HySim: A Fast Simulation Framework for Embedded
Software Development

Stefan Kraemer, Lei Gao, Jan Weinstock, Rainer Leupers,
Gerd Ascheid and Heinrich Meyr

Institute for Integrated Signal Processing Systems
RWTH Aachen University, Germany

{kraemer | gao | leupersi@iss.rwth-aachen.de

ABSTRACT

Instruction Set Simulation (ISS) is widely used in system
evaluation and software development for embedded proces-
sors. Despite the significant advancements in the ISS tech-
nology, it still suffers from low simulation speed compared to
real hardware. Especially for embedded software developers
simulation speed close to real time is important in order to
efficiently develop complex software. In this paper a novel,
retargetable, hybrid simulation framework (HySim) is pre-
sented which allows switching between native code execution
and ISS-based simulation. To reach a certain state of an ap-
plication as fast as possible, all platform-independent parts
of the application are directly executed on the host, while
the platform dependent code executes on the ISS. During
the native code execution a performance estimation is con-
ducted. A case study shows that speed-ups ranging from
7x to 72x can be achieved without compromising debug-
ging accuracy. The performance estimation during native
code execution shows an average error of 9.5%.

Categories and Subject Descriptors

1.6.7 [Simulation and Modeling]: Simulation Support
Systems—environments

General Terms

Design

Keywords

HySim, Simulation, Hybrid Simulation, ISS

INTRODUCTION

Over the last decade the embedded system domain has
been growing exponentially due to the continually increas-
ing demands for multimedia and mobile applications. The
diversity of these applications and the highly competitive
market are forcing system designers to use more and more
software in their design solutions. At the same time the
shrinking time-to-market has made it compulsory that such
software development can proceed even before a basic hard-
ware prototype is ready. As a consequence, software devel-
opers are increasingly relying on Instruction Set Simulators
(ISSs) to develop and test their applications.

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’07, September 30—October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

75

Lately, these requirements for fast software development
and debugging have triggered considerable amount of re-
search activities to improve the simulation performance of
ISSs. Different techniques have been introduced [10, 11,
13] to attain high simulation speed. Despite these improve-
ments the simulation speed is still very low compared to
real hardware. Higher simulation rates can be achieved by
switching to a more abstract processor representation at the
cost of reduced accuracy. Hence, the software developer can
trade-off simulation performance for accuracy depending on
his requirements. For example, debugging a complex appli-
cation requires to simulate the application to the function
where the problem is expected, and then the developer will
examine the behavior of this code carefully. For the first
phase the simulation speed is important whereas in the sec-
ond phase the emphasis is on the simulation accuracy.

To address these issues we propose a retargetable, hybrid
simulation framework, HySim, that offers the possibility to
switch between a fast-forward mode and an ISS based sim-
ulation mode. The objectives of the proposed solution are:

Performance — High simulation speed is achieved by
native code execution on the host machine. All applications
with platform independent code can benefit from the native
execution and can be simulated in the fast-forward mode.

Performance estimation — During the fast-forwarding
a performance estimation is applied to report the approxi-
mate performance of the application to the user without the
need for a detailed simulation.

Compatibility — All types of programs should be sup-
ported by the framework without modifying the binary and
independent of the presence of debug information. Addition-
ally, assembly code as well as third party libraries should be
supported to make the framework adaptable to a wide range
of applications.

Transparency — The framework placed on top of an ex-
isting ISS should be transparent to the ISS as well as to the
other components of the simulated system, e.g. peripheral
devices. This is important especially in the context of sys-
tem simulation, where the processor simulator is only one
building block of the entire system.

Retargetability — The HySim framework is indepen-
dent of the underlying ISS and can be employed with only
minor changes to a wide range of ISSs.

The HySim framework is based on the virtual coprocessor
technique [4] for native execution of selected parts of the
application. HySim offers an interface for extensibility. For
instance, the performance estimation tool makes use of it.
The remainder of this paper is structured as follows: First,

the proposed framework is compared with other available
simulation technologies. Then an overview of the HySim
framework is given. Afterwards, the main components of
the simulator are described in detail. After the presenta-
tion of the framework, initial benchmark results are shown
and discussed. The paper ends with a conclusion about the
presented work.

2. RELATED WORK

A lot of different techniques have been described in the lit-
erature to alleviate the simulation time of complex software.
A good overview of the available simulation techniques can
be found in [19].

Sampling based simulation technologies do not simulate
the complete application but only a small fraction of it and
extrapolate the obtained result to the entire program.

SMARTS [18] is a sampling micro architecture simulation
technology which utilizes a fast-forwarding and a warm-up
phase to reach the detailed simulation. During the fast-
forwarding phase, only the resources for the programmer’s
view are simulated to increase the speed. The time consum-
ing parts like caches and branch predictors are simulated
during the detailed simulation to derive the performance of
the micro architecture.

Instead of using periodic sampling Sherwood et al. [15,
16] employ representative sampling. A combination of ba-
sic block distribution analysis and machine learning tech-
niques are applied to cluster the application into a set of
phases. One representative of each phase is simulated in de-
tail to estimate the overall application performance. Sam-
pling based simulation is a very interesting concept which
allows fast and accurate performance estimation of an appli-
cation. However, it is not suitable for software development
and debugging since the user cannot control which part of
the application is simulated in detail.

The concept of checkpointing allows storing the state of an
ISS and restoring it at a later point of time, thereby giving
the software developers the possibility to reach interesting
points they want to debug in the application without having
to re-simulate the entire application each time. However, if
the system or the program is modified, the checkpoints may
become outdated so a new simulation of the entire applica-
tion is required.

The SimSnap [17] framework employs a combination of
Application Level Checkpointing (ALC) and native execu-
tion to fast-forward the simulation. The application’s source
code is instrumented by the Cornell Checkpoint Compiler
C? [2, 3] in order to save the state of the program at a given
point. In the fast-forwarding mode the compiled application
is natively executed on the host machine and the checkpoint-
ing capability is used to transfer the application’s state into
the simulator at a switching point. Currently, the proposed
approach works only if the instruction set architecture (ISA)
of the simulator matches the ISA of the host machine.

Ringenberg et al. [14] suggest to use Intrinsic Checkpoint-
ing to store the state of a simulation. In contrast to con-
ventional ALC, Intrinsic Checkpointing modifies the appli-
cation binary itself. Hence, this approach is independent of
the availability of the application’s source code.

Besides sampling techniques and checkpointing, abstract
processor representations can also be used to increase the
simulation performance. Both the concept of virtual archi-
tecture [6, 20] and virtual processing unit (VPU) [8] allow
to simulate the processor at a very high abstraction level
by providing an API for OS calls and native code execu-
tion. This approach is very suitable for early design space
exploration without the need for detailed simulation.

For traditional ISS based simulation Qin et al. [12] report
a significant performance increase by combining interpretive
simulation with compiled simulation.

76

3. BASIC CONCEPTS OF HYSIM

This section describes the concept of our retargetable, hy-
brid simulation approach, which defines a hybrid processor
architecture and utilizes a virtual coprocessor to accelerate
the instruction set simulation.

3.1 Framework Architecture

Rest of the
Simulation System

Interface

TP:
1SS

VCP:
Virtual Coprocessor

Control Logic

Figure 1: Architecture of the simulation system

The main idea of the HySim framework is to execute parts
of the application directly on the host machine to speed up
the overall simulation. From the perspective of the ISS the
native code execution can be seen as a coprocessor which is
transparent to all the other components of the simulation
system. Since this virtual coprocessor is transparent, this
concept can be applied to accelerate the ISS without mod-
ifying the rest of the simulation. Figure 1 shows the sim-
ulation system using a Virtual Coprocessor (VCP). Corre-
spondingly, the original ISS is called Target Processor (TP).
To ensure that TP and VCP can invoke each other without
having to modify the TP, an external control logic is intro-
duced. As the TP and the VCP execute in a mutually ex-
clusive way, they can exchange internal data directly. Since
the VCP is transparent to the other components of the sim-
ulation system, such as buses and peripherals, no changes
are required for those components.

3.2 Software Workflow

Note that HySim is a retargetable simulator framework,
where different ISSs can be plugged in. Hence, this frame-
work can be employed to enable a fast-forwarding mode for
various simulation systems. It acts as a wrapper around an
existing ISS to facilitate the software design for a given tar-
get processor. The user is provided with new functionality
to simulate the program up to a specific point at high speed.

Figure 2 shows the overall workflow of our proposed frame-
work, where two clearly separated branches, starting from
the application source code, can be seen. The left branch
represents the standard compilation flow for the target ISS.
The right branch shows the binary generation for the vir-
tual coprocessor. The C source code is automatically in-
strumented before simulation and compiled for the host ma-
chine. Additionally, the instrumenter generates a global con-
trol flow graph (GCFG), which is necessary for partitioning
the application to the VCP in order to obtain maximum
speed-up. From the user perspective, the framework behaves
as a normal debugging environment for program debugging
and simulation. Moreover, it also provides the user with
the capability to set a “fast-forwarding break point”. This
breakpoint partitions the application into a TP-executing-
part and VCP-executing-part in such a way that the break-
point is reached as fast as possible. In order to find the
optimal partitioning of the application the GCFG is used.

C Source Code

o —q Set FF Breakpoint
Target Instrumenter &
Compiler Host Compiler

Target Binary Native Binary

Control Logic j—'

A

Figure 2: HySim concept

3.3 Virtual Coprocessor

The concept of the VCP allows switching between native
execution and ISS based execution. This mechanism is used
by the framework to improve the simulation performance,
since native execution is faster than instruction set simula-
tion. As a set of different debug formats, such as DWARF
and STABS, or even no debug format at all (for processors
under development), are employed in different ISSs, a more
retargetable way of obtaining the information required for
switching is necessary. By restricting the switching to func-
tion borders it is possible to obtain all information for the
transition independent of the debug information. For a func-
tion call only the global variables, the function parameters
and the return value are required. The code instrumenta-
tion ensures that the VCP code can access global variables
and interpret pointers in a correct manner by accessing the
target memory space as shown in Fig. 2. Since ISS and VCP
are exclusively activated by the control logic, both of them
can access the target memory space without the need for
synchronization.

4. FRAMEWORK DETAILS

In this section the control logic for switching between both
modes is discussed. Furthermore, the required code instru-
mentation to obtain the information needed by the control
logic is explained.

4.1 Control Logic for Bidirectional Invocation

The control logic takes care of the switching between TP
and VCP. The invocation of a VCP function from TP is
called forward invocation and inverse invocation for the op-
posite direction. While loading the native binary, a link
between the target function and the corresponding instru-
mented function is created. Based on the knowledge of the
calling conventions of the target and the host compiler it is
possible to build a bridge and translate function calls be-
tween both sides. The control logic is implemented using
the concept of stubbing. A stub is used to translate the
function parameters in case a TP function is accessed from
VCP and an inverse stub performs the translation for the
case of a function call to VCP. The code of the stub is di-
rectly inserted into the instrumented application. Since the
target binary cannot be modified for compatibility reasons,
the inverse stub is triggered by monitoring the ISS.

77

4.2 Instrumentation

The instrumenter is a crucial part of the HySim frame-
work. It analyzes the application source code and prepro-
cesses the source code for the native execution by instru-
menting it. Furthermore, instrumentation can be employed
to estimate the program behavior during the VCP execution.
During the analysis phase, the instrumenter calculates the
cost per Basic Block (BB) and stores the information in a
separate file. A cost library is used to assign a certain weight
to each operation in the code. Depending on the employed
ISS, the weight represents the number of instructions or the
number of cycles per operation. While executing parts of
the application on the VCP a Basic Block Vector (BBV) is
generated, which is then combined with the cost informa-
tion per basic block to obtain the overall cost. Kempf et al.
[8] use a similar approach and report that this kind of esti-
mation can be used to quickly estimate the performance of
an application. Figure 3 shows the flow of the performance
estimation used in the HySim framework.

Application

Instrumenter

Cost
Library

—

Cost per
BB

Instrumented
code

.| Estimated
cost

VCP
execution

Figure 3: Performance estimation flow for the VCP

Both simulation modes maintain separate address spaces,
the TP address space and the VCP address space (see Fig. 2).
However, it is important that in the fast-forward mode the
application can access the TP address space. Therefore, all
memory accesses are automatically instrumented to ensure
that they access the correct address space during execution.
Global variable access and pointer access are the most com-
mon situations where the TP address space is accessed. In
the following the different cases which require instrumenta-
tion are discussed:

Global variables — Global variables and local static
variables [9] can be accessed by names or through pointers
in C. For each of these variables a unique global pointer
is declared and assigned to the address of the correspond-
ing variable it references at TP address space. Creating a
link for the global variables between both address spaces
makes sure that a value change in one address space will
also affect the other address space. The instrumenter re-
places the access to these variables by a call to a read/write
helper function, which is capable of accessing TP address
space. Figure 4 gives an example of reading a global vari-
able. When function foo is mapped to VCP and bar (1) is
a TP function, foo will not know whether bar will change
the value of the global variable or not. So, the access of the
global variable has to be performed through a pointer to the
TP address space (2), (3).

Accessing the TP address space is slower than accessing
a native global variable. Therefore, the instrumentation is
only performed if required. For global or static variables
declared with the const keyword, an additional copy of the
variable is created at VCP address space. The instrumenter
analyzes the source code to find accesses to constant global
and static variable and replaces them with the local copy.

Link: _P_global = &global

int global;) int * pclobal;)
int foo(){ int foo(){
int tmp;
@ Dbar(); bar () ;

return global;

}

tmp = READMEM int(pGlobal);)
return tmp;

Figure 4: Global Variable Access in the VCP

Local variables — Local variables only exist in the VCP’s
local stack, so accessing them directly is safe. However, if
they are accessed through pointers there can be pointer haz-
ards since the pointer can point either to a global or to a
local variable. This problem is solved by copying local ar-
rays to the TP address space, thus, the pointer only points
to elements residing in the TP address space.

Aggregated data structures — The layouts of aggre-
gated data structures like struct or union in the C language
are not defined in the C specification. Different compilers
may produce different layouts. Currently, this problem is
avoided since the target compilers employed for the case
study have an identical data layout as the host.

Floating point — Floating point computation is com-
plicated to handle by the instrumenter because it is highly
platform dependent, e.g. the rounding strategy is not de-
fined in the IEEE 754 [5] standard. Hence, by switching
between both simulation modes the precision of the results
might be altered. In case that exactly the same precision
is required in both simulation modes, all floating point op-
erations must be instrumented and the required precision
is then emulated on the host. However, this reduces the
expected speed-up of the native code execution and should
only be applied if it is absolutely required.

C Standard Library — There are two possibilities to
handle calls to the C standard library: map the calls to the
corresponding calls on the host machine or switch back to
the TP to execute the call. The latter approach is more com-
plicated to realize, however, it is the more general solution.
Mapping the function calls to the host machine might work
for a set of function calls with no side effects, e.g. fabs. But
for function calls like malloc this approach is not feasible,
since they have side effects such as reducing the available
memory on the heap. In the HySim framework all calls to
the C standard library are executed on the TP.

4.3 Application Partitioning

The HySim framework offers the user two possibilities of
partitioning: manual partitioning and automatic partition-
ing. In the case of manual partitioning the user can partition
certain functions of the application to the VCP. However, no
sanity checking is performed if the partitioning is feasible or
not. In case of the automatic partitioning the user only
specifies a special breakpoint called fast-forward breakpoint
(FF breakpoint) and the application is then automatically
partitioned to reach this point as fast as possible. Executing
the complete application on the VCP would be the fastest
solution. However, it is not feasible to move all types of
functions to the VCP without compromising the switching
capability. For instance all functions contributing to the ac-
tual call stack must remain on the TP otherwise it is not
possible to continue the execution after returning from the
VCP.

Global Control Flow Graph — The Global Control
Flow Graph GCFG = (N, E) is a Directed Graph where
each node n € N represents a basic block (BB), each edge

78

P
7

5 RNP 3

call cail

100 70
I
/

i
I | M
f | 4
call call call
15() () 8()
5 Ik

+ + t !
main “
call call
[HahE] X
U \ 8
T

\
10y

12

1
call
f0()
f6
t

9

Figure 5: Example of a GCFG with a FF breakpoint

(ni,n;) € E depicts a control flow transition from BB n;
to BB n;. The GCFG is essential for program partitioning
since it contains all information about the function execution
sequence. The GCFG can be seen as an extension to the
traditional Control Flow Graph (CFG) [1] which represents
the control flow between basic blocks at function level. The
GCFG is obtained by merging all local CFGs together, so
that:

K K
V= U Ncra; E= [U ECFGi] U Ecaul

i=1 =1

where FE.q;; denotes the set of edges from the function call
to the entry node of the callee and K is the number of func-
tions in the application. In Fig. 5 the GCFG generation
is exemplified using a simplified version of the GCFG. The
GCFG comprises eleven CFGs, one for each function, and
starts with the main function. Inside the main function four
function calls can be seen, each function call points to the
CFG of the corresponding function. Hence, the GCFG pro-
vides information about the calling sequence of functions
and about the call stack for a given function.

In the GCFG each function can be marked with two dif-
ferent flags: Non-Partitionable (NP) and Recursive-Non-
Partitionable (RNP). Both flags indicate to the partitioner
that all functions with these flags need to be executed on
TP. The difference between NP and RNP is that in case of
RNP not only the marked function is executed on TP but
all functions contributing to the actual call stack. In the fol-
lowing, the different cases which require special treatment
during GCFG generation are discussed:

e Static functions — Static functions are not visible
at linking phase. Hence, there may be a lot of static
functions with the same name inside a program. To re-
solve ambiguity the merging is performed in two steps:
First, merge functions inside a compilation unit, and
then merge the compilation unit level CFGs into the
GCFG.

e Third party libraries — Third party libraries nor-
mally only expose the definition of their functions. A

function cannot be executed in VCP without the avail-
ability of the complete C source code, so a pseudo body
is added for each incomplete function and annotated
as NP.

e Function pointer — The C language allows func-
tion calls through pointers for dynamic behavior. Most
function pointers are irresolvable at compile time. All
the functions containing function calls by pointer are
annotated as RNP.

e Direct stack manipulation — The C language also
supports a set of functions like setjmp and longjmp.
They modify the stack directly and change the control
flow. Such kinds of functions are marked as RNP.

GCFG Partitioning — The partitioning of the GCFG
is steered by the user through defining a fast-forwarding
breakpoint. A FF breakpoint can be set in any function
independently of the availability of the C source code. The
function with the FF breakpoint is called F'F' function. The
goal of the partitioner is to find a good partitioning, consid-
ering the fact that not all functions can be executed on the
VCP. Figure 6 shows the partitioning algorithm in pseudo
code.

begin

01 //Step 1

02 for (all Pred(FF function)) do

03 if node = function call then

04 add to set_calls

05 if node = function start then

06 add to set_executed;

07 end for

08 set_candidates = set_calls — set_executed
09 //Step 2

10 for (all Pred(RNP functions)) do
11 if node = function header then
12 add to RNP_executed;

13 end for

14 //Step 3

15 switch_func = set_candidates — RNP_executed
end

Figure 6: Partitioning Algorithm

7 RNP

15 RNP 3 RNP i
}
1 RNP 4 iNP |
I

call
50
main RNP
call call
() 40

— >

(B

no} Switching Point
Switching Point | l m l \
| \
\ c t ! N\
N ; \
~ cal
v LPEbEeL |)
\L® U /’
< t
\ —
\ / Partitioned to VCP
\| e 1
\ /
N7

Figure 7: Example of a partitioned GCFG.

79

In a first step, all functions that are alive as well as all
functions possibly executed before the FF function are stored.
An instance of a function is considered alive if the execution
has started but not yet ended. By subtracting the set of
alive functions from the set of functions possibly executed
before the FF function, the set of functions (set_candidates)
is obtained which are not alive. In a second step all nodes
marked as RNP are handled. For these nodes the func-
tions which are alive are recorded (RNP_ezecuted). In the
last step the difference of the set set_candidates and the set
RNP_ezecuted is computed to obtain all functions that are
possibly executed before the F'F' function and are not alive.
The partitioning is exemplified in Fig. 5. Suppose, £5 per-
forms a function call by using a function pointer. Since
a function pointer points potentially to all functions, this
function is marked as RNP. The user sets a FF breakpoint
within £7, so £7 is marked as RNP to maintain the stack
for later simulation on the TP. Starting at function £7 the
set set_call = {£3, £4, £2, £1, £10} and the set set_executed
= {£3, £4} is calculated. By computing the difference be-
tween both sets the function that are not alive are identified
set_candidate = {f1, £2, £10}. The functions £5 and f1 are
executed in order to execute the function £5 and thus can-
not be partitioned to the VCP. Thus, only at the border of
the functions £2 and £10 it is possible to switch from the
TP simulation to the VCP simulation. Hence, the functions
£2, £6, £9 and £10 can be executed in VCP. Figure 7 shows
the obtained partition.

5. RESULTS

In this section the initial results obtained for a set of
benchmarks are discussed. The benchmarking is performed
on a PC with an Athlon64 X2 4600+ processor, 4 GB of
memory and Linux Fedora Core 4 as operating system. An
instruction accurate MIPS32 ISS is employed together with
the HySim framework. For the MIPS32 ISS the sde-gcc 2.96
is used as cross compiler. On the host side, the instrumented
source code for the VCP is compiled using gcc 4.0.2.

As benchmark a set of four different embedded applica-
tions was selected, covering different application domains:
encryption (des), message digest (md5), edge detection (su-
san) and image decoding (jpeg).

In a first experiment, the HySim framework is used to ex-
ecute the application as fast as possible by partitioning the
maximum of functions to the VCP. Clearly, this is not the
typical use case of this framework but it allows estimating
the maximum achievable acceleration. Table 5 shows the de-
tailed numbers obtained from the different benchmarks for
the MIPS32 ISS. For all applications a significant speed-up
ranging from range from 7x to 72x with an average of 33.6 X
can be seen. The jpeg application shows the lowest speed-
up of all applications because the frequent use of function
pointers makes it hard to find a good partitioning. There-
fore, the fraction of code executed on the VCP is much lower
than in all the other benchmarks.

The overall speed of the HySim is dependent on three
factors, the speed of the ISS, the VCP speed and the par-
titioning of the program. The ISS speed can be considered
constant for a given ISS, but faster ISS will result in a faster
overall simulation. The pure VCP speed is 155 MIPS on av-
erage compared to the approximately 4800 MIPS of the host
machine, this slowdown is coming from the instrumentation
overhead. The amount of instrumentation heavily depends
on the application type. If global variables and pointers
are rarely used, then the instrumentation overhead is re-
duced. For the des application the highest simulation rate
has been measured with 185 MIPS on average. The reason
for the high simulation performance is that des heavily ac-
cesses global but constant variables, which do not need to

MIPS32 ISS HySim speed up estim.
App. instr. time [s] MIPS time[s] TP [s] VCP [s] avg. MIPS VCP MIPS factor error
des 128 M 50.48 2.53 0.69 0.31 0.38 185 330.36 72x 2.45%
jpeg 116 M 40.57 2.87 5.71 4.8 0.91 20.4 112.84 7.1x 17.62 %
md5 63 M 21 3.01 0.939 0.038 0.901 67.3 69.93 22.34 % 14.61 %
susan 462 M 184 2.5 5.68 0.78 4.89 81.5 92.0 32.4x 3.27T%

Table 1: Benchmarks executed on MIPS ISS and HySim

be instrumented. This shows that it is possible to increase
the performance of the HySim framework by carefully opti-
mizing the instrumentation strategy.

The program partitioning mainly depends on two factors:
the position of the FF breakpoint and how the program is
written. As mentioned earlier, the usage of function pointers
and stack manipulating functions, e.g. longjmp, lead to a
suboptimal partitioning.

The error of the performance estimation during the native
execution ranges from 2.45% to 17.62% with an average er-
ror of 9.5%. For this case study the number of instructions
executed was used to estimate performance, since the ISS
itself is also only instruction accurate. The average error of
9.5% clearly shows that it is possible to provide the user with
some early performance estimation during the native execu-
tion. The performance estimation can be refined to estimate
the number of cycles as shown in [7], with an average error
of 11%. Hence, in conjunction with a cycle accurate ISS,
the HySim framework can also be used to obtain reasonably
accurate cycle estimations.

6. CONCLUSION

In this paper a retargetable, hybrid simulation framework
is presented that gives the software developer the possibility
to switch between native code execution and ISS based sim-
ulation. With the HySim framework it is possible to reach
the desired state of an application quickly and then switch to
a slow but detailed simulation. The partitioner takes care
of moving as many functions as possible to the VCP for
fastest possible execution. However, target dependent code
like assembly will be executed on the ISS to ensure correct
behavior. The fact that the used ISS is not aware of the
VCP and does not need to be modified, makes the HySim
framework a versatile instrument which can be employed
for a wide range of ISSs. The obtained results show that
this concept is capable of achieving high simulation speed
up to 185 MIPS. In order to further speed up the native ex-
ecution, more research is required to reduce the amount of
instrumentation without losing the capability to switch be-
tween both simulation modes. Furthermore, techniques like
cache warming should be incorporated into the framework
to obtain precise simulation results for caches.

7. ACKNOWLEDGMENTS

This work is part of the European project SHAPES. For
more information visit www.shapes-p.org.

8. REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, August 2006.

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated Application-Level Checkpointing of MPI Programs.
In PPoPP ’03: Principles and Practice of Parallel
Programming, New York, NY, USA, 2003. ACM Press.

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Collective Operations in Application-Level Fault-Tolerant MPI.
In ICS ’03: Proceedings of the 17th annual International
Conference on Supercomputing, New York, NY, USA, 2003.
ACM Press.

(2]

80

[4]

5]

6]

[7]

8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr. A
Fast and Generic Hybrid Simulation Approach Using C Virtual
Machine. In CASES ’07: Compilers, Architecture and
Synthesis for Embedded Systems, New York, NY, USA, 2007.
ACM Press.

IEEE Standards Committee 754. IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.
Institute of Electrical and Electronics Engineers, New York,
1985. Reprinted in ACM SIGPLAN Notices, 22(2):9-25, 1987.
A. A. Jerraya, A. Bouchhima, and F. Pétrot. Programming
Models and HW-SW Interfaces Abstraction for Multi-Processor
SoC. In DAC ’06: Conference on Design Automation, New
York, NY, USA, 2006. ACM Press.

Karuri, K., Al Faruque, M.A., Kraemer, S., Leupers, R.,
Ascheid, G. and Meyr, H. Fine-grained Application Source
Code Profiling for ASIP Design. In 42nd Design Automation
Conference, Anaheim, California, USA, June 2005.

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers,
and H. Meyr. A SW Performance Estimation Framework for
Early System-Level-Design using Fine-Grained
Instrumentation. In DATE ’06: Conference on Design,
Automation and Test in Europe, 3001 Leuven, Belgium,
Belgium, 2006. European Design and Automation Association.
B. W. Kernighan and D. Ritchie. The C Programming
Language (2nd Edition). Prentice Hall PTR, March 1988.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation. In DAC ’02:
Conference on Design automation, New York, NY, USA, 2002.
ACM Press.

M. Poncino and J. Zhu. DynamoSim: A Trace-based
Dynamically Compiled Instruction Set Simulator. In ICCAD
’04: Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, Washington, DC, USA,
2004. IEEE Computer Society.

W. Qin, J. D’Errico, and X. Zhu. A Multiprocessing Approach
to Accelerate Retargetable and Portable Dynamic-compiled
Instruction-set Simulation. In CODES+I1SSS ’06: Conference
on Hardware/Software Codesign and System Synthesis, New
York, NY, USA, 2006. ACM Press.

M. Reshadi, P. Mishra, and N. Dutt. Instruction Set Compiled
Simulation: A Technique for Fast and Flexible Instruction Set
Simulation. In DAC ’03: Conference on Design Automation,
New York, NY, USA, 2003. ACM Press.

J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge. Intrinsic
Checkpointing: A Methodology for Decreasing Simulation Time
Through Binary Modification. Performance Analysis of
Systems and Software, March 2005.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program Behavior.
In ASPLOS-X: Proceedings of the 10th international
conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, USA, 2002.
ACM Press.

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and Exploiting Program Phases. IEEE Micro,
December 2003.

P. K. Szwed, D. Marques, R. M. Buels, S. A. McKee, and

M. Schulz. SimSnap: Fast-Forwarding via Native Execution
and Application-Level Checkpointing. interact, 00, 2004.

R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS:
Accelerating Microarchitecture Simulation via Rigorous
Statistical Sampling. In 30th Annual International Symposium
on Computer Architecture, June 2003.

J. J. Yi and D. J. Lilja. Simulation of Computer Architectures:
Simulators, Benchmarks, Methodologies, and
Recommendations. IEEE Trans. Comput., 55(3), 2006.

S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. A.
Jerraya. Building Fast and Accurate SW Simulation Models
Based on Hardware Abstraction Layer and Simulation
Environment Abstraction Layer. In DATE ’03: Conference on
Design, Automation and Test in Europe, Washington, DC,
USA, 2003. IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

