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ABSTRACT
The design and analysis of today’s complex real-time
systems requires advanced methods. Due to ever growing
functionality, hardware complexity and component inter-
action, applying traditional methods like HW/SW co-
simulation is getting increasingly difficult. On the other
hand, analytic approaches have proven their usefulness and
efficiency for system analysis when end-to-end performance
figures like delay, throughput and memory consumption
are requested. One of the main drawbacks of these
methods is the limited set of systems that can be
analyzed with high accuracy: Only simple models for
task interaction and task semantics can be used. In
this paper, we extend existing methods for analyzing
heterogeneous multiprocessor systems such that (a) non-
preemptive scheduling policies, (b) complex activation
schemes for tasks and (c) conditional behavior of task
executions can be modeled and analyzed. We demonstrate
the usefulness of the proposed approach in a case study.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-Time
and Embedded Systems; C.4 [Computer Systems
Organization]: Performance of Systems—Modeling
Techniques

General Terms
Design, Performance, Theory

1. INTRODUCTION
State-of-the-art embedded systems are often implemented

on heterogeneous multiprocessor system-on-chip (MpSoC)
architectures to provide the performance and flexibility
required by today’s advanced applications. The complexity
of MpSoC systems in terms of hardware, software and
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HW/SW interaction has turned system level performance
analysis into a major challenge.

In classic approaches like HW/SW cosimulation higher
complexity translates into increased set-up effort, long
run-times, and potentially incomplete coverage of corner
cases. These problems can be avoided by using analytic
methods. Based on powerful abstractions of application
and architecture behavior, these models and methods can
be used to obtain hard bounds on properties like end-to-end
delays, memory usage and throughput.

One of the drawbacks of analytic approaches for the
analysis of distributed embedded systems is their limited
modeling capability, leading to estimation results that are
often overly pessimistic. For example, it is common to model
tasks with single-input single-output components only. As
a result, tasks with multiple inputs or outputs which can
exhibit complex task behavior (such as conditional function
execution, blocking and non-blocking activation patterns)
cannot be modeled in sufficient detail and the overall system
analysis may suffer from reduced accuracy.

In this paper, we consider essential extensions to existing
modular analysis frameworks for the performance analysis
of distributed embedded systems, such as non-preemptive
resource sharing and a generic task activation scheme
that contains as special cases the well known OR/AND-
activation.
Non-preemptive scheduling. While in the domain of
general-purpose computing non-preemptive scheduling plays
a minor role, it can be often found in embedded systems.
Examples of such systems are network routers, systems with
low-latency paths for user or control feedback, and systems
using non-preemptive bus communication.
Generalized activation scheme. While OR/AND-
activation of tasks and non-preemptive scheduling can
occur in any system, they are often used implicitly when
programming single tasks of an application. Frequently,
even more general activation schemes are used in the task
implementation. Depending on the availability of data, a
task executes different code segments (conditional behavior)
and a mixture of blocking and non-blocking queue accesses
is used. Algorithm 1 shows an example of such a task.
Depending on the availability of events on one or several
inputs, one code segment is executed mutually exclusive of
any other code segment.

In this work, we use the analytic framework of modular
performance analysis—real-time calculus (MPA-RTC) [1]
for modeling and performance analysis. The contributions
presented in this paper can be summarized as follows:
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Algorithm 1 Example of a complex task activation
scheme: The task has five inputs, namely reconfig (carries
reconfiguration data) and dataA – dataD. The test function
returns true if data are available on the specified stream,
otherwise false. The task is assumed to be repeatedly called
by the global scheduler.

1: if test(reconfig) then
2: execute code that reconfigures the task;
3: else if test(dataA) or test(dataB) then
4: process first event arrived at dataA or dataB ;
5: else if test(dataC ) and test(dataD) then
6: process first event in dataC and in dataD ;
7: end if

• We present an analytic method to describe the execution
of a task that is triggered by events on multiple input
event streams using OR-activation, AND-activation, or
a combination thereof.

• We present an analytic method to describe the execution
of a set of tasks on a resource with non-preemptive
scheduling.

• By combining the above concepts in a hierarchical
manner, general activation schemes of tasks can be mod-
eled such as conditional behavior, complex activation
patterns and blocking/non-blocking queue access.

• We present a case study in which we obtain an accurate
characterization of a system based on the derived
expressions.

By this extension, the scope of currently available analytic
performance analysis methods for embedded systems is
greatly extended, leading to (a) a larger class of systems
that can faithfully be modeled and (b) a higher accuracy of
analysis in terms of bounds that are closer to the actually
observable worst case.

1.1 Related Work
Realistic systems are often implemented using tasks that

exhibit complex activation schemes. To obtain accurate
results, it is crucial that these schemes are taken into
account. In system simulation or trace-based methods, this
is usually not a problem because the activation conditions
are hard-coded in the implementation. In other methods,
however, complex activations are often not considered in
the first place for ease of analysis. Nevertheless, since
modeling of activations schemes is essential for analyzing
many applications, several methods have been proposed
to deal with them. In MAST (Modeling and Analysis
Suite for Real Time Applications), a framework for holistic
scheduling analysis, complex activation patterns can be
modeled using event handlers, such as barriers (comparable
to AND-activation) and concentrators (comparable to OR-
activation) [3]. In SymTA/S (Symbolic Timing Analysis for
Systems) [4], complex activation patterns can be modeled
using tasks with OR/AND-activation semantics [5]. In
MPA-RTC, state machines have been proposed to handle
OR/AND-activation of tasks [8]. Compared to the method
proposed in this contribution, however, that method is
computationally more expensive. In all cases, there is no
possibility to model more complex conditional task behavior
and mixtures of blocking/non-blocking queue access schemes
which can be found in typical embedded system applications.

The analysis of a component using a non-preemptive fixed
priority (FP) scheduling policy is related to the analysis
of non-preemptive priority multiplexers in network queuing
theory. In [2], delay and backlog bounds for a non-
preemptive FP multiplexer with constant output rate are
derived. The obtained bounds are a special case of the
results presented in this contribution. Non-preemptive FP
queuing of two streams has been considered in [6] and of
multiple streams in [7]. In contrast to our analysis, the
mentioned methods neither provide lower bounds on the
amount of events at the output of a task nor upper bounds
on the amount of the remaining service at the processing
resource where the task is executed. Therefore, they are
not amenable to be part of a modular performance analysis
method that allows to faithfully model hierarchical and
distributed resource sharing scenarios.

2. BASIC CONCEPTS AND NOTATION
We use MPA-RTC as the basis for our analysis, see

[1]. Therefore, we shortly review the corresponding basic
concepts and introduce our notation in this section.

2.1 Arrival and Service Curves
The timing properties of event streams will be described

by arrival curves that are defined as follows:

Definition 2.1 (Arrival Curve). Let R[s, t) denote
the number of events that arrive on an event stream in the
time interval [s, t). Then, the corresponding upper and lower
arrival curves are denoted as αu and αl, respectively, and
satisfy:

αl(t − s) ≤ R[s, t) ≤ αu(t − s), ∀s < t, (1)

where αu(0) = αl(0) = 0.

In this model, the timing information of standard event
stream models like periodic, periodic with jitter, periodic with
bursts or sporadic can be represented by an appropriate
choice of αu and αl [1]. Moreover, it is also possible to
determine the values of αu and αl corresponding to any
given finite length event trace from calculations, (formal)
specification or simulation.

In a similar way, the properties of resources are described
using the concept of service curves.

Definition 2.2 (Service Curve). Let C[s, t) denote
the number of events that a resource can process in the time
interval [s, t). Then, the corresponding upper and lower
service curves are denoted as βu and βl, respectively, and
satisfy:

βl(t − s) ≤ C[s, t) ≤ βu(t − s), ∀s < t, (2)

where βu(0) = βl(0) = 0.

Event streams and resource capabilities are described
in terms of “event units” and not in terms of “resource
units”, such as the number of cycles or number of bytes.
The resource-based service curve β(Δ) denotes the available
resource units available in any time interval of length Δ.
In a similar way, the resource-based arrival curve α(Δ)
denotes the requests in terms of resource units that arrive
in any time interval of length Δ. The relation between the
event-based and resource-based curves is given by workload
transformations defined as follows:
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Definition 2.3 (Workload Transformation).

The functions Wu
β (r) and W l

β(r) denote the maximum and
minimum number of successive events that can be processed
with r resource units. The functions Wu

α(e) and W l
α(e)

denote the maximum and minimum number of resource
units that are necessary to process e successive events.

Using this definition, we can derive the following relations
that connect resource-based and event-based arrival and
service curves:

βu = Wu
β

“
β

u
”

βl = Wl
β

“
β

l
”

αu = Wu
α (αu) αl = Wl

α

“
αl
”

In the case of fixed worst-case and best-case resource units
for each event (e.g. cycles, execution times), we can derive
simple expressions for the workload transformations. If
Cmax and Cmin denote the maximum and minimum amount
of resource units for the processing of one event, we find:

Wu
β (r) = r/Cmin W l

β(r) = r/Cmax

Wu
α(e) = e · Cmax W l

α(e) = e · Cmin

In order to describe the operations on arrival and service
curves we define the following operators:

Definition 2.4 (Min/Max-Plus Operators). For
two functions f and g, the min-plus convolution (f ⊗ g), the
min-plus deconvolution (f � g), the max-plus convolution
(f ⊗ g), and the max-plus deconvolution (f � g) are defined
as follows [6]:

(f ⊗ g)(Δ) = inf
0≤λ≤Δ

{f(Δ − λ) + g(λ)}
(f � g)(Δ) = sup

λ≥0
{f(Δ + λ) − g(λ)}

(f⊗g)(Δ) = sup
0≤λ≤Δ

{f(Δ − λ) + g(λ)}

(f�g)(Δ) = inf
λ≥0

{f(Δ + λ) − g(λ)}

2.2 Greedy Processing Component
In our analysis, we use an abstract component referred

to as greedy processing component (GPC) to model the
execution of tasks on a single resource. The GPC is a
component that is triggered whenever an event is available
on the input event stream (described by the arrival curve
α) and produces a single output event stream (described
by the arrival curve α′). At every event arrival, a task
is instantiated to process the incoming event. Events are
processed in a greedy fashion in first-in first-out order, while
being restricted by the availability of processing resources
described by the service curve β. The GPC can be modeled
using the following relations where β′ denotes the remaining
service available to process other event streams [1]:

α′u = min{(αu ⊗ βu) � βl, βu} (3)

α′l = min{(αl � βu) ⊗ βl, βl} (4)

β′u = (βu − αl) � 0 (5)

β′l = (βl − αu) ⊗ 0 (6)

Upper bounds on the number of events in the input queue
(backlog) b(t) and the event delay d(t) can be determined
as follows:

b(t) ≤ B(αu, βl) d(t) ≤ D(αu, βl) (7)

with

B(αu, βl) = sup
λ≥0

n
αu(λ) − βl(λ)

o

D(αu, βl) = sup
Δ≥0

n
inf{τ ≥ 0 : αu(Δ) ≤ βl(Δ + τ )}

o (8)

To be able to apply these relations, the curves must be
expressed in the same units, that is, either in the number
of events or in the amount of resource units. This can
be achieved by the workload transformations introduced
above.

3. COMPLEX ACTIVATION SCHEMES
In the following, we will develop the analysis for tasks with

complex activation schemes step by step. After analyzing
the simpler case of OR- and AND-activation, we will model
and analyze non-preemptive FP scheduling. Based on these
results that are important on their own (see section 1), we
will use a hierarchical and component-based approach to
model complex task structures with conditional behavior
and blocking/non-blocking queue access.

3.1 Components with Multiple Inputs
In realistic systems, the flow of data between components

is not limited to one-to-one connections. Rather, the
activation of one component often depends on events
arriving on input streams from multiple components.

First results to model such components have been
obtained for the periodic with jitter event model by Jersak
et al. [5]. Jersak et al. need to represent the patterns
emerging from the boolean merging of multiple streams by a
standard event stream model which leads, in general, to too
pessimistic bounds. In contrast, in the approach proposed
in this paper, arbitrary event models can be handled.

In the following we adopt a compositional approach, see
Fig. 1, which separates the activation scheme f , i.e. OR- or
AND-activation, from the greedy processing of events.

GPCf
αN

... α′

β

αα1

Figure 1: Principle of analyzing components with
multiple inputs.

3.2 Abstract OR Component
The two-input abstract OR component produces an event

on its output whenever an event is available on either of the
two input streams.

Theorem 3.1 (Abstract OR Component).

Assume an abstract OR component with two input event
streams with arrival curves

ˆ
αu

1 , αl
1

˜
and

ˆ
αu

2 , αl
2

˜
. Then,

the outgoing arrival curves
ˆ
αu

OR, αl
OR

˜
are given by:

αu
OR = αu

1 + αu
2 αl

OR = αl
1 + αl

2 (9)

Moreover, the event streams observe no delays and backlogs.
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Proof. Only a sketch is provided here. We note that
OR-semantics implies that we just have to add the number
of events on all input event streams to obtain the number
of events on the output event stream of the abstract OR
component. Using (1), the desired result is obtained.

Let us next determine the maximum delay and backlog for
the OR-activated greedy processing element GPC, see Fig. 1
with f = OR. As there is no delay and backlog associated
to the abstract OR component, we can simply determine a
bound on the delay di between the input stream i and the
output α′ and on the backlog b as follows:

di(t) ≤ D

 X
i

αu
i , βl

!
b(t) ≤ B

 X
i

αu
i , βl

!

3.3 Abstract AND Component
The two-input abstract AND component produces an

event on its output whenever at least one event is available
on both input event streams. For each output event, one
event is removed from both input streams.

Theorem 3.2 (Abstract AND Component).

Assume an abstract AND component with two input event
streams with arrival curves

ˆ
αu

1 , αl
1

˜
and

ˆ
αu

2 , αl
2

˜
. Let

B0
1 and B0

2 denote the initial backlogs of the two streams,
with B0

1 · B0
2 = 0. Then, the outgoing arrival curvesˆ

αu
AND, αl

AND

˜
are given by:

αu
AND = max

n
min{αu

1 � αl
2 + B0

1 − B0
2 , αu

2 },

min{αu
2 � αl

1 + B0
2 − B0

1 , αu
1}
o

αl
AND = min

n
max{αl

1 � αu
2 + B0

1 − B0
2 , αl

2},

max{αl
2 � αu

1 + B0
2 − B0

1 , αl
1}
o

(10)

Using (8), the delays di and backlogs bi for the two event
streams satisfy:

d1(t) ≤ D(αu
1 + B0

1 , αl
2 + B0

2)

d2(t) ≤ D(αu
2 + B0

2 , αl
1 + B0

1)

b1(t) ≤ max
n

B(au
1 + B0

1 , αl
2 + B0

2), 0
o

b2(t) ≤ max
n

B(au
2 + B0

2 , αl
1 + B0

1), 0
o

(11)

Proof. We only prove the upper bound αu
AND . αl

AND

can be proven analogously. The cumulative flow RAND(τ )
after the AND component is given by:

RAND(τ ) = min
˘
R1(τ ) + B0

1 , R2(τ ) + B0
2

¯
(12)

Thus, for all s ≤ t,

RAND(t)−RAND(s) = min
˘
R1(t) + B0

1 , R2(t) + B0
2

¯
− min

˘
R1(s) + B0

1 , R2(s) + B0
2

¯ (13)

Observe that for a, b, c, d ∈ R the following equation
applies:

min {a, b} − min {c, d} = max{min {a − c, b − c} ,

min {a − d, b − d}} (14)

We can now compute an upper bound for (13) using
(14) and the following two inequalities: R1(t) − R2(s) ≤`
αu

1 � αl
2

´
(t − s) and (α1 � α2) (Δ) ≤ α1(Δ).

RAND(t) − RAND(s) =

= max
˘
min

˘
R1(t) + B0

1 − `R1(s) + B0
1

´
,

R2(t) + B0
2 − `R1(s) + B0

1

´¯
,

min
˘
R1(t) + B0

1 − `R2(s) + B0
2

´
,

R2(t) + B0
2 − `R2(s) + B0

2

´¯¯
≤ max

n
min

n
αu

1 ,
“
αu

2 � αl
1

”
(t − s) + B0

2 − B0
1

o
,

min
n“

αu
1 � αl

2

”
(t − s) + B0

1 − B0
2 , αu

2

oo
The lower arrival curve αl

2 can be interpreted as a lower
service curve concerning the processing of events on R1.
Therefore, we can simply apply the delay and backlog
bounds (7) for the GPC, taking into consideration the initial
backlogs.

We can now determine a bound on the maximum delay
and backlog for an AND-activated GPC, see Fig. 1 with f =
AND. The simplest possibility is to just add the quantities
for the AND and the GPC by using (7), (10) and (11):

d1(t) ≤ D(αu
AND, βl) + D(αu

1 + B0
1 , αl

2 + B0
2)

b1(t) ≤ B(αu
AND, βl) + B(au

1 + B0
1 , αl

2 + B0
2)

The relations for d2 and b2 can be obtained similarly.

3.4 Non-Preemptive FP Scheduling
In order to model complex task activation schemes and

perform the corresponding performance analysis, we need to
handle non-preemptive fixed priority (FP) scheduling. The
following theorem describes the transfer function of a GPC
with non-preemptive FP scheduling.

Theorem 3.3 (Non-Preemptive FP Scheduling).

Assume a set of N single-input tasks ordered according to
their priorities (N is highest and 1 is lowest). Then, non-
preemptive FP scheduling can be modeled using (3) – (6)
by replacing the event-based arrival and service curves α,
α′ and β′ by their resource-based counterparts α, α′ and

β
′

respectively. In addition, the event-based service curve
β needs to be replaced by γ which is related to the initial
resource-based service curve β as follows:

γu
i (Δ) = min{ β

u
(Δ),

inf
λ≥0

{βu
(Δ + λ) −

NX
j=i+1

αl
j(Δ + λ)} + Cmax

i } (15)

γl
i(Δ) = max{ 0, (16)

sup
0≤λ≤Δ

{βl
(Δ − λ) −

NX
j=i+1

αu
j (Δ − λ)} − max

1≤j<i
{Cmax

j }}

Proof. We sketch the prove for the lower service curve
(16) only. The proof for the upper service curve (15) follows
the same line of arguments. First, let us consider the
conventional preemptive FP scheme, see (3) – (6). In this

case, the remaining resource service β
′l
i after processing task

i is available to the processing component for task i− 1, i.e.

β
l

i−1 = β
′l
i . Thus, the resulting input service curve for task i

is:
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β
l

i(Δ) = sup
0≤λ≤Δ

(
β

l
(Δ − λ) −

NX
j=i+1

αu
j (Δ − λ)

)

In case of non-preemptive scheduling, task i can be
prevented from accessing the resource by time at most
max1≤j<i{Cmax

j } because of a single not yet finished event
from lower priority tasks. This is equivalent to having
an additional single high priority task with α(0) = 0 and
α(Δ) = max1≤j<i{Cmax

j } for all Δ > 0. This leads to
expression (16).

3.5 Mixed Activation Schemes
By combining the previous results, i.e. the OR/AND-

activation and non-preemptive FP scheduling, we can
faithfully model a large class of activation schemes of
processing components. The basis for this results is the
observation that common structures such as in Algorithm 1
can be modeled by a combination of the previous schemes.
This underlines the advantages of a compositional analysis
methodology. Instead of providing a generic transformation
from a class of algorithms to the associated analysis
structure, we will describe an artificial example in Algo-
rithm 2 that demonstrates almost all techniques that can be
applied. We suppose that executing code ci requires at least
Cmin

i and at most Cmax
i resource units and the function

test(input) returns true if there is an event in the queue
associated to input.

Algorithm 2 Example of a complex task activation scheme.

1: if test(inputA) then
2: remove one event from inputA;
3: execute code c1;
4: send one event to outputA;
5: else if test(inputB) or test(inputC ) then
6: remove first event arrived at inputB or inputC ;
7: execute code c2;
8: send one event to outputA;
9: else if test(inputD) and test(inputE ) then

10: remove one event from inputD and inputE ;
11: execute code c3;
12: send one event to outputB ;
13: end if

Fig. 2 represents the building blocks modeling the
above activation scheme. Note that the depicted analysis
component with input arrival curves αA, . . . , αE and input
service β can be used in a global system analysis which
involves other tasks (with other activation schemes) and
other (hierarchical) resource sharing methods, see e.g. [1]. In
Fig. 2, there are the analysis components AND and OR (see
Fig. 1 and the associated equations), the GPC, a component
representing equations (15, 16), and a component to
determine the remaining service, see also (5, 6):

β′l(Δ) = sup
0≤λ≤Δ

8<
:βl(Δ − λ) −

X
(j)

αu
j (Δ − λ)

9=
;

β′u(Δ) = inf
λ≥0

8<
:βu(Δ + λ) −

X
(j)

αl
j(Δ + λ)

9=
;

(17)

inputA

inputB

inputC

inputD

inputE
outputB

outputA

OR

AND

GPC

GPC

GPC

OR

(17) (15,16) (15,16) (15,16)

c1

c2

c3
β ′

β

Figure 2: Analysis model for Algorithm 2.

4. MPEG-2 DECODER CASE STUDY
As a case study, an MPEG-2 video/audio decoder is

modeled and analyzed in this section. Fig. 3 shows the
mapping of the MPEG-2 decoder onto an MpSoC hardware
platform.

BUS

B C

D

R2

R1

FG

RISC DSP

αB α′
B αC α′

C

αDα′
D

α′
F αF

α′
G αG

αE, ref

αH, ref

R3

time ref

inA outA

inHoutH

inI
inHref

inEref

inEoutE

A

E

H

I

αA

Figure 3: Analysis model of the MPEG-2 decoder
mapped onto an MpSoC platform.

As can be seen in Fig. 3, the MPEG-2 decoder is
partitioned into several tasks where the tasks A, E, H, I are
subtasks of a single decoding task, see Algorithm 3. A short
description of the (sub)tasks and their best and worst case
execution times are listed in Table 1. The hardware platform
is periodically clocked and consists of a RISC processor
(750 MHz) and a DSP (250 MHz) that are interconnected
by a single bus (125 MHz). The scheduler on the DSP and
the bus arbiter use a non-preemptive FP scheduling policy.
In Table 1, the according task priorities are shown.

Algorithm 3 Decoding task on RISC.

1: if test(inH ) and test(inHref ) then
2: remove one event from inH and inHref ;
3: execute code H ;
4: send one event to outH ;
5: else if test(inA) then
6: remove one event from inA;
7: execute code A;
8: send one event to outA;
9: else if test(inE ) and test(inEref ) then

10: remove one event from inE and inEref ;
11: execute code E;
12: send one event to outE ;
13: else if test(inI ) then
14: remove one event from inI ;
15: execute code I ;
16: end if

The input arrival curves for the video and the audio
stream are shown in Fig. 4. For the video stream, we assume
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st
re

a
m

ta
sk

resource
priorityfunction demand in

103 cycles

v
id

eo

A VLD, IQ, IS [5, 10] —
B data transfer [1, 1] 2
C IDCT, MC [3, 4] 1
D data transfer [1, 1] 1
E assemble video-frames [0.1, 0.1] —

a
u
d
io F DEC, IMDCT, SYN [500, 1000] 2

G data transfer [100, 100] 3
H assemble audio-frames [10, 10] —

— I playback control [2, 2] —

Table 1: Tasks and their resource demand. The
resource demand is specified in number of cycles per
macroblock for the video stream and in number of
cycles per frame for the audio stream.

a PAL-resolution (720 × 576 pixels) and a frame refresh
rate of 25 frames per second, yielding a macroblock rate
of 40.500 macroblocks/s. (A macroblock consists of 16 ×
16 pixels.) Concerning the audio stream, the frame rate is
38.3 frames/s since the duration of a frame is known to be
26.1 ms. The two rates define the slope of the arrival curves
in the long term. During short time intervals, however, the
input rates can vary due to load variations on a second bus
that is used to deliver the streams to the RISC and the DSP
(for simplicity, not explicitly modeled here).
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Figure 4: Input arrival curves of the video stream
(left) and audio stream (right).

Fig. 4 also shows the time references for the AND-
activated subtasks E and H, represented as lower arrival
curves. For correct functioning of the system, the lower
output arrival curves of the tasks D and G must be greater
than these references for any time interval. This ensures
that after an initial pause of 300 ms the video/audio stream
can be played without interruptions.

The methodology and the required relations to analyze
this system have been shown in the previous sections, so
we only report the results here. The plot in Fig. 5 shows
the obtained output arrival curves α′

D of task D. As can
be seen, the required bound is just met. The result for the
audio stream (task G) is also within the required bound,
but less critical (not shown). We have thereby proven that
the system is compliant with the specified goal and will
correctly play back any video/audio stream that conforms
to the specified arrival curve.
Additionally, the right plot in Fig. 5 shows the remaining
service of the bus that would be available to other tasks on
the same resource, represented by the service curves β

′
BUS.
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Figure 5: Output arrival curves of task D (left) and
remaining service of the bus, represented as lower
service curves (right).

5. CONCLUSION
We considered system level performance analysis of

systems with tasks that exhibit complex activation patterns
and conditional execution of sub-tasks. In particular,
we focused on the analytic framework of MPA-RTC
and proposed an approach based on OR/AND-activation
and non-preemptive fixed priority scheduling to analyze
such systems. We presented the according components
and proved the required relations, thereby extending
the modeling capabilities of MPA-RTC. The proposed
techniques do not only allow modeling a broader class of
systems but can be used to improve the accuracy of system
level analysis using MPA-RTC, in general. Finally, we
applied the proposed techniques to analyze an MPEG-2
decoder mapped onto an MpSoC platform.
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