there is
an active reconfiguration context within the reconfigurable
blocks ready for execution, select a ready task with the high-
est priority that meet this condition. However, in our pro-
posed solution, we actively seek to bring together the same
function instances and thus reduce the number of reconfig-
urations.

While DVS has been applied in various kinds of system
to reduce power consumption, to the best of our knowledge,
we are the first to introduce it for energy efficient dynamic
scheduling in reconfigurable systems. Details of the pro-
posed method are described in Section 4.

3. SYSTEM MODEL AND NOTATIONS
A hardware-software dynamically reconfigurable system is

modeled by a set of concurrent communicating tasks. A task
is specified by a 4-tuple Ti = (Ai, Di, Pi, Gi), where Ai is
the arrival time, Di is the deadline, Pi is the period, and Gi

is a function graph. A function graph is a directed acyclic
graph (V, E), where each node in V represents a partitioned
function and an edge in E represents a precedence relation
between two functions. A function is characterized by 4

88

attributes (SEi, HEi, HCi, HSi), where SEi and HEi are
the worst case execution times of a function implemented in
software and hardware, respectively, HCi and HSi are the
configuration time and space required by its hardware imple-
mentation, respectively. A partitioned function is one with
partitioning results, that is, its implementation in hardware
or software.

The computing resources for running the above system
is a DVS capable microprocessor and a reconfigurable logic
called FPGA. The microprocessor has several fixed voltage
levels and the worst case execution time of a function is
given in terms of its highest voltage level. For the FPGA,
a 1-dimensional model is assumed, hence the configuration
space for a function is measured in terms of the number of
columns, where a column is a basic unit of reconfiguration.
A typical example is Xilinx Virtex Pro II. The FPGA has a
fixed number of columns.

Our target problem is formulated as follows. Given a set
of tasks and the computing resources as described above,
the problem is to decide an execution order for the func-
tions assigned to the processor and the FPGA such that the
schedule satisfies all task requirements, computing resource
constraints, and consumes the least amount of total energy.
Deadline violations are allowed within some threshold based
on Quality-of-Service requirements.

4. ENERGY EFFICIENT CO-SCHEDULING
A two-phase scheduling method is proposed for solving

the target problem. At the design time phase, some cal-
culations are made so as to alleviate the need for complex
computations at runtime.

4.1 Design Time Phase
For each hardware function H that is common to two or

more tasks, we first search for all the instances so that they
can be grouped together to reduce the number of recon-
figurations at runtime. For each H , a preceding software
function S, if any, is selected as the leading software func-
tion such that there is no other software function along the
path from S to H and S has the longest execution time
among all candidates. The leading software function is the
target for applying DVS. Each path from a leading soft-
ware function to a common hardware function is called a
key path. Key paths are used to construct a delay-time ta-
ble that records the time intervals in which two instances of
a common hardware function in two different tasks might
overlap in execution if their leading software functions ter-
minate execution at the same time. It is formally defined as
follows. Given two key paths Pi and Pj , the delay-time table
is constructed as an n × n matrix Δ as follows, where n is
the total number of key paths, H is the common hardware
function, and Si(H) and Ci(H) are the start and comple-
tion times of H in Pi, respectively, assuming both leading
software functions terminate at time 0.

Δ(i, j) =

⎧⎨
⎩

[a, b], a = min{0,Si(H)−Cj(H)}
b = Ci(H) − Sj(H) ≥ 0

undefined, if Ci(H) − Sj(H) < 0
(1)

The design time phase is summarized in the self-explanatory
Algorithm 1, where CalculateSharedSlackTime() calculates
the slack time available for each leading software function
as follows. The time slack in a task Ti is computed as

input : A set of tasks T = {Ti; i = 1, 2, 3, . . . , n}
output: A delay-time table

FindCommonHardwareFunctions();1

foreach common hardware function H do2

S = FindLeadingSoftwareFunction(H);3

end4

foreach key path do5

CalculateStartFinishTime();6

end7

Δ = ConstructDelayTimeTable();8

CalculateSharedSlackTime();9

Algorithm 1: Design Time Phase

ζ(Ti) = Di − ∑
k Ek, where Ek is in the worst case exe-

cution time of a partitioned function Fk in a critical path of
Ti. A critical path is one with the longest total execution
time. The time slack ζ(Ti) is evenly shared by the leading
software functions in the task, where each function S is al-
located ζS(Ti) = ζ(Ti)/|{S}| slack time, which is also the
static priority of a task.

To illustrate the proposed scheduling phases, we use an
example system consisting of 3 tasks, whose task graphs are
shown in Fig. 4. The function associated with a node TXi is
given inside the node as Fj . Functions F1, F7 and F10 are
software, while the rest are all hardware. The software func-
tions are usually the control programs or drivers, while the
hardware functions could be any IP such as (I)DCT, matrix
multiplier, FFT, motion estimator, that is, circuit designs
that could be used across different applications. The arrival
times for tasks A,B, C are, respectively, 0, 2600, 5000, their
priorities are 2, 3, 1, where a higher value represents higher
priority, and their deadlines are 6500, 6600, 5500. The func-
tion attributes are as shown in Table 1.

In this example, F6 and F9 are two common hardware
functions, and F1, F7, and F10 are leading software func-
tions. As shown in Table 2, there are 5 key paths P1 to P5

from the 3 leading software functions to the two common
hardware functions. On applying the design time phase
of our proposed scheduling algorithm, the delay-time ta-
ble constructed for this example is as tabulated in Table
2. Since there is only one leading software function in each
task, the shared slack time is equal to the task slack time,
i.e., 300, 100, 1900 for tasks A, B, C, respectively.

Task B

TB1

F6F6

F8

F9F9

F7

TB2

TB3

TB4

Task C

TC1F10

F9F9
F6F6

TC3TC2

Task A

F3

F1

F4F2

F5

F6F6

TA3

TA2

TA1

TA4

TA5

TA6

Figure 4: An Example System with 3 Tasks

89

Table 1: Function Attributes for Example System
Fi SEi HEi HCi HSi

(μs) (μs) (μs)
F1 2600 – – –
F2 – 700 600 1
F3 – 1000 600 1
F4 – 1200 600 1
F5 – 1200 600 1
F6 – 1200 1200 2
F7 3500 – – –
F8 – 1200 600 1
F9 – 600 600 1
F10 2400 – – –

Table 2: Delay-time Table for Example
key path P1 P2 P3 P4 P5

P1 X [1200,3600] X [0,1200] X
P2 X X X [0,1200] X
P3 X X X X [1800,3000]
P4 X [0,1200] X X X
P5 X X X X X

P1: 〈F1, F4, F5, F6〉, P2: 〈F7, F6〉, P3: 〈F7, F6, F8, F9〉,
P4: 〈F10, F6〉, P5: 〈F10, F9〉, X: undefined

4.2 Run Time Phase
At runtime, whenever a leading software function S is to

be scheduled, the delay-time table Δ is referenced to check if
there is enough time slack ζS(Ti) in the task Ti for prolong-
ing the execution of S by lowering the processor voltage such
that not only the software is executed using lesser power, but
the common hardware functions are also scheduled end-to-
end and reuse the same configuration, thereby reducing the
number of reconfigurations and saving power and time.

Given key paths Pi and Pj having a common hardware
function H , we now discuss how the leading software func-
tion S′ in key path Pj is to be scheduled. Let S be the lead-
ing software function in key path Pi. If Cj(S

′) − Ci(S) ∈
Δ(i, j) = [a, b] and ζS′(Tj) ≥ b − (Cj(S

′) − Ci(S)) then the
execution of S′ is prolonged by b − (Cj(S

′) − Ci(S)) time
units by lowering the processor voltage to a suitable level.
The rationale is as follows. The first condition checks if the
future executions of H in key paths Pj and Pi will overlap in
time. The second condition checks if there is enough shared
slack time for prolonging S′ such that the two executions of
H are scheduled consecutively in time. If there is more than
one key path similar to Pi having a common hardware func-
tion H , then the candidate path is chosen which results in
the longest prolongment of S′ within the slack time budget
of ζS′(Tj), where Tj is the task containing the key path Pj .
Note that only active key paths are considered, where a key
path is active once its leading software function has com-
pleted execution and until the common hardware function
is reset from FPGA. A data structure called delay-time list
table is used to record for each leading software function, all
the active key paths that share the same common hardware
function. A table record consists of a pair (Pi, t) where Pi is
an active key path and t is the time by which S′ can be pro-
longed, that is, b− (Cj(S

′)−Ci(S)). If there are more than
one active key path for S′, then the path Pk is chosen which
has the largest t = b−(Cj(S

′)−Ck(S)) such that t ≤ ζS′(Tj).

input : delay-time table
output: total execution time, total energy

consumption, total configuration energy, %
of tasks with deadlines satisfied

foreach delay-time list in delay-time list table do1

delay-time list = NULL;2

end3

while processor ready queue is not empty do4

pick leading software function S′;5

UpdateDelayTimeList();6

if delay-time list associated with S′ is empty7

then
execute S′;8

else9

SlowDown = CheckSlowDown(S′);10

if SlowDown = false then11

execute S′;12

else13

TuneDownVoltage(S′);14

end15

end16

end17

Algorithm 2: Run Time Phase

The run time phase is summarized in Algorithm 2, where
CheckSlowDown() applies the above described checking to
see if a leading software function S′ can be slowed down by
prolonging its execution through voltage downscaling.

For our running example, using the delay time table in
Table 2, the run time phase is applied as follows. For the
leading software function F1, there is no active key path at
time 0, so its execution is not prolonged, and is executed at
full speed of the processor.

At time 2600, task B arrives, and leading software func-
tion F7 is selected for scheduling. There is one active key
path, that is P1 = 〈F1, F4, F5, F6〉, which has hardware func-
tion F6 common with path P2 = 〈F7, F6〉. Since the dif-
ference between completion times of the leading software
functions, 6100 − 2600 = 3500 is within the time interval
Δ(1, 2) = [1200, 3600], so the execution time of F7 can be
prolonged by 3600 − 3500 = 100 time units, that is, ex-
tended from 3500 to 3600. Table 3 shows the 10 different
voltage levels and the corresponding frequencies and power
consumption for the microprocessor used in this example.
The reconfiguration power for a CLB column is 450 mW
and the execution power in FPGA is 1000 mW. The pro-
longment of F7 results not only in lesser energy consumption
by the software function F7, but also saves one reconfigura-
tion of two columns of FPGA due to the configuration reuse
now possible for hardware function F6 common to tasks A
and B, along key paths P1 and P2, respectively. Fewer re-
configurations save both time and energy.

At time 5000, task C arrives, but has to wait till time 6200
for the processor to be available to execute leading software
function F10. Figure 5 shows the details of why and how
the execution of F10 can be prolonged by 600 time units
by applying our co-scheduling method. Further, one more
reconfiguration of 1 column FPGA is saved for F9 common
to tasks B and C, along paths P3 and P5, respectively. The
final scheduling results are shown in Fig. 5.

90

Table 3: Processor Voltages, Frequencies, Power
Consumption

Voltage(V) Frequency(MHz) Power(W)
1 1.750 1000 9.50
2 1.670 944 6.92
3 1.600 912 5.30
4 1.500 868 4.20
5 1.350 812 3.00
6 1.225 776 1.86
7 1.200 709 1.34
8 1.150 655 1.10
9 1.100 590 0.75
10 1.000 545 0.58

TA1(F1) TB1(F7)

TA3(F3)

TA5(F5)

TA6(F6)TB2(F6)

TA6(F6)TB2(F6)

TC1(F10)

TC2(F6)

TC2(F6)

TB3(F8)

For key paths P3 and P5:
Original finish time of TC1 is at time
8600.

8600 – 6200 = 2400 � [1800,3000],
where 6200=C3(TB1)

Therefore, the execution of TB1 is
extended from 2400 to
2400+(3000-2400) = 3000.

TA2(F2)

TB4(F9)

TC3(F9)

For key paths P2 and P4:
Original finish time of TC1 of is
at time 8600.

8600 – 6200 = 2400 >1200,
where 6200=C2(TB1)

Therefore, this does not affect
the execution time of TC1.

Processor

Column1

Column2

Column3

Column4

0 2000 4000 6000 8000 10000 (time)

One column of
reconfiguration is saved.

For key paths P1 and P4:
Original finish time of TC1 of is at
time 8600.

8600 – 2600 = 3000 >1200, where
2600=C1(TA1)

Therefore, this does not affect
execution time of TC1.

TA4(F4)

TA2(F2)

Figure 5: Scheduling Results for Example

Since there is currently no work that integrates DVS with
hardware reuse techniques, we compared the proposed method
with only two conventional methods. Method M1 does not
apply any acceleration technique, while method M2 applies
configuration prefetch and reuse, but without DVS. The
comparisons are shown in Table 4, where we can see that
the proposed method outperforms the other two methods.
Compared to the bare method M1, the proposed method not
only consumes lesser amounts of total energy and total con-
figuration energy by 24.23% and 38.5%, respectively, and
allows 33.3% more task deadlines to be satisfied, but also
the total execution time is reduced by 16%. Compared to
method M2, the proposed method similarly satisfies all task
deadlines, but it requires more execution time of about 7.2%
to save 24.1% total energy and 33.3% configuration energy.

5. EXPERIMENTS
The proposed scheduling method was implemented in Per-

fecto [2], a SystemC-based performance evaluation frame-
work for dynamically reconfigurable systems. We had to
make several changes to Perfecto, including the hardware
and software power modeling for reconfigurable systems, the
random partitioning of functions into hardware and soft-
ware, the newly proposed scheduler algorithm, and the new
task model. Several experiments were conducted on a Linux

Table 4: Scheduling Results Comparison
M1 M2 M I1(%) I2(%)

TT 12100 9700 10400 −14.0 +7.2
TE 96.76 96.49 73.27 −24.3 −24.1
CE 3.51 3.24 2.16 −38.5 −33.3
RN 2/3 1 1 −33.3 0.0

TT : total execution time (µs), TE: total energy consumption (mJ)

CE: total configuration energy (mJ),

RN : % of tasks with deadlines satisfied, Ii = (M − Mi)/Mi

machine with a 2.4 GHz Pentium 4 CPU and 1 GB RAM.
The target platform is Xilinx ML310 with a Virtex II Pro
XC2VP30-FF896 chip, two PowerPC 405 cores, and 256 MB
DDR RAM. We compared our work with two conventional
methods, one without any acceleration technique and the
other with only configuration prefetch and reuse, but with-
out DVS. Four metrics were used including total execution
time, total energy consumption, configuration energy con-
sumption, and the percentage of tasks with deadlines sat-
isfied. TGFF [1] was used to generate random task sets
from user-given templates. Each task set contained 25 to 30
function graphs with an average of 20 functions per graph.
Partitioning results and task arrival times were randomly
generated. The varied parameters included the ratio of task
slack time to task deadline (0.67, 0.75, 0.8), the number of
processor voltage levels (3, 5, 10), and the number of com-
mon hardware functions (8, 16, 20). We experimented with
50 task sets for each parameter and took the overall aver-
ages.

The experimental results are given in Tables 5, 6, and
7, respectively, for each of the varied parameters including
slack ratio, processor voltage levels, and common hardware
functions. We can make the following observations from the
experiments. When compared to the bare scheduling ap-
proach (method M1), our method shows improvements in
all the 4 metrics, namely total execution time (TT) in μs,
total execution energy (TE) in mJ, total configuration en-
ergy (CE) in mJ, and percentage of tasks with deadlines
satisfied (RN). When compared to method M2, which inte-
grates configuration prefetch and reuse, but not DVS, our
method also shows as much as 17% decrease in TE and 40%
decrease in CE, at the expense of at most 10.6% increase
in TT and 4.4% increase in RN. With an increase either in
slack ratio, or in the number of processor voltage levels, or
in the number of common hardware functions, our method
generates schedules with significant decrease in both total
execution and configuration energies, which shows the scal-
ability of our method. At the same time, the reduction in
the percentage of tasks with deadlines satisfied is maintained
within a limit of 1.8%.

We have experimented with real tasks, such as online en-
cryption/decryption and multimedia systems, all of which
show results consistent with the randomly generated task
sets. Apparently one might assume that the proposed meth-
od’s limitation lies in the number of common hardware func-
tions. Nevertheless, with the growing convergence of ap-
plications into a single device, hardware functions will be
more and more common among different applications, and
the limitation of the proposed method will disappear.

91

Table 5: Experiments Varying Slack Ratio
SR M1 M2 Ours I1(%) I2(%)
0.67 TT 557496 500123 518974 5.4 -3.7

TE 6207.25 6099.75 5278.25 15.0 13.5
CE 316.75 209.25 141.75 58.0 32.2
RN 85.9 93.2 89.8 4.3 -4.4

0.75 TT 564571 455308 498562 19.4 -4.9
TE 6286.25 6185.5 5126.5 18.4 17.1
CE 350.5 249.75 162 54.7 35.1
RN 87.6 94.8 92.9 5.3 -1.9

0.80 TT 554283 439614 486213 12.3 -10.6
TE 6147.75 6026.25 5074.5 17.8 15.8
CE 324 202.5 121.5 62.5 40.0
RN 89.1 95.8 94 4.9 -1.8
SR: slack ratio, Ii: Improvement over Mi

Table 6: Experiments Varying Voltage Levels
VL M1 M2 Ours I1(%) I2(%)
3 TT 684158 520025 537846 21.4 -3.4

TE 6147.75 6026.25 5474.5 11.0 9.2
CE 344.25 222.75 183 46.8 17.8
RN 90.8 94.5 93.8 3.7 -0.7

5 TT 67243 51098 56478 16.0 -10.5
TE 6293.75 5734.9 5105.5 14.1 11.0
CE 808.6 249.75 162 80.0 35.1
RN 86.1 91.9 89.5 3.4 -2.4

10 TT 664512 542345 567412 14.6 -4.6
TE 6227.5 5998.5 5045.25 19.0 15.9
CE) 397.75 168.75 141.75 59.3 16.0
RN 88.1 93.9 92.5 4.4 -1.4

VL: number of processor voltage levels

6. CONCLUSION
An energy efficient hardware/software co-scheduling method

is proposed for dynamically reconfigurable systems such that
configurations for common hardware functions are grouped
together for configuration reuse and the slack time is used
for lowering processor voltage. The integration of hardware
and software low power scheduling techniques, namely con-
figuration prefetch and reuse and DVS, results in schedules
that show a marked decrease in total execution energy and
total configuration energy, with little overhead. Future work
will consist of integrating other hardware/software schedul-
ing techniques and consider more placement constraints.

7. REFERENCES
[1] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs

for free. In Proc. of the 6th International Workshop on
Hardware/Software Codesign, pages 97–101. IEEE
Computer Society Press, March 1998.

[2] P.-A. Hsiung, C.-H. Huang, and C.-F. Liao. Perfecto: A
SystemC-based performance evaluation framework for
dynamically partially reconfigurable systems. In Proc. of
the 16th International Conference on Field Programmable
Logic and Applications (FPL’2006), pages 190–198. IEEE
Computer Society Press, August 2006.

[3] B. Jeong, S. Yoo, S. Lee, and K.Choi. Hardware-software
cosynthesis for run-time incrementally reconfigurable
FPGAs. In Proc. of the Asia South Pacific Design
Automation Conference, pages 169–174. ACM Press, Jan
2000.

[4] Z. Li, K. Compton, and S. Hauck. Configuration caching
management techniques for reconfigurable computing. In

Table 7: Experiments Varying Common Hardware
Functions
CH M1 M2 Ours I1(%) I2(%)
8 TT 660120 549675 556755 15.7 -1.3

TE 5812.75 5512.5 5398.25 7.2 2.1
CE 584 283.75 243.25 58.4 14.3
RN 88.5 96.7 96.1 4.3 -0.6

16 TT 564571 455308 498562 11.7 -9.5
TE 6207.25 6099.75 5278.25 15.0 13.5
CE 337.5 209.25 141.75 58.0 32.3
RN 87.6 94.8 92.9 5.3 -1.9

20 TT 554283 439614 486213 12.3 -10.6
TE 6286.25 6185.5 5126.5 18.5 17.1
CE 357.75 249.75 162 54.7 35.1
RN 89.1 95.8 94 4.9 -1.8
CH: Number of common hardware functions

Proc. of the IEEE Symposium on FPGAs for Custom
Computing Machines, pages 87–96. IEEE Computer
Society Press, April 2000.

[5] B. Mei, P. Schaumont, and S. Vernalde. A
hardware-software partitioning and scheduling algorithm
for dynamically reconfigurable embedded systems. In Proc.
of the 11th ProRISC Workshop on Circuits, Systems and
Signal Processing Veldhoven, November 2000.

[6] J. Noguera and R. M. Badia. System-level
power-performance trade-offs in task scheduling for
dynamically reconfigurable architectures. In Proc. of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pages 73–83. ACM Press,
October 2003.

[7] J. H. Pan, T. M. Weng, and F. Wong. Configuration
bitstream compression for dynamically reconfigurable
FPGAs. In International Conference on Computer Aided
Design (ICCAD), pages 766–773. IEEE Computer Society
Press, November 2004.

[8] J. Resano, D. Mozos, and F. Catthoor. A hybrid prefetch
scheduling heuristic to minimize at run-time the
reconfiguration overhead of dynamically reconfigurable
hardware. In Proc. of the Conference on Design,
Automation and Test in Europe, pages 106–111. IEEE
Computer Society Press, March 2005.

[9] J. Resano, D. Mozos, D. Verkest, F. Catthoor, and
S. Vernalde. Specific scheduling support to minimize the
reconfiguration overhead of dynamically reconfigurable
hardware. In Proc. of the 41st Annual Design Automation
Conference, pages 119–124. ACM Press, June 2004.

[10] J. Resano, D. Mozos, D. Verkest, S. Vernalde, and
F. Catthoor. Run-time minimization of reconfiguration
overhead in dynamically reconfigurable systems. In Proc. of
the 13th International Conference Field-Programmable
Logic and Applications (FPL), volume 2778 of LNCS,
pages 585–594. Springer Verlag, September 2003.

[11] M. Sanchez-Elez, M. Fernandez, M. Anido, H. Du,
N. Bagherzadeh, and R. Hermida. Low-energy data
management for different on-chip memory levels in
multi-context reconfigurable architectures. In Proc. of the
Conference on Design, Automation and Test in Europe
(DATE), pages 36–41. IEEE Computer Society Press,
March 2003.

[12] L. Shang and N. K. Jha. Hardware-software co-synthesis of
low power real-time distributed embedded systems with
dynamically reconfigurable FPGAs. In Proc. of the
International Conference on VLSI Design, pages 345–352.
IEEE Computer Society Press, January 2002.

[13] F. Zhang and S. T. Chanson. Blocking-aware processor
voltage scheduling for real-time tasks. ACM Transactions
on Embedded Computing Systems, 3(2):307–335, May 2004.

92

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

