
Synchronization after Design Refinements with Sensitive
Delay Elements

Tarvo Raudvere, Ingo Sander, Axel Jantsch
Royal Institute of Technology

Stockholm, Sweden
{tarvo,ingo,axel}@kth.se

ABSTRACT
The synchronous computational model with its simple computation
and communication mechanism makes it easy to describe, simu-
late and formally verify synchronous embedded systems at a high
level of abstraction. In synchronous models, a local refinement in-
creasing the delay in a single computation block may affect the
functionality of the entire model. We provide a synchronization
algorithm that preserves the system’s functionality after design re-
finements, by using additional synchronization delays and making
some delays sensitive to their input values. The refined and syn-
chronized model stays latency equivalent to the original model. The
advantages of our approach are the following: (a) we remain fully
within the synchronous model of computation, (b) we preserve the
functionality of the existing computation blocks, and (c) we do not
require additional computation resources, specific communication
protocols, wrapper circuits around computation blocks or sched-
ulers.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids; J.6 [Computer-aided Engi-
neering]: Computer-aided Design (CAD)

General Terms
Design, Algorithms

Keywords
System Design, Design Refinement, Synchronization

1. INTRODUCTION
Synchronous computational models are popular in system de-

sign targeting safety critical applications and are efficiently used
in the aerospace industry [11]. The synchronous hypothesis as-
sumes that the computation in processes and communication be-
tween them takes no time. In this kind of models local refinements
that increase the delay in some computation block, like the intro-
duction of pipelining and resource sharing, are a potential source of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

errors due to changed time behavior. The problem becomes more
complex if models contain nested feedback loops.

Let’s consider the system in Figure 1.a, containing eight com-
binational functions and five delay elements. Let a refinement in-
crease the delay in fn6 that is equivalent to add a delay ∆6 to the
model (Figure 1.b). At the first time instant ∆6 emits its initial value
to fn7 and the result of the computation is thereafter processed by
other functions as well. In fact, the latter values are unexpected
compared to the behavior of the original model. The algorithm
presented in [13] solves the problem as follows. In order to distin-
guish between expected and unexpected values, refinement added
delays are initialized with a special absent value (⊥). ∆⊥ denotes
a delay initialized with ⊥-value. Functions react to these values as:
fn(⊥, . . . ,⊥) = ⊥. The algorithm guarantees that different types of
values never arrive to functions at the same clock cycle. The addi-
tional synchronization delay ∆⊥

10 ensures that fn1 receives ⊥-values
from both loops at the second clock cycle. Since loops reproduce
⊥-values, and loop1 and loop2 have different delays, the algorithm
adds more synchronization delays: ∆⊥

7 , ∆⊥
8 , ∆⊥

9 . In the refined and
synchronized model fn1 receives ⊥-values at every second clock
cycles. Although the model processes more values than the original
model, the same expected values appear in the same order in both
models, i.e., the refined model is latency equivalent to the original
model.

a)

loop1

loop2

fn5 ∆4 fn4

fn8 fn7 fn6

fn2fn1 ∆1

∆3

∆5

∆2

fn3

fn5 fn4

fn1

fn7

fn3
b)

∆4 ∆3

∆5fn8

∆2

fn6

fn2∆1

c)
fn5 ∆4 fn4

fn8 fn7

fn2fn1 ∆1

∆5

∆2

fn6

fn3∆3

∆⊥
10 ∆⊥

9

∆⊥
8∆⊥

7

∆⊥
7

∆⊥
6

∆⊥
6

Figure 1: Synchronization in loops with three and four delays

21

In order to decrease the number of additional synchronization
delays (∆⊥

i) and to improve the ratio between ⊥-values and use-
ful data, we propose in this paper a more efficient synchronization
algorithm that modifies some delays in the model. The modifi-
cation makes delay elements sensitive to the types of input val-
ues. A sensitive delay ∆ preserves its state when ⊥-values arrive to
the delay, and instead of the current state value it emits the input
value. In other words, a ⊥-value jumps over the value that arrived
at the delay at one clock cycle before. If the original delay with
the initial state value st0 and the input sequence {a,b,c,⊥,d, . . .}
operates as: ∆(st0,{a,b,c,⊥,d, . . .}) = {st0,a,b,c,⊥,d, . . .} then
the behavior of a sensitive delay is: ∆(st0,{a,b,c,⊥,d, . . .}) =
{st0,a,b,⊥,c,d, . . .}.

Our algorithm replaces ∆3 in Figure 1.a with the sensitive delay
∆3 in Figure 1.c and adds ∆⊥

7 to synchronize the refinement added
delay ∆⊥

6 . Figure 2 shows abstract states of delays in loop1 in the

fn1 ∆1 ∆2 ∆3
t0
t1
t2
t3
t4
t5
t6
t7
t8

c ⊥ d
d
⊥
c
b

a

a
⊥
d
c

b

d

c
b

a

a

b

d
⊥
c
b

a

a
⊥
d

d

a

c
b
a
⊥
d
c
b
⊥

⊥
c
b
a
⊥
d
c
b

∆4∆⊥
7

Figure 2: Values stored in delays in the refined and synchro-
nized loop

first nine clock cycles. The characters (a,b,c,⊥,d) corresponding
to t0 are the initial states of delays and fn1 is viewed as an identity
function. Without the modification in ∆3 fn1 receives ⊥-values af-
ter every four clock cycles. Loop1 in Figure 1.c including ∆3 and
loop2 feed fn1 synchronously by ⊥-values after every three clock
cycles. The ratio between useful and ⊥-values and the number of
synchronization delays ∆⊥ are clearly improved, compared to the
model in Figure 1.b. The model in Figure 1.c is latency equivalent
to the original model.

2. RELATED WORK
Many researchers agree that a system design approach must start

with a formal system model on a high level of abstraction [8, 6].
The initial model must then be refined manually or automatically
[1] into a concrete implementation. Our synchronization technique
supports design methodologies that use formal design transforma-
tions in a synchronous computational model. The latter model
is the base for languages like Lustre [7] and Esterel [3], which
have successfully been used for safety-critical industrial applica-
tions. The computational model has also similarities to the syn-
thesizable subset in VHDL and Verilog languages that employ a
clocked-synchronous computational model, which makes our ap-
proach very applicable in practice.

Retiming and pipelining are well-known techniques that address
latency and data arrival problems. In order to reduce the circuit area
or a critical path retiming algorithms [10, 9] relocate already exist-
ing memory elements. Although retiming techniques address syn-
chronization problems, these problems are not caused by additional
delays inserted to the model. On the other hand, the introduction
of additional delays to the model is elaborated in pipelining trans-
formations. Pipelining in software is simpler, since there different
models from the perfectly synchronous one are used. In hardware
the data synchronization is solved by a pipeline controller, derived

from a high level system specification [15]. Our technique makes
it possible to introduce pipelining at system level in synchronous
models with nested feedback loops, without adding controllers or
changing the used computational model.

In order to avoid synchronizations problems caused by refine-
ments that increase the delays of computation blocks, desynchro-
nization [2, 12] or latency insensitive design [4] (LID) techniques
can be applied. The former technique transfers a synchronous model
to an asynchronous one, which is less sensitive to delayed data ar-
rival. LID targets the mapping of an IP blocks based synchronous
model to hardware, where longer wires entail delayed data arrival.
The synchronization problem is solved by (1) wrappers around IP-
blocks stalling computation if input data is not available, and (2)
by handshake channels and relay stations between IP-blocks that
replace synchronous communication. The handshake mechanism
distributes stalling messages and a relay station buffers data items
if the destination process cannot consume them. In [5] a more ad-
vanced approach is described, which replaces LID protocols with
schedulers at every IP-block. Although this method drastically sim-
plifies the implementation of LID, it is much more complex to re-
fine a model including schedulers at the system level, compared to
the refinement in a pure synchronous model.

Although both of these techniques are common in practice, they
have side effects that our synchronization algorithm avoids. We
avoid unnecessary discontinuities in the design process caused by
changes in the computational model. It is impractical to switch
the computational model due to a single local refinement. The use
of the same computational model makes it much easier to verify
refined models against each other. In addition, verification in deter-
ministic synchronous models by using simulation or formal meth-
ods is simpler than in other models. On the other hand our synchro-
nization technique is complimentary applicable within refinements
in a synchronous island of GALS model or in an IP block of LID.

3. SYSTEM MODEL
We describe systems in the synchronous model of computation

as a set of processes, which communicate through synchronous sig-
nals. Processes can be grouped into blocks of processes. Signal si
is defined as a sequence of events {vi

0,v
i
1, . . . ,v

i
j, . . .}, where vi

j is
the value of the j-th event (with time tag j) of signal si. All signals
share the same set of tags for synchronization purposes. The signal
direction is from the source process to the destination process, and
every process has only one output signal.

There are two kinds of events: (1) present events that carry a
value and (2) absent events that are used only for synchronization.
An absent event e j shows that a signal contains no value at a time
instant j. We use the mark > as an abstract value if we refer to
present values, and ⊥ for absent values. For example, the abstract
presentation of signal {11,42,⊥3,24, . . .} is {>,>,⊥,>, . . .}. To
extend a data type T to T⊥ the ⊥-value is added to its domain.

A combinational process takes arguments as a dedicated n-input
combinational function f (x1, . . . ,xn) and n input signals. For each
tag j, a combinational process consumes from its input signals
s1, . . . ,sn events with the tag j carrying values v1

j , . . . ,v
n
j and pro-

duces to its output signal s′ an event with the tag j and a value
v′j = f (v1

j , . . . ,v
n
j):

Pcomb(f (x1, . . . ,xn),s1, . . . ,sn) = s′ = {v′0,v
′
1, . . . ,v

′
n, . . .} =

= { f (v1
0, . . . ,v

n
0), f (v1

1, . . . ,v
n
1), . . . , f (v1

j , . . . ,v
n
j), . . .}

A delay process P∆(st0,s1) has arguments as an initial state st0
and an input signal s1 = {v1

0,v
1
1, . . . ,v

1
j , . . .}.

22

P∆(st0,s1) = s′ = {st0,v1
0,v

1
1, . . . ,v

1
j , . . .}

A finite state machine process PFSM with a state function fst , an
output function fout , an initial state st0, input signals s1, . . . ,sn and
output signal s′ is defined as:

PFSM(fst , fout ,st0,s1, . . . ,sn) = s′

where
s′ = Pcomb(fout ,s′′,s1, . . . ,sn)
s′′ = Pcomb(fst ,(P∆(st0,s′′),s1, . . . ,sn))

4. SYNCHRONIZATION

4.1 Definitions
In order to prepare the system to operate with synchronization

values (⊥), we extend the functionality of combinational processes.
If in the original model a function f (x1, . . . ,xn) on input values
{v1, . . . ,vn} calculates an output value f (v1, . . . ,vn) = v′, then the
modified function f (x1, . . . ,xn) operates as follows:

f (v1, . . . ,vn) =

{

v′, if ∀i,(1 ≤ i ≤ n),vi 6= ⊥
⊥, if ∃i,(1 ≤ i ≤ n),vi = ⊥

The modification in combinational functions applies to all com-
binational and FSM processes, making them to emit an absent event
if any of the input events is not present at some time instant. In
addition, we modify the storage elements in FSM processes, such
that they do not update their states if an absent event is on their
inputs. Since FSM processes do not cause any explicit delay to ab-
sent events and the response to input values appears instantly, we
call combinational and FSM processes as computation processes to
differentiate them from delay processes.

In the paper, we use the following terms and functions: A path
in the system model is a sequence {P1,P2, ...,Pn} of processes Pi,
such that ∀i,(1≤ i ≤ n−1), exists a signal si connecting the output
of Pi to an input of Pi+1, and ∀i, j,(1 ≤ i, j ≤ n),Pi 6= Pj. A loop
is a cyclic path with the same start and end process, and does not
include any process twice.

A pair of paths contains two paths, path1(PA,PB) and path2(PA,PB),
from process PA to process PB, and these paths do not share any
other process than PA and PB.

Transformation AbstJmp(P∆ → P∆) replaces a delay process P∆
with a sensitive delay process P∆, whose reactions to input values
are characterized by the following functions F∆ and F ∆, respec-
tively (st0 is the initial value in the delay processes, ui is an input
and vi is an output value at time instant i):

F∆(st0)(ui) =

{

vi = sti
sti+1 = ui

F ∆(st0)
(ui) =







if (ui 6= ⊥),
vi = sti
sti+1 = ui

=







if (ui = ⊥),
vi = ui
sti+1 = sti

Function |pathk(Pi,Pj)|∆ gives the number of delay processes in
pathk between processes Pi and Pj.

Function |pathk(Pi,Pj)|∆ gives the number of delay processes in
pathk between processes Pi and Pj excluding modified delay pro-
cesses P∆. The function value is equal to the latency of the path to
move an absent value from Pi to Pj.

In order to analyze the delays of paths in the system model, we
construct a delay graph G(W,E). The system inputs and outputs

are viewed as delay processes P∆i within the analysis. To every P∆i
in the system model corresponds a vertex wi in G, wi ∈ W . The
graph contains an edge ei j (ei j ∈ E) from vertex wi to w j, if there
is a path from process P∆i to P∆ j in the system model, and the path
contains no other delay processes. Similarly to the system model,
a path in the graph is a sequence of vertices, and a loop is a cyclic
path. The delay graph is formed so that it abstracts all computation
processes and represents only delay processes and paths between
them.

4.2 Synchronization requirements
The synchronization algorithm considers two facts: (1) loops re-

produce absent events, and (2) there is a path between any two
loops in the model. Therefore, if we add a delay process either to
a path or a loop, we have to add synchronization delay processes
to all loops in the system. These synchronization delays have to
be placed so, that multi-input processes connecting loops and paths
receive only one type of events at every clock cycle.

In our approach, the shortest loop in the graph determines the ra-
tio between absent and present events processed by every process.
If the shortest loop in graph G contains r delay processes, and a
design transformation entails an extra delay process to the system,
then after the first refinement the ratio is R = (1⊥ : r>). Our al-
gorithm modifies delay processes and adds synchronization delay
processes in order to make all computation processes in the model
to operate with the same ratio R . If the delay of a loop is equal
to r, we add one synchronization delay process to the loop. To a
loop with the delay k ∗ r,(k ∈ N) 1 we add k synchronization delay
processes, locating them so that the delay between two synchro-
nization delay processes is equal to r. In loops, where the number
of delays is equal to k∗r+δ,(δ < r and k ∈ N), before adding syn-
chronization delay processes, we modify δ (or δ+n∗r,(n∈N)) de-
lay processes by the transformation AbstJmp. After modifications
the delays for absent values in all loops are equal to k ∗ r,(k ∈ N),
i.e., all loops satisfy the following condition (1):

|loopi|∆ mod r == 0 and |loopi|∆ ≥ r, if R = (1⊥ : r>) (1)

In addition, we have to turn attention to multiple acyclic paths that
connect two processes PA and PB. Paths from PA to PB may have
different delays, i.e., paths do not contain the same number of delay
processes - |path1(PA,PB)|∆ 6= |path2(PA,PB)|∆. If the paths do
not satisfy the following condition (2), different types of events
(⊥ and >) arrive to PB at some time instants.

(|path1(PA,PB)|∆ −|path2(PA,PB)|∆) mod r == 0,

if R = (1⊥ : r>) (2)

We say that a system is balanced if all loops and pairs of paths sat-
isfy conditions (1) and (2). Based on these conditions we find the
offset δ for loops and pairs of paths. δ shows how many delay pro-
cesses we have to modify by the transformation AbstJmp in order
to satisfy either condition (1) or (2). The offset of a loop j is:

δ j = |loop j|∆ mod r

The offset of a pair j of patha and pathb is:

δ j = min(δ ja,δ jb),where
δ ja = (|patha|∆ −|pathb|∆) mod r,
δ jb = (|pathb|∆ −|patha|∆) mod r

Since loops and pairs contain more delay processes than their
offset δ j, we can choose between many different
δ element combinations of delay processes, which to modify by
1
N is the set of natural numbers {1,2,3, . . .}

23

AbstJmp. However, it is possible that due to the system structure,
any combination of modified delay processes (P∆) and additional
synchronization delays (P⊥

∆) do not allow the system to operate
with the ratio (1⊥ : r>). In this case we replace one P∆ process
in the shortest loopk with a sensitive delay process P∆, such that
|loopk|∆ = (r− 1) and try to synchronize the system to operate
with the ratio (1⊥ : (r−1)>). We repeat the last step until the ratio
(1⊥ : 1>), which suits to any system2. In brief, this ratio means
that either to the input or output of every P∆ delay process in the
model is added a synchronization delay processes P⊥

∆ , and compu-
tation processes receive absent events at every second clock cycle.

4.3 Outline of the algorithm
The first task in the synchronization algorithm is to construct

the delay graph and to find all loops and pairs of paths. Based
on the ratio, determined by the shortest loop, we calculate offsets
to all pairs and paths. We apply model checking to find which
processes have to be modified in order to get the model balanced.
After modifications, in the balanced model all not modified delays
get a label. If a refinement adds a delay P⊥

∆i to the model, then
according to the label L j of the nearest delay process to P⊥

∆i, we
add a synchronization delay processes next to all delay processes
with labels L j.

4.4 Finding loops
In order to find all loops we model every vertex wi in the graph

G as a process Di and every edge ei j as a signal between processes
Di and D j. Process Di has a distinct stamp zi. At every step all
processes receive and forward a list of vectors. If an input vector
does not contain stamp zi, process Di adds zi to the end of the vec-
tor, otherwise the vector is stored at Di and not forwarded. At the
first step only multi-input processes emit vectors with their stamps.
A vector with the first stamp equal to zi received by Di, contains an
ordered sequence of stamps of all processes in a loop. The max-
imum number of steps, we have to analyze the model to find all
loops, is equal to the number of processes Di.

4.5 Finding pairs of paths
Similarly to the finding loops algorithm we model graph G as a

set of processes connected by signals. Process Di has a stamp zi.
At the first step only these processes whose output is connected to
more than one process emit vectors with their stamps. At every fur-
ther step all processes add their stamps to the end of the received
vectors and forward them. Multi-input process Di discards a re-
ceived vector, which already contains its own stamp zi. All other
vectors get extended with stamp zi, stored in the process, and for-
warded to the process output. It takes less steps to run the model
than is the number of processes Di in the model. After running the
model, we take the stored vectors from multi-input processes and
find pairs, which have identical stamps only in the first positions
and in the last positions. These vectors contain stamps of pairs of
paths.

4.6 Balancing the delays of loops and pairs of
path

Based on the vectors of loops and vector pairs of paths found
previously, we form a matrix M . Column ci of M corresponds
to process P∆i and row r j of M corresponds to loop j or pair j of
paths. Initially all matrix elements are set to zero. If delay process
P∆i belongs to loop j , we set the matrix element m(r j,ci) = 1. If
P∆i belongs to the patha in pairk then m(rk,ci) = 1, if it belongs

2A proof can be found in [13]

to the pathb then m(rk,ci) = −1, |patha|∆ ≥ |pathb|∆; the matrix
elements corresponding to the first and the last delay processes in
paths forming a pair stay equal to zero.

The sum of values (Σr j) in r j gives the delay for absent events
in loop j , or the delay difference for absent events in pair j, and
presents the value on the left side in conditions (1) and (2) (Σr j =
|loop j|∆) and (Σr j = (|patha|∆ −|pathb|∆)). Model M is balanced
if all these sums in rows for loops and pairs of paths satisfy condi-
tions (1) and (2), respectively.

We apply the transformation AbstJmp to delay processes P∆i, in
order to reduce the delay of a loop or a path for absent events and in
such a way to decrease the offset of the respective row in M . The
result of the transformation is a sensitive delay process P∆i that has
no delay for absent events. According to the modification in P∆i we
set all values equal to zero in column ci in M .

4.7 Finding a proper combination of P∆-s
A combination of delay processes that have to be modified in or-

der to satisfy conditions (1) and (2) can be found by using a model
checker. Columns ci corresponding to delay processes P∆i or P∆i
are modeled as Integer variables xi in model checking. The model
checker can assign values "0" and "1" to xi-s in a non-deterministic
manner. Based on condition (1), for every row r j in M representing
loop j we write a boolean expression eq j:

eq j = (((Σ(xi ∗m(r j,ci))) mod r) == 0
∧

(Σ(xi ∗m(r j,ci))) ≥ r

Similarly, eq j for a row r j corresponding to pair j is:

eq j = (((Σ(xi ∗m(r j,ci))) mod r) == 0

The task for the model checker is to check a specification, which
says that there does not exist a case where all expressions eq j of all
rows in M are true at the same time:

SPEC ¬E(eq1&eq2& · · ·)

If the model checker finds that this specification is not satisfied,
it reports a counter-example, i.e., a combination of values, which
assigned to xi-s contradicts the specification. Since the specifica-
tion is defined through negation, the values of xi-s in the counter-
example satisfy all expressions eq j at the same time. Process P∆i
has to be modified by AbstJmp if xi in the counter-example is equal
to "0". It is not possible to balance the model for ratio R = (1⊥ :
r>) if the model checker finds that the property in the SPEC holds.
In this case we decrease r by one and run the model checker again.
Although we replace some P∆ delay processes in the original model
with the sensitive ones (P∆), the behavior of the modified model is
identical to the original one as far no refinement caused or synchro-
nization delay processes ∆⊥ are added to the model.

4.8 Labeling of delay processes
All loops in the balanced model contain n ∗ r (n ∈ N) P∆ delay

processes and the difference of the number of P∆ processes in paths
of a pair is equal to zero or n ∗ r. All P∆ processes in the model
get labels from the set Label according to their positions. Label
is an order set containing r distinct labels in positions L0, ...,Lr−1.
A new label may be added to position L j after a design refinement
and due to that all former labels in positions L j, . . . ,Lr−1 are shifted
to L j+1, . . . ,Lr. In this paper we use capital letters (A,B,C, . . .)
for labels. Delay processes have identical labels if they have the
same delay to a multi-input process. We give the first letter to an
arbitrarily chosen P∆ process and mark the rest of P∆-s according to
the following rule. If a processes P∆i have got label L j and there is
an edge from wi to wk in G then process P∆k gets label L j+1 (L0 if

24

j+1 == r). Similarly, process P∆l gets label L j−1 (Lr−1 if j == 0)
if there is an edge from wl to wi.

4.9 Synchronization after design refinements
We model the design transformation caused delay increase in a

combinational process as an additional delay process P∆⊥ in the
same path next to the refined process. In order to synchronize the
processing of ⊥ values, we insert additional P∆⊥ processes to the
model as described in the following algorithm:

Algorithm 1
Step 1 Add the refinement produced delay process P∆⊥ j to the

model.
Step 2 Find the closest delay processes P∆⊥k and P∆⊥l , which have

paths from P∆⊥k to P∆⊥ j and from P∆⊥ j to P∆⊥l , respectively.
Step 3 Take the labels of P∆⊥k and P∆⊥l , which have to locate in

neighbor positions Lt−1 and Lt in the set Label.
Step 4 Associate a new label with P∆⊥ j .
Step 5 Preserving the order, shift all labels in positions Lt , . . . ,Lr−1

to Lt+1, . . . ,Lr.
Step 6 Add the new label, associated with P∆⊥ j to Label in posi-

tion Lt .
Step 7 Insert a P∆⊥ delay process with label Lt to every path, which

starts from a process with label Lt−1, finishes at a process
with label Lt+1, and the path does not include any other P∆
or P∆⊥ processes.

So far in the algorithm the system input and output signals are not
considered. Since the number of events that a system has to process
increases due to the refinement added and synchronization delay
processes P∆⊥ , we have to insert additional synchronization events
to input signals as well. An input signal can be viewed as a shift
register where from one event ei enters to the system at every clock
cycle. Similarly to delay processes P∆ we label the input events as
well. The event e0 gets a label based on the label of the closest
P∆ delay process to this input. If the process has got label L j, then
event e0 has label L j−1, e1 has label L j−2 and ek has a label Ll ,
where l = ((j− (k+1)) mod r). If a refinement adds a P∆⊥ process
to the model with label L j, the input signals have to include extra
absent events between events with labels L j−1 and L j+1. In order to
add regularly absent events to the input signals, finite state machine
based interfaces can be used. Although absent events appear on the
system output signals as well, the refined and synchronized system
is latency equivalent to the original system. After excluding the
absent events from an output signal, it is identical to the output
signal of the original model.

5. CASE STUDY
We illustrate the synchronization algorithm within the design

process of a video encoder. The encored is divided into fifteen
computation blocks and we assume that all blocks have exactly one
clock cycle delay, i.e., in the path between block’s input and output
is one P∆ delay process, in every block. The structure of the origi-
nal model is identical to the delay graph G in Figure 3 leaving out
shadowed processes P⊥

∆16, . . . ,P
⊥
∆19. Let’s consider a design refine-

ment that introduces resource sharing in the combinational part of
the block11 (containing delay process P∆11) and therefore adds one
clock cycle delay to the block. Since this delay and its initial value
is not defined in the system specification, we model this delay as a
P⊥

∆16 process.
In order to synchronize the model after the refinement we have

to find all loops and pairs of paths. There are six loops and fourteen
pairs of paths in G. Although in the worst case the number of paths

∆1 ∆2 ∆4 ∆5

∆11

∆9 ∆7 ∆6

∆14 ∆15

∆10

∆12 ∆⊥
16

ACAC

A C

AC

B D

∆13

B

∆3

B
∆⊥

17

∆⊥
18

B
∆8

∆⊥
19

D

D

AbstJmp

Refined part

Synchronization delays

D

Figure 3: The delay graph G after refinement and synchroniza-
tion

may grow exponentially with the number of delay processes in the
model and to give exponential complexity to our algorithm, in prac-
tice there are not direct connections between every two processes
and the number of paths stays close to the number of processes.
It took only 0.05 seconds to find all loops and pairs in our mod-
eling environment running on a SUN Ultra 80 machine (450MHz
CPU and 4GB RAM). Some examples of loops are: loop1 through
vertices {∆9,∆10,∆11}, loop2 through vertices {∆9,∆10,∆12,∆11},
loop3 through vertices {∆6,∆13,∆14,∆15}, and so on. In matrix M
(Figure 4) the first six rows r1, . . . ,r6 represent loops. If delay ∆i
belongs to loop j , the matrix element m(r j,ci) gets value "1". Sim-
ilarly to loops, we mark the pairs of paths in M . For all pairs we
mark the delays of the shorter path with "-1" and the longer path
with "1" in matrix M .

1 1 1 1
1 1 1 1

ci
ri

2

4
5
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

1 1 1
1 1 1 1

1 1 1 1 1
11111

1 1 1 1

1 1 1 1 11 1 1
1

1 1 1 1
11

1
-1 1 1
-1 1 1 1 1 1 1 1 1 1 1
-1 -1 -1

1 1 1 1 1
-1 -1 -1

-11 1 1
1

-111 1 1
-1 -1 1 1 1 1

1 1 1 11
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1

11 1 1 1 1 1 1
11 1 1

Σri

3
4
4
9
8
9
1
9
1
5
1
6
1
3
4
5
0
0
8
4

1 1

Σri δiδi

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1

1

1

1

1

1

0

0

0

0

0

0

0
0

2

2

2

2

1

1

7
8
9

loop1
loop2
loop3
loop4
loop5
loop6
pair2,4
pair2,4
pair2,6

10pair6,13

11pair10,6

12pair10,9

13pair10,11

14pair10,13

15pair11,6

16pair11,9

17
18pair12,6

pair11,13

19pair12,11

20pair12,13

3
3

3
6
6
6
0
6
0
3
3
3
0
3
3
3
0
0
6

1

3

1 1 1

Figure 4: Matrix M

The shortest loop in G includes three delay processes, which
makes the refined and synchronized system to operate with ratio
R = (1⊥ : 3>), r = 3. The sum of elements on every row Σri and
the offsets δi of loops and pairs are given in the right side columns
in Figure 4. The Cadence SMV [14] model checker, running on

25

the SUN machine, created 622 BDD-nodes and spent 0.11 sec-
onds to find that the model is balanced after modifying processes
{∆6,∆7,∆12}. Modifications by AbstJmp in these processes turn
all values in columns c6,c7 and c12 to zero (the shadowed columns
in matrix M). Updated values of Σri and δi are presented as Σri
and δi, respectively, in Figure 4.

In the next step we form a three element set Label = {L0 =
A,L1 = B,L2 = C} and label all ∆i processes as shown in Figure 3.
The refinement in block11 adds a delay ∆⊥

16 between delay ∆11 and
delays ∆4 and ∆9. Since the refinement is performed between de-
lays with labels B and C, (1) we give a new label D to process
∆16, (2) give position L2 to D in the set Label, (3) shift the label C
to position L3, and (4) insert synchronization delays ∆⊥

17, ∆⊥
18 and

∆⊥
19 into all paths between delays with labels B and C. The new

set of labels after the refinement is Label = {L0 = A,L1 = B,L2 =
D,L3 =C}. The input signal {e0,e1,e2,e3,e4,e5,e6, ...} gets labels
{eB

0 ,eA
1 ,eC

2 ,eB
3 ,eA

4 ,eC
5 ,eB

6 , ...}, and after adding regular ⊥-events the
signal has got the form: {⊥D,eB

0 ,eA
1 ,eC

2 ,⊥D,eB
3 ,eA

4 ,eC
5 ,⊥D,eB

6 ...}.
Compared to the LID algorithm [4], our synchronized model af-

ter the refinement contains only three additional delay processes
and three delay processes are transformed to sensitive delays. Al-
though the LID method does not add any explicit delay process, it
adds wrappers around processes and replaces signals between pro-
cesses with handshake channels between wrappers. In fact, there
are combinational logic circuits in wrappers, and buffers in chan-
nels and wrappers, which increase the circuit area. In order to im-
plement the absent extension at RT-level, we needed only one bit
signal to inform processes about the current data type of an input
value (⊥ or >). This is equivalent to the one bit signal used to
distribute stalling events between computation blocks in LID. The
input/output latency of our model is equal the latency of an LID
model after the same refinement - both models have to work with
ratio: one synchronization (stalling) event per three data events.
The LID relay stations in the channels are initialized with stalling
values. Since the system contains feedback loops these values are
reproduced [4]. Due to the feedback loops, the ⊥-events are repro-
duced in our model as well.

The same model synchronized by the algorithm in [13], contains
fourteen synchronization delays and operates with ratio (1⊥ : 1>).
Compared to the latter, sensitive delays gave 79% improvement in
the number of synchronization delays and 67% improvement in the
ratio between synchronization and actual data events.

6. CONCLUSION
The introduction of resource sharing and pipelining in computa-

tion blocks are only some examples of design refinements, which
increase the delay in the refined blocks compared to the original
ones. Although the explicit change is made in a single block, it
influences the functional behavior of the entire system in the syn-
chronous model of computation. The proposed algorithm solves
the synchronization problem and makes it possible to use the syn-
chronous model even at late stages of the design process.

Our synchronization algorithm (1) does not modify the function-
ality of combinational processes, (2) does not add schedulers or
controllers as they are used for process execution in pipelined sys-
tems and in data-flow models, and (3) does not introduce wrappers,
handshake communication channels or schedulers as used in LID
approaches. This leaves the system simpler to analyze, to verify,
and to apply the further design refinements. The only resources
we add to the model are the regularly placed synchronization delay
processes (∆⊥), and we introduce sensitive delays, which do not de-
lay synchronization events (⊥). The proposed algorithm is more ef-

ficient compared to the algorithm described in [13], since it requires
fewer synchronization delays and allows the system to operate with
a better ratio between synchronization and actual data events.

7. REFERENCES
[1] S. Abdi and D. Gajski. Automatic generation of equivalent

architecture model from functional specification. In
Proceedings of the 41st Annual Conference on Design
Automation, (DAC’04). ACM Press, 2004.

[2] A. Benveniste, B. Caillaud, and P. L. Guernic. From
synchrony to asynchrony. In Proceedings of the International
Conference on Concurrency Theory, 1999.

[3] G. Berry, M. Kishinevsky, and S. Singh. System level design
and verification using a synchronous language. In
Proceedings of the International Conference on
Computer-Aided Design (ICCAD’03), Washington, DC,
USA, 2003. IEEE Computer Society.

[4] L. P. Carloni and A. L. Sangiovanni-Vincentelli. A
framework for modeling the distributed deployment of
synchronous designs. Formal Methods in System Design,
28(2):93–110, 2006.

[5] M. R. Casu and L. Macchiarulo. A new approach to latency
insensitive design. In Proceedings of the 41st Annual
Conference on Design Automation (DAC ’04). ACM Press,
2004.

[6] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthesis. Proceedings of the
IEEE, 85(3):366–390, March 1997.

[7] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
verifying real-time systems by means of the synchronous
data-flow language LUSTRE. Software Engineering,
18(9):785–793, 1992.

[8] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
Orthogonalization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[9] C. E. Leiserson and J. B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5–35, 1991.

[10] N. Maheshwari and S. S. Sapatnekar. Minimum area
retiming with equivalent initial states. In Proceedings of the
International Conference on Computer Aided Design
(ICCAD’97), 1997.

[11] S. Nadjm-Tehrani and J.-E. Strömberg. Formal verification
of dynamic properties in an aerospace application. Formal
Methods in System Design, 14(2):135–169, March 1999.

[12] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specifications. In Proceedings of the International
Conference on Application of Concurrency to System
Design, St Malo, France, 2005.

[13] T. Raudvere, I. Sander, and A. Jantsch. A synchronization
algorithm for local temporal refinements in perfectly
synchronous models with nested feedback loops. In
Proceedings of the Great Lakes Symposium on VLSI’07,
Stresa, Italy, March 2007.

[14] The SMV model checker. online [available]
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/.

[15] M. Weinhardt and W. Luk. Pipeline vectorization. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 234–248, Feb 2001.

26

