
Incremental Run-time Application Mapping for 
Homogeneous NoCs with Multiple Voltage Levels

Chen-Ling Chou, Radu Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

{chenlinc,radum}@andrew.cmu.edu
ABSTRACT
In this paper, we propose an efficient technique for run-time
application mapping onto Network-on-Chip (NoC) platforms
with multiple voltage levels. Our technique consists of a region
selection algorithm and a heuristic for run-time application
mapping which minimizes the communication energy
consumption, while still providing the required performance
guarantees. The proposed technique allows for new
applications to be easily added to the system platform with
minimal inter-processor communication overhead. Moreover,
our approach scales very well for large designs. Finally, the
experimental results show as much as 50% communication
energy savings compared to arbitrary mapping solutions.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Design –
computer-aided design (CAD).

General Terms
Algorithms, Performance, Design

Keywords
Dynamic application mapping, Networks-on-Chip, Low-power

1.  INTRODUCTION
Due to increasing systems complexity, the design of future
Systems-on-Chip (SoCs) faces major challenges. One such
challenge is the design of the communication infrastructure.
Indeed, the traditional bus-based or more complex hierarchical
bus structures (e.g. AMBA, STBus) cannot satisfy the
performance, scalability, flexibility, and energy efficiency
requirements of future systems. Instead, the Network-on-Chip
(NoC) architectures, consisting of various processor and
storage elements interconnected via a packet switched
network, emerged as a promising design paradigm [1].
With SoC design moving towards a communication-centric
paradigm, communication energy minimization becomes a
major concern. This is the motivation behind our approach to
develop a run-time application mapping algorithm for
minimizing the inter-processor communication. The target
NoC architecture consists of several homogenous processing
elements (PEs) that reside on the same chip. The PEs can
operate at multiple voltage levels, under different energy-
performance trade-offs. A global manager (GM) handles the
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’07, September 30–October 5, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009...$5.00.

161
real-time deadlines and inter-processor communication. When
a new application arrives, the incoming tasks need to be
allocated to the appropriate resources of the current
configuration. The GM makes a run-time decision by executing
our proposed algorithm in order to ensure communication
energy savings. At the same time, the pre-existing applications
are still run on the initial resources they have been allocated to.
Recent work shows that task migration mechanisms with check
points can also provide energy savings [18]. Our run-time
mapping approach can be also used in conjunction with task
migration to provide further energy savings.

1.1 Motivational example
A system architecture with two voltage levels is shown in
Figure 1. The gray squares represent the PEs operating at
higher voltage levels, while the black dots show the tasks of a
pre-existing application, already running on system resources,
which cannot be reallocated. Assume that applications App 1
and App 2 shown in Figure 1(a) and Figure 1(b), respectively,
need to be mapped on the initial system configuration depicted
in Figure 1(c). Each edge in App 1 represents communication
between two nodes, where the weights of the edges give the
corresponding communication volume. In this simple example,
we assume all edges carry the same weight equal to 1 unit and
XY routing is used to move data around. For instance, the
communication cost for nodes 5 and 6 in Figure 1(f) is 2.
Suppose that nodes 4 and 6 are the critical nodes for App 1 and
node 2 is the critical node for App 2; this means that they must
be allocated to the PEs with highest voltage level in order to
meet the application deadlines. For this example, the mapping
can go in two different ways: Either using a greedy approach
(i.e., minimizing the inter-processor communication cost at
each time step without considering any incoming application),
or using our proposed solution which does consider
applications that may come in the near future. As shown in
Figure 1(d), even though the first approach minimizes the
communication cost for the current configuration, the newly
generated region formed by the remaining (available) PEs is
quite dispersed. Hence, mapping additional applications (e.g.,
App 2) on this configuration becomes less effective as seen in
Figure 1(e). Contrary to this, our proposed solution offers a
more effective mapping in the presence of dynamically
incoming applications. As seen in Figure 1(g), when App 2 is
incrementally mapped after App 1, the total inter-processor
communication cost becomes smaller than the cost obtained
using the greedy approach. Intuitively, since the pre-existing
applications cannot be reallocated, the performance of the
greedy solution becomes worse compared to the solution
derived from our proposed approach. 
In general, there is no true optimal solution for incremental
mapping, since it is not possible to know in advance the exact
sequence in which different applications may come into the
system. The key point in our approach for selecting a near



convex region is to minimize the non-contiguous regions
which may cause a higher communication cost when mapping
additional applications. Near convex region stands for a region
whose area is close to the area of its convex hull [15] and the
average pairwise distance is as small as possible [17].

1.2 Novel contribution
The novel contribution of this paper consists of an efficient
run-time mapping algorithm that allocates the incoming
applications based on a pre-existing system configuration. This
mapping algorithm achieves several goals:
• Meets application deadlines
• Minimizes inter-processor communication energy consumption
• Incoming applications can easily be added to the resulting

system with minimal inter-processor communication overhead.
Furthermore, with shorter communication distances among
nodes, the network contention can be also mitigated and the
dynamic link scheduling or network flow control improved.
This paper is organized as follows: Section 2 reviews related
work. Platform description and the run-time mapping
methodology are given in Section 3. Section 4 presents the
problem formulation and a practical solution for incremental
run-time mapping. Finally, the experimental results appear in
Section 5, while Section 6 summarizes our main contribution.

2. RELATED WORK
The authors in [2] propose a branch and bound algorithm to
map IP cores onto a tile-based NoC architecture, while
satisfying the bandwidth constraints and minimizing the total
communication energy consumption. The work in [3]
considers the mapping problem for minimizing the
communication delay with split routing. These off-line
algorithms are not applicable to the run-time mapping problem
which needs to complete within microseconds. Broersma et al.
[5] propose the MinWeight algorithm for solving the minimum
weight processor assignment problem; this can be done in
polynomial time, but only for task graphs with maximum
degree at most 2. Smit et al. in [4] extend the algorithm in [5]
by solving the problem of run-time task assignment on
heterogeneous processors with task graphs restricted to a small
number of vertices or a large number of vertices with degree
no more than two. The authors of [14] present a mapping and
scheduling strategy for hard real-time embedded systems
which communicate over a shared medium (i.e. bus) aiming at
minimizing the system modification cost. Operating system
(OS) issues to make NoCs more efficient in a dynamic manner
are addressed in [13].

3. PRELIMINARIES
3.1 NoC architecture
Our NoC architecture consists of identical processing elements
(PEs) interconnected by a 2-D n × n mesh network with bi-
directional links. Each PE consists of a processing unit, a
cache, local memory, and control unit, as shown in Figure 2.
The PEs operate at a fixed voltage and frequency levels which
are selected from a finite set (Vi, fi). When the voltage level of
a PE is different from that of the network, mixed-clock FIFOs
are utilized. Since the focus of this paper is not on determining
the voltage island partitioning, we assume that this is already
determined using approaches similar to the voltage/frequency
island partitioning and voltage assignment algorithms in [16].   
Data network is responsible for delivering data packets among
PEs. The control network (i.e., the routers and links represented
by smaller squares and dotted lines in Figure 2) is used to move
around the control messages generated by the OS. Data and
control networks are separated to ensure that data transmission
in the data network does not interfere with the OS-generated
control messages in the control network. 
Finally, a global manager (GM) is included in this architecture.
GM runs the proposed run-time mapping algorithm in order to
allocate the incoming tasks to the appropriate resources. We
note that a single central GM may not scale well, so for larger
networks an hierarchical control mechanism should be applied.

3.2 Overview of the methodology
The proposed methodology is shown in Figure 3. The incoming
applications are described by the application communication graph
(ACG) which is generated using an off-line technique like in
[11][12]. Each ACG = G(V, E) (Figure 3) is a directed graph and
contains: 
• Nodes: Each node vk ∈ V represents a set of tasks obtained from

the off-line task partitioning process. The tasks belonging to the
same node are allocated onto the same idle PE. Each task has a
given execution time. In case of data-dependent tasks, the worst
case execution time is used.

• Edges: Each edge ei,j ∈ E represents the inter-node
communication from vi to vj; node vi is any neighbor of node vj.
Weights w(ei,j) characterize the communication volume (bits)
between nodes i and j, while weights bw(ei,j) represent the
minimum bandwidth requirements (bits per sec) from vi to vj; 

• S(vk): Each node has its minimum voltage at which should
operate in order to meet the application deadlines. Since the
maximum operating frequency for a given voltage level is
selected, higher voltage levels result in faster execution
assuming that the task execution times (in clock cycles) remain
the same. For instance, the system in Figure 4(b) has only two
different voltage levels (‘H’ and ‘L’). The critical nodes in the

pre-existing application

greedy solution
(cost = 10 + 6 = 16)

proposed solution
(cost = 10 + 7 = 17)

+ 
Ap

p 1

+ App 2

   greedy solution
(cost = 10 + 6 + 12 = 28)

proposed solution
(cost = 10 + 7 + 8 = 25)

assume (initial cost = 10)

+ App 2

App 1

node
edge

1

2 4

5

3 7

6

App 2
1

2

3 6

54

1 2

4

5

3

76

1

4 5

7

6

23 1

4 5

7

6

23

1 2

4

5

3

76

1

2

3 6

5

4

1

2

3 6

5

4

+ App 1

 

 

Figure 1. Incremental application mapping onto NoCs.
 

  (d)                                 (e) 

(a)

(b)

  (c)                                 (f)                                (g)

Figure 2. Homogeneous processing elements interconnected 
via a packet-switched network and an OS-controlled mesh. 

PE
ni

ni

(Vi, fi)
data network
control network

cache

memory

ni

PE
ni

GM PE
ni

...

..
. ..
.

...
...

PE
ni

PE
ni

..
.

PE
ni

PE
ni ... PE

ni

processing
unit control

unit
162



ACG shown in Figure 4(a) (marked with “Vmin=H”) must be
mapped to the PEs belonging to the ‘H’ voltage level (i.e. the
gray squares in Figure 4(b)).

During normal operation, the behavior of PEs (either active or
idle) is monitored and conveyed to the GM through the control
network. The GM recognizes the location of all pre-existing
applications and performs the run-time task mapping for all
subsequent applications, while minimizing the inter-processor
communication and meeting the application deadlines. The
run-time mapping process is activated only when new
applications arrive in the system. As shown in Figure 3, our
run-time mapping process involves two essential steps: 
1. Near convex region selection: This consists of selecting a
near convex region (contiguous, if possible) containing a
number of PEs equal to the number of nodes in the ACG of the
incoming application. If there are more than one feasible near
convex regions, then the one closest to the off-chip memory
containing the application code is selected (to minimize the
code transfer energy consumption). The motivation for the
near convex region selection is to allow for a more effective
mapping for any subsequent applications. PEs belonging to
different voltage levels are provided to help meeting the
application deadlines. As shown in Figure 4(c), both regions
shown with solid lines (i.e., R1 and R2) satisfy the near convex
region criterion with at least two PEs at the high voltage level;
we assume R1 is selected in this example. The region shown
with dotted line (R3) is too dispersed; if selected, it will incur
much higher communication costs.
2. Node allocation: This step consists of assigning nodes to
PEs within the selected region (with critical nodes mapped
onto PEs with higher voltage levels), while minimizing the
inter-node communication (see Figure 4(d)).
After the node allocation process is completed, the GM updates the
system behavior and gets ready for continuing the mapping
process. Last but not least, our run-time incremental mapping
technique is not limited to mesh topologies; these two steps can be
extended to any arbitrary topology with deterministic routing.   

3.3 Energy model
We model the energy consumption of the network using the bit
energy metric proposed in [7]. The network employs wormhole
switching and XY routing. Suppose that the source (PEs) and
destination (PEd) operate at static voltage/frequency levels (Vi,
fi), and (Vj, fj), respectively, while the entire network uses a
(constant) voltage/frequency level (Vn, fn). The average energy
consumption for sending one bit of data from PEs to PEd is:

where the  and terms (denoted by (a)
and (c)) represent the energy consumed while transferring data
between the network and the processors operating at different
voltage levels. For instance, when PEs operates at Vi and the
network operates at Vn, the energy consumption of sending one
bit of data from the processor to the network is .
On the other hand, the (term (b)) is defined as:

where hops(s,d) is the number of hops between nodes s and d.
The routers attached to nodes s and d are not included in this
equation since they are already accounted in Equation 1. The
total communication energy consumption is defined as:

4. INCREMENTAL RUN-TIME MAPPING 
4.1 Problem formulation
Given the ACG of an incoming application, our objective is to
first select a near convex region and then decide on which PE
within this region should each node in ACG be mapped to,
such that the communication energy consumption is minimized
under given timing constraints. To formulate this problem, we
need a few notations as follows:

• PEij: the PE located at the intersection of the ith row and jth

column of the network. PE11 is the global manager (GM);
• V(PEij): the voltage level that processor PEij belongs to;
• MD(PEij, PEi’j’): Manhattan distance between PEij and PEi’j’.
Using these notations, the problem of incremental mapping for
NoCs can be formulated as follows:
Given the current system behavior and the ACG of the
incoming application 
Find a near convex region R and a node mapping function
map( ) that satisfies:                  
Objective in R

  
such that:        

       for all satisfying the bandwidth constraints at each link

4.2 Solution to region selection problem
We need two new terms to define the region selection problem:
Dispersion factor (D): The PE dispersion factor, D(PE), is
defined as the number of idling neighbors of that PE. Smaller
D(PE) values indicate a high likelihood for including the PE
into the current region. Indeed, all PEs except the boundary
ones have four neighbors. A PE that has most of its neighbors
utilized (i.e., it has a small D(PE) value), it is very likely to be
later isolated; then selecting this PE for the current region
helps reducing its dispersion probability.
Centrifugal factor (C): The PE centrifugal factor, C(PE), is
defined as the Manhattan distance between any PE and the
border of the current region. Smaller C(PE) values indicate a
high likelihood for including the PE into the current region.
Indeed, since every PE in a near convex region should be close

Figure 3. Overview of the proposed methodology.

 App 1  App n...

Task Partitioning Process

ACGn...

update

System
Utilization

(done by GM)

ACG1

on-line
off-linenode

task

comm. vol./

ACG

BW requirement

Near Convex
Region Selection

Node Allocation

e1,2

w(e4,2
)/bw(e4,2

)

e3,1

v1

v2

v3

v4

Ebit s d,( ) ERbit Vi Vn→( ) ENetwork s d,( ) ERbit Vn Vj→( )+ +=

     (a)                      (b)                         (c)
(1)

ERbit Vi Vn→( ) ERbit Vn Vj→( )

ERbit Vi Vn→( )
ENetwork s d,( )

ENetwork s d,( ) ERbit Vn Vn→( ) hops s d,( ) 2–( ) +×=

ELink s d,( ) hops s d,( )( ) 1–×

(2)

Ecomm w ei j,( ) Ebit si dj,( )×
e∀ i j, si dj,( ) E∈=

∑= (3)

vk∀ V map vk( ) PEij→,∈

min Energy w ei j,( )
ei j,∀
∑ MD map vi( ) map vj( ),( )×=

⎩ ⎭
⎨ ⎬
⎧ ⎫ (4)(4)

vk∀ V V PEij( ) S vk( )≥,∈ (5)
ei j,
163



to any border of that region, the PE with the smaller C(PE) is
better suited for selection to form a near convex region.
The steps of region selection similar to maze routing [19] are
shown in Figure 5 (assuming k voltage levels in the system).  

We consider now a simple example and describe our approach
step by step. The ACG of the incoming application and system
behavior are given in Figure 4 ((a) and (b)), where the black
dots are showing the pre-existing applications in the system.
The number marked on the PE (e.g., {3} on PE32) in
Figure 4(c) represents the selection order in getting a near
convex region. PEs with the same number show that they are
selected into the region at the same time.
From Figure 4(a), |Sh| = 2 and |Sl| = 7 (Step 1). Start with Sh
(Step 2), and assume PE42 is selected first into the region
(Figure 4(c)). Then, PE43 is the second node selected for the
region (Step 3) since it has the lowest
D(PE43) +C(PE43) = 3+1 (D(PE43) = 3 because PE33, PE44,
and PE53 are idle). Step 3 is terminated since the PEs in Sh are
all selected into the region. Now, we deal with the selection of
Sl (Step 4). Going back to Step 3, PE32 and PE41 are selected
since they all have the lowest D(PE) + C(PE) = 1+1. With the
same rule, PE33, PE51, PE52, PE53 are subsequently selected.
Finally, PE61 is randomly selected among PE61, PE62, PE63,
and PE54, with all of them getting the same value of
D(PE) + C(PE). 
The time complexity for region selection algorithm is
O(VlogV). In Step 1, calculating the size of PE sets takes O(V),
while the runtime for sorting them is O(VlogV) if using
QUICKSORT. For implementing Steps 3 and 4 with HEAP, we
can record the frontier of the region and store the information,
D(PE) + C(PE), of this wavefront with runtime O(VlogV).

4.3 Solution to node allocation problem
After the near convex region is selected, we continue with
allocating nodes of the incoming application to the PEs with
specific voltage levels in the selected region, while minimizing

the inter-processor communication. To keep track of node
allocation process, our heuristic colors each node white, gray,
or black. All nodes start out white and may later either become
gray and then black, or become directly black. A gray node
indicates that it has some tentative PE locations but its precise
location will be decided later. On the contrary, a black node
indicates that it has been already mapped onto some PE and
this mapping will not change anymore. A PE is set to be
unavailable after a black node is mapped onto it.
We define two actions for nodes during the heuristic:
DISCOVER: This consists of: 1) Select available PEs with a
specific voltage level for node t and 2) Color node t gray; then,
node t is considered as “discovered”.
FINISH: This consists of: 1) Select a specific PE for node t
such that the distance between node t and its gray or black
neighboring nodes is minimized and bandwidth requirements
for additional links are satisfied (Note that if more than one PE
gets the minimum distance, we select the PEij with its D(PEij)
closest to the number of nonblack neighbors of node t) and 2)
Color node t black; then, node t is considered as “finished”.
In short, the nodes are colored during the process to indicate
their state. Each node is initially white, it is grayed when it is
discovered and is blackened when it is finished. We first sort
nodes into an ordered set using the non-increasing order of their
total communication volume; that is, the higher communication
volume a node has, the earlier it is discovered or finished. The
node allocation heuristic is summarized in Figure 6.

Let us follow now the same example in Figure 4. The ACG in
Figure 4(a) is going to be mapped onto the region R1 (shown
in Figure 4(d)) which has been selected in Section 4.2.
Remember that for this ACG, the smallest PE set is Sh= {4, 6}. 
Assume the node ordered set is (9, 6, 7, 8, 5, 4, 1, 3, 2) based
on the total communication volume; also, all nodes are initially
colored white. We start with node 6, which is the first white
node in Sh (Step 1). Since at this time its neighbors, nodes 5

GM

utilized PE idle PE

|Sh|=2
|Sl|=7

GM1

2

3

4

5

6

7

{1} {2}

{3}

{3}

{5}

{6}

{9}

{6} {6}

R1

R2

R3

8

ACG

V
m

in
=

‘H’ voltage level
‘L’ voltage levelv2

v1v3

v4 v5

v6 v7

v8v9

R1 is
selected

1

2

3

4

5

6

7

GM

R1

v5 v1

v2

v3

v4v6

v7

v8

v9

1     2     3     4 1       2
｀

H
 ＇

 3 4       55     6     7     8

Figure 4. Incremental run-time mapping process. (a) ACG of the incoming application (b) System behavior (c) Near convex 
region selection process (d) Node allocation process. 

        

             

         
     (a)                             (b)                                                                    (c)                                                            (d)

Figure 5. Near convex region selection.

       Step 1): For each node, assign it to a voltage level which  
satisfies the deadline constraint at the minimum voltage. Then, 
get the size of PE sets for each voltage level, |Sc|, and sort them 

S1 S2 S3 ... Sk.≤ ≤ ≤ ≤
  Step 2): Start with S1, select a PEij with minimum code transfer
energy consumption and include it into the region.

 
 
     Step 3): Update the D(PE) and C(PE) for unselected and idle 
PEs of that set. Select PEij with lowest D(PEij)+ C(PEij) in 
the region. Continue with Step 3 until the number of PEs in the
selected region matches the size of this set.

  
  Step 4): Repeat Step 3 for the remaining sets.

out in non-decreasing order,

       Step 1): Color all nodes white. Then, start with the first white

 

    

 
 
    
 
    
 
 

   

 node t in the smallest PE sets based on the ordered set. 
  Step 2): IF neighbors of node t are neither gray nor black, 

 then do DISCOVER for node t.

 

  Step 3): IF neighbors of node t are either gray or black, then
  do FINISH for node t. 

  Step 4): Go back to the first node of the ordered set, do Steps 2 
 and 3 for each nonblack node t until the color of any nonblack

Figure 6. Node allocation steps.

 node changes. Then go to Step 5.
   Step 5): Repeat Step 4 if there exists any nonblack node in the
ordered set; otherwise, stop the heuristic.
164



and 7, (see in Figure 4(a)) are white, we DISCOVER this node
(i.e. color it gray) and select PE42 and PE43 (because these are
the only PE locations at ‘H’ voltage level in region R1) to map
it (Step 2); namely, node 6 will be allocated onto PE42 or PE43
later. Then continuing with Step 4, we go back to the first node
in the ordered set. At this moment, the color of node 9 is
changed from white to gray since all neighbors of node 9 are
white and we select PE32, PE33, PE41, PE51, PE52, PE53, and
PE61 for it. With the following repeat of Step 4, the color of
nodes 9 and 6 is unchanged. Then, we consider node 7; its
color changes from white to black directly since nodes 6 and 9
are gray. We allocate node 7 onto PE52. Then, repeat Step 4;
node 9 becomes black since it neighbor, node 7, is colored
black and we allocation node 9 onto the precise location, PE51.
We continue this process until all nodes are colored black and
each node is allocated onto a precise PE location. Figure 4(d)
shows the final result of node allocation process.
The total run time of our heuristic has complexity of O(V2+E).
This is because the body of the loop (Steps 4-5) executes |V|
times, while reaching at most |V| vertices each time. In
addition, since each node will be reached at most two times
(i.e., DISCOVER and FINISH), and the adjacency list of each
node is scanned only when the node is reached, the total time
of scanning the adjacency lists is O(E).

5. EXPERIMENTAL RESULTS
We first evaluate the impact of near convex region selection
and node allocation heuristics using synthetic benchmarks
generated with TGFF [8]. Experiments are performed on a
Intel® Pentium 4 CPU (2.60GHz with 768MB memory). Our
on-line algorithm is compared against the optimal and arbitrary
mapping solutions. Then, in Section 5.3, the energy overhead
of running our on-line algorithm is evaluated using a
MicroBlaze soft processor, a 32-bit Harvard RISC architecture
optimized for Xilinx Vertex-II Pro XC2VP30 FPGA.

5.1 Evaluation of region selection
To show that the choice of a near convex region heavily
impacts the communication cost of the incremental mapping
process, we consider the following experiment. Several sets of
applications are generated using the TGFF package [8]. The
node number and the communication volume are randomly
generated according to some specified distributions. Then
applications are randomly selected for mapping onto the
system or being removed from it. For mapping onto the
resulting system with pre-existing application staying fixed,
two different strategies are implemented: 1) A greedy approach
minimizing the inter-processor communication cost of the
current configuration (but without considering the newly
incoming applications) and 2) A near convex region is first
selected using the proposed approach and then the application
is optimally mapped onto this region using exhaustive search.

The number of nodes per application ranges between 5 and 10.
The system consists of 7 × 7 PEs with PE11 being used as a
global manager. The variance of the communication volume
per edge in one application is set arbitrarily between 0 and 106.
Initially, there is no application in the system. The sequence of
events in the system is incremented whenever an application
comes into or departs from system. If the number of idle PEs in
the system is smaller than the number of nodes of the incoming
application, then the incoming application is not accepted.

Figure 7(a) shows the inter-processor communication ratio
between the mapping using strategy 1 (i.e., without selecting a
region) and that in strategy 2 (with selecting a near convex
region). Here, the inter-processor communication contains all
communications (i.e., pre-existing and the incoming
applications) in the system. The numbers below the data points
stand for the number of utilized PEs in the system (except the
GM) in that particular system configuration. 

As shown in Figure 7(a), there is a slight increase in the
communication ratio at the beginning because the greedy
approach performs well when the number of utilized PEs in the
system is small. Once the number of utilized PEs increases due
to the incoming applications, the benefit of our proposed
algorithm becomes obvious. Finally, the ratio becomes stable
since for strategy 1, when the application leaves the system,
there is always a scattered region left for additional mapping.
This example demonstrates that near convex region selection
definitely helps the incremental mapping process.

5.2 Evaluation of node allocation heuristic
We first compare the runtime and solution of our heuristic
against exhaustive approach by considering the same regions.
The runtime for finding the optimal mapping within selected
region increases exponentially with the number of nodes in
each application: For 8, 9, 10, 11, and 12 nodes in one
application, it takes 0.2sec, 1.5sec, 4min, 10min, and 2hrs,
respectively, to obtain the optimal mapping. On the other hand,
the runtime of our heuristic stays within 40µsec, when the
number of nodes varies between 8 and 20. Since finding the
optimal mapping for a region with 13 nodes takes more than
26hrs, we vary the number of nodes per application from 8 to
12 (see points on X-axis in Figure 7(b)). More specifically,
there are 5 categories, (|V|=8-12), each category containing 40
applications generated with TGFF. 

We denote the energy consumption of our mapping heuristic
by Eh, and the energy consumption of the optimal mapping
with the same region by Ee. Thus (Eh-Ee)/Ee × 100% is the
percentage of reported energy loss compared to the optimal
solution. As shown in Figure 7(b), the energy loss for each
category is always less than 21%. Therefore, our node
allocation heuristic provides good results for large designs.

8 10 15 20 25 30
40

45

50

55

60

Number of nodes per application

En
er

gy
 sa

vi
ng

s p
er

ce
nt

ag
e

8 9 10 11 12
16

18

20

22

24

Number of nodes per application
0 2 4 6 8 10 12 14 16

0.6

0.8

1

1.2

1.4

En
er

gy
 lo

ss
 p

er
ce

nt
ag

e

Sequence of events in the system

In
te

r-
pr

oc
es

so
r c

om
m

. 
vo

lu
m

e 
ra

tio

6 13 21

28

36

44 38 43 35 45 4047 42 47 41

comm_vol 2
comm_vol 1

#  : # of utilized PE

:

 Figure 7. (a) Impact of selection region process on inter-processor communication. (b) Energy loss: optimal mapping vs. heuristic 
solution given a selected region. (c) Energy savings: arbitrary mapping vs. heuristic solution.

   

                
             

       
 (a)                                                                   (b)                                                                     (c) 
165



Now, we compare the arbitrary mapping against our heuristic
in Figure 7(c). Since the runtime of arbitrary mapping is very
fast, we can consider ACGs with a large number of nodes (i.e.
30 in Figure 7(c)) and see if our algorithms scale well. The
number of nodes per application used in this experiment ranges
between 8 and 30 (i.e., 6 categories, |V|=8, 10, 15, 20, 25, and
30). We generate 20 different regions with PE locations
corresponding to the number of nodes in each category and then
run 20 different applications on each selected region. The
variance of communication volume per edge in one application
is still set between 0 and 106. 
We denote the energy consumption of our heuristic mapping by
Eh, and the energy consumption of the arbitrary mapping
solution by Ea; then (Ea-Eh)/Ea × 100% is the percentage of
reported energy savings compared to the arbitrary mapping
solutions which were averaged from 500 random results. As
shown in Figure 7(c), at least 45% savings can be achieved in
all categories; of note, the savings increase as the node size
scales up.

5.3 Energy overhead for on-line algorithms 
when running real applications

The energy overhead of on-line processes contains the message
transmission into the control network and our on-line
algorithms (i.e., near convex region selection and node
allocation). The incremental mapping process is activated only
when a new application arrives, and so the PEs need to send
their status to GM. The communication volume for all control
messages is [a bits (for showing PE address, which depends on
network size) + 1 bit (PE status)] × MD (Manhattan distance of
all PEs to GM). For the 6 × 6 network, a = 6 (26>36), MD =
180; therefore, all control bits for one incoming application are
within 1 Kilobit. Compared to the communication volume in
real applications (which is in the Megabits range), the energy
overhead for transmitting the control messages is negligible. 
Next, we evaluate the extra energy overhead of our on-line
algorithms. Our system contains 6 × 6 PEs of AMD ElanSC520
(133 MHz), AMD K6-2E (500Mhz), and one MicroBlaze core
(160MHz) for the global manager running our on-line
algorithms. To evaluate the potential of our on-line algorithms
for real applications, we apply it to embedded system synthesis
benchmark suite, E3S [9]. We first do the off-line partitioning
process for each benchmark. The communication energy
consumption is measured by a C++ simulator using the Orion
library [10]. We start with a given system configuration
running a set of pre-existing applications. We denote the power
consumption of our heuristic mapping as Ph, the power
consumption of the arbitrary mapping solution as Pa, and the
power consumption of running the on-line algorithms as Pon-
line. Thus, [(Pa × Tet) - (Ph × Tet + Pon-line × Ton-line)] / [(Pa ×
Tet)] × 100% is the percentage of energy savings compared to
the arbitrary mapping solution, where Tet is the execution time
of that application and Ton-line is the execution time of running
our on-line algorithms.
We observe that about 48.6% communication energy savings
can be achieved, on average, compared to an arbitrary
implementation when the execution time of applications is over
0.5 sec. The energy overhead of run-time mapping process on
MicroBlaze for telecom and consumer takes 3.6msec and
3.1msec, respectively and consumes 450µJ and 384µJ.

6. CONCLUSION AND FUTURE WORK
We have proposed a run-time approach to incrementally map a
number of applications onto a homogeneous tile-based NoC

with multiple voltage levels. Using the near convex region
selection technique, the mapping results of our heuristic can be
obtained very efficiently and they are not far from the optimal
ones. Moreover, additional incoming applications can be added
into system more easily and large designs with arbitrary
topologies can be analyzed.
We plan to extend the work in several directions. First, for SoC
applications, we intend to consider more heterogeneity (i.e.,
different cores with different functionality), while including
computation energy consumption as well. Another direction is
to address the run-time incremental scheduling issue and the
processor sharing problem.

7. ACKNOWLEDGEMENTS
Authors acknowledge the support of the Gigascale Systems
Research Focus Center, one of the five research centers funded
under the Focus Center Research Program, a Semiconductor
Research Corporation program. We also thank U. Y. Ogras of
CMU for suggestions that improved this paper.

8. REFERENCES
[1] W. J. Dally, B Towles, “Route packets, not wires: on-chip

interconnection networks,” Proc. DAC, Las Vegas, NV, June 2001.
[2] J. Hu, R. Marculescu, “ Energy- and performance-aware mapping

for regular NoC architectures,” IEEE Trans. on CAD, 24(4), Apr.
2005.

[3] S. Murali, G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” Proc. DATE, Paris , France, Feb. 2004.

[4] L. T. Smit, et. al, “Run-time assignment of tasks to multiple
heterogeneous processors,” Progress 2004 Embedded Systems
Symp., the Netherlands, Oct. 2004.

[5] H. J. Broersma, et. al, “The computational complexity of the
minimum weight processor assignment problem,” Proc. Intl.
Workshop on Graph-theoretic Concepts in Computer Science,
Bonn, Germany, June 2004.

[6] H. Wu, M. D. F. Wong, I-Min Liu, “Timing-constrained and
voltage-island-aware voltage assignment,” Proc. DAC, San
Francisco, CA, July 2006.

[7] T. T. Ye, L. Benini, G. De Micheli, “Analysis of power consumption
on switch fabrics in network routers,” Proc. DAC, New Orleans, LA,
June 2002.

[8] Task graphs for free (TGFF v3.0) Keith Vallerio, 2003.
http://ziyang.ece.northwestern.edu/tgff/.

[9] R. Dick, “Embedded system synthesis benchmarks suites (E3S),”
http://www.ece.northwestern.edu/~dickrp/e3s.

[10] H. Wang, X. Zhu, L. Peh, S. Malik, “Orion: a power-performance
simulator for interconnection networks,” Proc. Intl. Symp. on
Microarchitecture (MICRO), Istanbul, Turkey, Nov. 2002.

[11] A. M. Pastrnak, P. H. N. de With, S. Stuijk, J. van Meerbergen,
“Parallel implementation of arbitrary-shaped MPEG-4 decoder for
multiprocessor Systems,” in Proc. Visual Comm. and Image
Processing, San Jose, CA, Jan. 2006.

[12] J.-M. Chang, M. Pedram, “Codex-dp: co-design of communicating
systems using dynamic programming,” IEEE Trans. on CAD, 19(7),
July 2000.

[13] V. Nollet, T. Marescaux, D. Verkest, “Operating-system controlled
network on chip,” Proc. DAC, San Diego, CA, June 2004.

[14] P. Pop, P. Eles, T. Pop, Peng Zebo, “An approach to incremental
design of distributed embedded systems," Proc. DAC, Las Vegas,
NV, June 2001.

[15] J. Kao, F. B. Prinz, “Optimal motion planning for deposition in
layered manufacturing,” Proc. Design Engineering Technical Conf.,
Atlanta, GA, Sept. 1998.

[16] U. Y. Ogras, R. Marculescu, P. Choudhary, D. Marculescu,
“Voltage-frequency island partitioning for GALS-based networks-
on-chip,” Proc.  DAC, San Diego, CA, June 2007.

[17] M. A. Bender, et. al, “Communication-aware processor allocation
for supercomputers,” Proc. Workshop on Algorithm and Data
Structure, Waterloo, Canada, Aug. 2005.

[18] S. Bertozzi, et. al, “Supporting task migration in multi-processor
systems-on-chip: a feasibility study,” Proc. DATE, Munich,
Germany, March 2006.

[19] C. Y. Lee, “An algorithm for path connection and its applications,”
IRE Trans. Electron Comput., vol. EC-10, pp. 346-365, Sept. 1961.
166


	Incremental Run-time Application Mapping for Homogeneous NoCs with Multiple Voltage Levels
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	1.1 Motivational example
	1.2 Novel contribution

	2. Related work
	3. PreliminarIES
	3.1 NoC architecture
	3.2 Overview of the methodology
	3.3 Energy model

	4. Incremental Run-time mapping
	4.1 Problem formulation
	4.2 Solution to region selection problem
	4.3 Solution to node allocation problem

	5. Experimental results
	5.1 Evaluation of region selection
	5.2 Evaluation of node allocation heuristic
	5.3 Energy overhead for on-line algorithms when running real applications

	6. Conclusion and future work
	7. Acknowledgements
	8. References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


