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ABSTRACT 
Performance analysis of microprocessors is a critical step in 
defining the microarchitecture, prior to register-transfer-level 
(RTL) design. In complex chip multiprocessor systems, including 
multiple cores, caches and busses, this problem is compounded by 
complex performance interactions between cores, caches and 
interconnections, as well as by tight interdependencies between 
performance, power and physical characteristics of the design 
(i.e., floorplan). Although there are many point tools for the 
analysis of performance, or power, or floorplan of complex 
systems-on-chip (SoCs), there are surprisingly few works on an 
integrated tool that is capable of analyzing these various system 
characteristics simultaneously and allow the user to explore 
different design configurations and their effect on performance, 
power, size and thermal aspects. 
This paper describes an integrated tool for early analysis of 
performance, power, physical and thermal characteristics of 
multi-core systems. It includes cycle-accurate, transaction-level 
SystemC-based performance models of POWER processors and 
system components (i.e., caches, buses). Power models, for power 
computation, physical models for floorplanning and packaging 
models for thermal analysis are also included. The tool allows the 
user to build different systems by selecting components from a 
library and connecting them together in a visual environment. 
Using these models, users can simulate and dynamically analyze 
the performance, power and thermal aspects of multi-core 
systems. 

Categories and Subject Descriptors 
C.0 [General]: Modeling of computer architecture, system 
architectures, systems specification methodology.  

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Performance, power and physical analysis, transaction-level 
modeling, multi-core systems modeling, early analysis. 

 

1. INTRODUCTION 
Advanced microprocessor design methodologies rely heavily on 
early performance and power analysis for microarchitecture trade-
offs and tuning. Simulation-based methods using execution-
driven or trace-driven models are commonly used. In order to 
obtain a reasonable degree of accuracy, critical for detailed trade-
off analysis, cycle-accurate models of the internal pipelines of the 
processors, as well as communication delays between components 
are needed. The communication delays between components 
include a functional part and a physical part. The functional delay 
depends on the specific communication protocols used. The 
physical delay is related to the number of cycles needed to 
transfer data across the length of the interconnections, which 
depends on the relative positioning of the components (i.e., 
floorplan), the technology and buffering capabilities. As 
components get larger, the physical delays increase and must be 
taken into account in the models. 
Several microprocessor performance analysis tools have been 
developed over the years for various purposes. These fall in two 
main types, trace-driven timing simulators  [1] [2] and execution-
driven simulators  [3] [4]. Both of these have advantages and 
disadvantages regarding simulation speed and the ability to model 
certain architectural details, such as branches and speculative 
execution, and the ability to execute actual software versus 
instruction traces. Power models and tools, which use statistics 
generated by performance simulators, have also been developed 
 [5] [6].  
While these tools have been successfully applied to a variety of 
processors and systems, they lack the modularity and 
componentization required for quick design exploration. 
Moreover, they do not offer an integrated environment for 
analyzing performance, power, floorplan and thermal aspects. 
This paper presents the models and tools supporting an integrated 
approach to early design analysis for multi-core systems, which 
were implemented in a tool called SLATE (System-Level 
Analysis Tool for Early Exploration). This paper gives an 
overview of the system and a detailed description of the 
performance models. 
This paper is organized in the following way. Section  2 presents 
an overview of SLATE and the early design methodology it 
supports. Section  3 describes the SystemC-based performance 
modeling approach applied to the SLATE components. Section  4 
presents the experimental results and Section  5 offers conclusions. 
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2. SLATE OVERVIEW 
The models, tools and environment implemented in SLATE 
support the following early design analysis methodology: 
1. Abstract system design structural specification using a 

graphical block diagram input of main system components 
(i.e., cores, caches, buses, memory controller). Blocks are 
represented with relative sizes, and user controls relative 
positioning of the blocks. 

2. Early floorplan is generated from initial user placement of 
major blocks and global interconnections estimated. Global 
delays are estimated based on buffering assumptions and 
target cycle time. 

3. Top-level system performance model is automatically 
generated by assembling and linking performance models for 
individual components, stored in a library. Global latencies   
(from interconnection delays) are passed in as parameters to 
the model. 

4. Trace-driven system performance simulation is executed, 
producing user-defined graphs and statistics, helping the user 
analyze bottlenecks and perform architectural trade-offs. 

5. Statistics collected from performance simulation are used to 
drive power computation and analysis for each component in 
the design. The power model is integrated in the performance 
model; power is computed on-the-fly during simulation. 

6. Power values are back-annotated into the floorplan model as 
simulation progresses. The power-annotated floorplan is then 
used to drive a thermal analysis tool to generate thermal 
plots and analyze hot-spots. 

7. Finally, the designer armed with information regarding 
performance, power, and thermal characteristics, is able to 
change the design configuration (e.g., topology, parameters) 
and iterate until an acceptable design point is reached. 

The order in which these steps above are performed may change, 
depending on the type of analysis desired. All steps can be 
automated in the form of scripts and run in batch mode. 
The target user of SLATE is the system architect who typically is 
an expert on systems analysis and trade-offs, but is not 
necessarily an expert in programming or physical design. Hence, 
SLATE was designed to make it very simple to enter, configure 
and simulate a design, based on pre-defined components stored in 
a library. This is accomplished either through a visual 
environment (i.e. a block-diagram editor) or through simple 
scripts. SLATE library components are designed to have very few 
pins (i.e., transaction-level ports in the SystemC specification). 
The number of ports of each component is kept very small by 
design (usually 1 to 3 ports, except for the bus) to make it easy to 
connect components. Section  3.1 gives more details about the 
components ports and interfaces. 
The library components available to the user are major design 
blocks, such as, processor cores, caches, memory controllers and 
buses. A component in the library is described by an XML file 
which contains: area, aspect ratio, reference to an executable 
transaction-level model binary (compiled from its SystemC 
model), list of transaction-level model ports and locations. If the 
same component is available with different area, aspect ratio or 
port positions, a new XML file is created. At an early stage, 
accurate areas, and aspect ratios for components may not be 

available, but approximate figures, usually derived from previous 
designs or designer experience, are sufficient to drive the analysis 
and provide valuable feedback to the user. 
The user composes the system by dragging-and-dropping 
components onto a block-diagram editor and by connecting them 
appropriately. The block-diagram editor stores the composed 
netlist in OpenAccess (OA  [7]) which has native support for 
various physical properties, such as area and pin locations. The 
image on the block editor displays the components with their 
relatives sizes and aspect ratios, thus allowing the designer to 
explore different early floorplans for the system. Different 
floorplans using the same functional components with different 
areas and aspect ratios are likely to exhibit different power 
densities, thermal characteristics (i.e., hot spots), and interconnect 
delays. 

3. PERFORMANCE MODELING 
BUILDING BLOCKS 

Performance models, as opposed to functional models, do not 
carry out actual computations, but propagate the delays involved 
in the computation, producing, as a result, metrics such as latency 
and throughput (but not the final value of the computed data). 
Although data computation is not taking place, all side effects 
must be fully taken into account. For example, in a cache model, 
when a write operation is executed, the corresponding address in 
the cache is marked as taken, although, there is no specific data 
value stored. Similarly, queues inside a microprocessor need to be 
modeled correctly (so that pipelines can be stalled when queues 
are full), the correct number of read/write ports in register files 
need to be modeled, etc.  
SystemC-based transaction-level models (TLM) were used, for 
their clear way of separating computation from communication 
using channels and interfaces.  
SLATE provides a hierarchical library of performance models 
which can be easily connected to form complex components, 
ranging from simple pipelined execution units, to caches, to 
complete cores. At the lowest level, there are two basic types of 
components, namely a Computation module and a Delay channel. 
These components are used by the model designer to build more 
complex cycle-accurate models. 
The Computation module is a shell for a generic atomic 
processing element which gets executed every clock cycle, 
triggered by the positive edge of the clock. This module needs to 
be filled in with the proper behavior on a case-by-case basis. 
SLATE provides several such modules for microprocessor 
building blocks, such as Instruction/Data caches, execution units, 
issue queues, etc. The interfaces to/from this module are ports 
connecting to Delay channels. All data transfers between 
Computation modules go through Delay channels. 
Three types of Delay channels have been implemented, namely: 
Pipeline, Delayed_Queue, and Async_Fifo. These channels 
support the typical TLM interfaces (e.g., write(), can_write(), 
read(), can_read()), as well as other dedicated functions. 
The Pipeline channel implements the equivalent of a hardware 
pipeline with templated data-type and parameterized length and 
bandwidth. One data element may be written or read per cycle, 
and the pipeline can be stalled. Stalling prevents new data from 
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being written and valid data (and the end of the pipeline) from 
being dropped. 
The Delayed_Queue channel implements a queue with a 
maximum size and delay parameters. One or more data elements 
may be written or read per cycle, but once an element is written, it 
will only be available for reading after a predefined delay. This 
channel cannot be stalled, but can become full and block new data 
from being written to. It can also be parameterized to work like a 
synchronous fifo. 
The Async_Fifo channel implements fifo communication 
asynchronously between two components operating at different 
frequencies. This is usually needed for system modeling when 
cores connect to caches or buses at different frequencies, and 
when dynamic frequency scaling is applied on a component by 
component basis for power management purposes. 
Figure 1 shows an example pseudo-code of how two Computation 
modules can be connected using a Pipeline delay channel. The 
Computation module has a method Run() which is executed 
every clock cycle. At every cycle, it checks if there is new data in 
the input pipe (pipe_in.can_read()) to be read and processed. If 
processing the data is completed and the output pipe is not full or 
stalled, it then writes the new data into the output pipe 
(pipe_out.write()). If processing is not completed or it cannot 
write, then it must prevent the input pipeline from shifting and 
dropping the current data, by stalling the input pipe 
(pipe_in.stall()). The model designer must write the code for the 
data processing only. The Pipeline channel provides functions for 
writing to, reading from, and stalling it, as well as for checking if 
it can be read/written, which must be called on the positive edge 
of the clock. It has one internal process, triggered on the negative 
edge which shifts the pipeline contents if the pipeline is not being 
stalled. The basic scheme of performing computation on the 
positive edge of the clock and data shifting on the negative edge, 
prevents race conditions. 
Computation modules and Delay channels are the building blocks 
for constructing cycle-accurate models of complex hardware 
components. 

When connecting larger components, there may be multiple 
channels required for different types of communications (e.g., 
different data types, different latencies, etc.). Instead of exporting 
multiple internal ports to the boundaries of the larger component, 
SLATE uses a channel container to group several individual 
channels into one channel object. Each component needs to 
declare a single port of the type of the container channel, and 
connect to the other component, thus minimizing the number of 
ports that need be connected among complex blocks. As 
mentioned in Section  2, one of the main usability goals of SLATE 
is to make it very simple for designers to connect up larger blocks 
to form complex systems. This is achieved by having to connect 
only very few ports (usually one or two) per component. 
A port in a complex component is of type Channel_Container, 
encapsulating one or more Delay channels. The number, type and 
parameters of each Delay channel inside a container are specific 
to each port. The components use the SystemC elaboration 
callbacks to create and connect the internal channels. During 
SystemC elaboration, the ports are connected, then during the 
before_end_of_elaboration() callback, the internal channels are 
created inside the container and connected appropriately. The 
component accesses the internal channels using channel 
identifiers passed in as parameters to the access functions.   
Figure 2 illustrates the channel container approach. The pseudo-
code in Figure 2 shows the left component writing an address and 
data values on two different channels, and reading a control value 
from a third channel, all inside the channel container and through 
the same port. The internal channels may be used for 
communication in different directions. By using this container, 
only one port-interface-port connection is required between the 
two components instead of three. The container approach is more 
flexible and generic than simply a vectored port. 
By using Computation modules, Delay channels and 
Channel_Containers, a range of cycle-accurate models can be 
built. The actual timing accuracy of the model may depend on the 
level of detail used, but the infrastructure allows for cycle-
accuracy. 

Figure 1:  Basic performance modeling components in Slate (Computation module and Pipeline Delay Channel) 

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write())  {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

pipe_out

pipe_in

class Pipeline:
public sc_module,virtual sc_interface

{
Pipeline () {

SC_THREAD (Shift);
sensitive << clock.neg;

}
Shift() {

if (!stall) {
shift_contents();

}
}
// Other member functions are called by
// the connected Computation modules
// on the positive edge of the clock.
can_write();
write();
can_read();
read();
stall();

}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write())  {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write())  {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

pipe_out

pipe_in

class Pipeline:
public sc_module,virtual sc_interface

{
Pipeline () {

SC_THREAD (Shift);
sensitive << clock.neg;

}
Shift() {

if (!stall) {
shift_contents();

}
}
// Other member functions are called by
// the connected Computation modules
// on the positive edge of the clock.
can_write();
write();
can_read();
read();
stall();

}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write())  {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}  
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3.1 Component and System Modeling 
To validate the approach we built several models based on the 
POWER family of processors and systems. All models are cycle-
accurate performance models running instruction traces. SLATE’s 
current components include: Core processor models, L1 and L2 
cache models, bus model and a memory controller model. A wide 
range of parameters on the core, cache and memory models are 
supported. This section presents details on one core model and on 
the multi-core system used for validation and experiments. 

3.1.1 Core Model 
The core model described in this section is a pipeline-accurate 
performance model, based on the POWER4 processor which is a 
single-thread, out-of-order execution, in-order completion micro-
architecture  [1] [8]. The behavior of the units inside the core (e.g., 
Decode, Dispatch, Issue queues) is modeled at a high level using 
Computation modules which execute every clock cycle.  The 
execution delays of each unit are modeled by cycle accurate 
Pipeline channels, as illustrated in Figure 3(a). The pipeline 
latencies and bandwidths are parameterized to capture the delays 
and bit-widths of each unit. The behavior of each unit is described 
at a high level but it contains all relevant architectural features for 

Figure 3:  (a) Internal organization of core model (not all connections shown),  
(b) internal organization of 4-core system model (not all connections shown) 
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Figure 2:  Example of a Channel_Container with 3 internal channels, connecting two complex components. 

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// transmit address
p->put (“Address_Pipe”, addr);
…..
// receive acknowledgement
ack = p->get (“Ack_Pipe”)
…..
// transmit data
p->put (“Data_Pipe”, data);
…..

}

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// read address
addr = p->get (“Address_Pipe”);
…..
// send acknowledgement
p->put (“Ack_Pipe”, ack)
…..
// receive data
data = p->get (“Data_Pipe”);
…..

}

Address_Pipe

Ack_Pipe

Data_Pipep p

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// transmit address
p->put (“Address_Pipe”, addr);
…..
// receive acknowledgement
ack = p->get (“Ack_Pipe”)
…..
// transmit data
p->put (“Data_Pipe”, data);
…..

}

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// read address
addr = p->get (“Address_Pipe”);
…..
// send acknowledgement
p->put (“Ack_Pipe”, ack)
…..
// receive data
data = p->get (“Data_Pipe”);
…..

}

Address_Pipe

Ack_Pipe

Data_Pipep p
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accurate performance modeling. Features such as limited-size 
queues, instruction grouping, register renaming, load/store 
queues, pipeline bypassing, correct number of read/write ports on 
register files, etc., are modeled accurately according to the 
architectural specification  [8].  
The core model includes internal L1 Instruction and Data caches, 
which communicate with an external L2 cache using a single port 
of Channel_Container type. This channel encapsulates six 
pipelines for read and write transfers between the L1 Instruction 
and Data caches and the L2 cache. 
For a given family of microprocessors, evolving from one 
processor to the next involves changing certain algorithms (i.e., 
branch prediction, instruction grouping), changing the parameters 
to many units (i.e., L1 cache size and associativity, pipeline 
latencies), and changing the number of units used (i.e., use two 
floating-point execution units, instead of one).  SLATE allows 
these changes to be made very quickly to a given model in order 
to explore different micro-architectures. SLATE also includes 
models for multi-threaded cores, such as POWER5  [9]. 

3.1.2 Multi-Core System Model 
Using the POWER4 core model described in Section  3.1.1, we 
built a multi-core system consisting of four cores, four private L2 
caches connected to a bus and a memory controller, as shown in 
Figure 3(b). This model is representative of chip multi-processor 
(CMP) systems built in the last few years. 
Each core receives as input an application trace (e.g., bzip2 from 
SPEC CINT2000 benchmarks  [10]) and processes its instructions. 
Whenever there is an L1 cache miss, the core model initiates a 
transaction on the L2 model (for accessing a given address for 
load or store). If the L2 cache has valid data for the given address, 
it is a hit and it sends a transaction back to the core model. Each 
of these transactions incurs multi-cycle delays captured in the 
pipeline channels. If the L2 does not contain valid data at the 
given address, then it is a miss, and it sends a transaction to the 
bus requesting the status of the given address. The bus then 
queries all other L2’s in the system for the given address and it 
determines if it needs to retrieve the contents or invalidate them, 
depending on whether the operation requested was a load or store. 
If no L2 owns the given address, the bus passes the request to the 
memory controller, which then either retrieves the data/instruction 
or stores it in the memory model. This sequence of transactions 
may be initiated by any core, thus the bus model must be able to 
handle and arbitrate correctly among multiple requests. The 
proprietary coherence protocol in the bus is modeled cycle-
accurately. An accurate bus model is important in a multi-core 
system to simulate coherency and contention to memory 
precisely, as these factors may affect overall performance 
significantly. 
The bus is connected to the L2 caches and memory controller 
using Channel_Container ports encapsulating Delay channels that 
can be configured to be either synchronous or asynchronous 
queues/fifos. The ability to use different communication schemes 
allows additional architectural exploration capabilities.  
The core, cache and bus models also compute the dynamic and 
static power dissipated by the modules as the simulation 
progresses. The power model used for the core is based on  [5]. 
Performance simulation produces several statistics on the usage of 
the units inside the core (e.g., how many cycles the fixed point 
execution unit was active, or the cache miss rate).  

These statistics are converted into switching factors which are 
then inserted into parameterized power formulas associated with 
each unit, resulting in the unit’s average power. The process is 
repeated for all units inside the cores and for all other models, in 
order to compute the system power. The power formulas are 
either estimated or generated by detailed logic and circuit-level 
simulations of previous versions of the units (from a previous 
generation, properly scaled for technology changes). 
The outputs of the system simulation are several metrics related to 
the performance and power of the system. For performance, the 
main metrics are: Cycles-per-Instruction (CPI) or its inverse 
Instructions-per-Cycle (IPC) and Instructions-per-Second (a 
measure of throughput), for a single core as well as for the whole 
system. SLATE also provides detailed metrics and statistics for 
helping the designer identify performance bottlenecks, such as 
cache miss rates, pipeline stalls, issue queue occupancy, number 
of architectural/physical registers used, and many others.  

4. EXPERIMENTAL RESULTS 
In order to measure the accuracy of SLATE’s core model, we 
created a system including one core (Power4-like, as described in 
Section  3.1.1), L2 cache, bus and memory controller, and 
executed the SPEC CINT2000 benchmarks, and measure the core 
IPC (instructions-per-cycle), which is an accepted measure of 
micro-architecture performance. We then compared the results 
against the IPC numbers given by a production-level performance 
simulator used internally in IBM on all POWER architecture 
designs  [1]. For 8 out of 12 benchmarks, SLATE produced IPC 
numbers within 11% of the production simulator results. On 
average for all 12 benchmarks SLATE results were within 16% of 
the production simulator results, which is acceptable for an early 
analysis system. 
In order to evaluate SLATE’s simulation performance, we created 
3 systems using 1 core, 2 cores and 4 cores, respectively. In all 
cases, each core was connected to a private L2 cache, which was 
connected to a bus and a memory controller. Realistic parameters 
and delays were used in all cases. We ran the 12 SPEC CINT2000 
benchmarks on all 3 systems, using the same benchmark on all 
cores, and measured IPC, as well as various simulation 
performance metrics such as peak memory, simulation-cycles per 
second, and instructions per second.  
SLATE’s raw simulation performance for the 1-core system, 
including cycle-accurate performance analysis and power 
computation, was on average 55k simulation cycles per second 
for SPEC CINT2000 benchmarks, on a 2.4GHz X86-based Linux 
workstation. In this version of SLATE, no effort was made to 
optimize the simulation speed, and the freely available SystemC 

Figure 4:  Cycles-per-second comparison: 1-core,  
2-core and 4-core systems 
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To evaluate SLATE’s scalability, we compared the peak memory 
and simulation performance of the 1-core, 2-core and 4-core 
systems. The complexity of the 2-core and 4-core models is 
approximately 2x and 4x the complexity of the 1-core model. 
Thus, it is expected that simulation performance for multi-
programmed workloads degrades linearly with the model 
complexity. This was observed in practice. Figure 4 shows that 
cycles-per-second for 2-core and 4-core models were roughly ½ 
and ¼ of the 1-core values. We have simulated systems with up 
to 8 cores in acceptable run times. This linear behavior holds true 
in SLATE when simulating multi-programmed workloads on 
CMP models. It may not be the case for multi-threaded 
applications where there is significant data sharing. 
In the absence of any bus contention to memory and coherency 
updates, the IPC values on any core on the 3 systems should be 
the same for the same benchmark. However, due to contention 
and coherency delays, the IPC values may vary slightly (usually 
degrading) from the 1-core to 2-core, to 4-core systems. Figure 5 
shows the normalized IPCs for the various benchmarks on the 1-
core, 2-core and 4-core systems, where it can be seen that small 
IPC degradation (<10% in most cases) occurs on most 
benchmarks. Memory-bound benchmarks, such as MCF, are 
likely to show larger IPC degradation on the 4-core system, due to 
more memory accesses and more contention on the bus. Note that 
total instructions-per-second will follow the same variation as IPC 
and not vary significantly among the 3 systems (when considering 
the sum of the instructions executed on all cores). 
Memory usage is an important consideration in performance 
models which may simulate for billions of instructions. It is 
critical that memory allocation depends on the model size and 
characteristics only and not on the simulation time. On a 1-core 
system the peak memory consumption in SLATE was about 
44MB. Figure 6 shows the normalized memory consumption for 
the various benchmarks on the 1-core, 2-core and 4-core systems. 

As expected, peak memory grew linearly with the model 
complexity (just under 2x and 4x for the 2-core and 4-core 
systems). 

5. CONCLUSIONS 
This paper presents an overview of SLATE, a tool for early 
analysis of performance, power, physical and thermal aspects of 
multi-core systems. It allows designers to assemble, configure and 
simulate multi-core systems with memory hierarchy and buses. 
The components are modeled in SystemC using cycle-accurate 
transaction-level abstractions and include detailed performance 
and power models. 
SLATE relies on two basic performance modeling building blocks 
for building complex components, namely, the Computation 
module and Delay channels. Different types of Delay channels are 
provided in support of different communication schemes. In order 
to minimize the number of ports of complex components, a 
special Channel_Container was developed to encapsulate any 
number of Delay channels, which can then be connected using a 
single component port. 
Internally to the tool, the SystemC performance models are linked 
to a structural netlist representing the block diagram/floorplan of 
the design which is stored in OpenAccess (OA). This OA netlist, 
properly annotated with performance and power values, serves as 
input to integrated physical and thermal analysis tools. 
SLATE provides a unique framework and tools supporting early 
design analysis of multi-core systems. 
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Figure 5:  Core IPC comparison: 1-core, 2-core 
and 4-core systems 

Normalized Core IPC

0.75
0.80

0.85

0.90

0.95
1.00

BZIP2
CRAFTY

EON GAP GCC GZIP
MCF

PARSER
PERLBMK

TWOLF
VORTEX

VPR

1 Core 2 Cores 4 Cores

Normalized Peak Memory

0.0

1.0

2.0

3.0

4.0

BZIP2
CRAFTY

EON GAP GCC GZIP
MCF

PARSER
PERLBMK

TWOLF
VORTEX

VPR

1 Core 2 Cores 4 Cores

Figure 6:  Peak memory comparison: 1-core, 2-core
 and 4-core systems 
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