
Influence of Procedure Cloning on WCET Prediction ∗

Paul Lokuciejewski, Heiko Falk,
Martin Schwarzer, Peter Marwedel

Computer Science 12
University of Dortmund

D-44221 Dortmund, Germany
FirstName.LastName@udo.edu

Henrik Theiling
AbsInt Angewandte Informatik

Science Park 1
D-66123 Saarbrücken, Germany

theiling@absint.com

ABSTRACT
For the worst-case execution time (WCET) analysis, espe-
cially loops are an inherent source of unpredictability and
loss of precision. This is caused by the difficulty to ob-
tain safe and tight information on the number of iterations
executed by a loop in the worst case. In particular, data-
dependent loops whose iteration counts depend on function
parameters are extremely difficult to analyze precisely. Pro-
cedure cloning helps by making such data-dependent loops
explicit within the source code, thus making them accessible
for high-precision WCET analyses.

This paper presents the effect of procedure cloning ap-
plied at the source-code level on worst-case execution time.
The optimization generates specialized versions of functions
being called with constant values as arguments. In stan-
dard literature, it is used to enable further optimizations like
constant propagation within functions and to reduce calling
overhead.

We show that procedure cloning for WCET minimization
leads to significant improvements. Reductions of the WCET
from 12% up to 95% were measured for real-life bench-
marks. These results demonstrate that procedure cloning
improves analyzability and predictability of real-time appli-
cations dramatically. In contrast, average-case performance
as the criterion procedure cloning was developed for is re-
duced by only 3% at most. Our results also show that
these WCET reductions only implied small overhead dur-
ing WCET analysis.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization

General Terms
Algorithms, Performance

∗This work has been funded in part by the ARTIST2 Net-
work of Excellence (http://www.artist-embedded.org/)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

1. INTRODUCTION
Embedded systems often must meet real-time constraints.

The correctness of such a system depends on both the logical
results and the time at which the results are produced. Be-
sides safe real-time systems, the market demands high per-
formance, energy efficient and low cost products. Without
knowledge about the worst-case timing, designers tend to
oversize hardware to guarantee the safeness of the real-time
system. Knowing the worst-case execution time enables to
use a hardware platform tailored towards the software re-
source requirements significantly reducing production costs
while still guaranteeing the safeness of the system.

Static WCET analysis [9] relies on flow facts specifying
iteration counts of loops and recursion depths. They serve
as restrictions to overcome the halting problem to ensure
that the program will terminate. Since typical embedded
applications spend most of their execution time in loops,
flow facts for loops have a significant impact on an appli-
cation’s WCET. Modern timing analyzers like e. g. aiT [1]
include a loop analyzer automatically computing such flow
facts for loops. However, this only succeeds for a limited
class of loops so that most of the loops found in real-life
applications are not analyzed. As a consequence, flow facts
for loops not recognized by the timing analyzer have to be
specified manually by the designer. Usually, this is done
by specifying a min / max interval for each loop of an ap-
plication, modeling lower and upper bounds of the possible
number of iterations of a loop.

Today, software development for embedded systems uses
high-level languages like C. The C source codes of typical
embedded real-time applications often contain a number of
loops whose number of iterations depends on a parameter p
of the function f containing this loop. In addition, such a
function f can be called from various places within the code
of the entire application with different values for p. These
observations on real-life code have a very negative influence
on the WCET computed by a timing analyzer.

This is due to the flow fact specification of such a data-
dependent loop. Since the loop’s function f is called from
many places with possibly different arguments, the effective
number of loop iterations within f can vary considerably, de-
pending on the context how and with which parameters f is
called. However, the flow facts for such a loop must cover all
these different contexts in which the loop may be executed
to result in safe WCET estimates. Hence, the lower bound
of such flow facts must represent the global minimum of iter-
ations executed by such a loop over all contexts in which f is
called, and the same holds for the upper bound. Since such

137

flow facts for data-dependent loops do not consider possible
different execution contexts of a function f , the flow facts
are safe but lead to a highly overestimated WCET.

Procedure Cloning (also known as Function Specializa-
tion) is a standard optimization [8] exploiting functions that
are often called with constant values as arguments. If the
caller invokes a callee with some constant parameters, the
callee can be cloned and the constant parameter can be re-
moved from the list of parameters and instead imported
into the callee itself. In standard literature, the benefits
of cloning are said to be twofold. First, procedure cloning
potentially enables further optimizations like e. g. constant
propagation and constant folding within the clone. Second,
the calling overhead is reduced since the constant parame-
ters are not passed any more between caller and callee.

This paper analyzes the impact of procedure cloning on
the WCETs of embedded real-time applications. Proce-
dure cloning is done if a caller invokes a callee f containing
data-dependent loops, and if the iterations of such loops
depend on a parameter p being a constant in the func-
tion call. Cloning results in a specialized version f ′ of f
now having constant loop bounds with respect to p. The
data-dependence of the number of loop iterations is resolved
by cloning so that highly precise flow facts for such data-
dependent loops in f ′ can be provided. Hence, procedure
cloning can be seen as a way to express different calling con-
texts at the source-code level, thus enabling a high-precision
WCET analysis of these specialized functions.

But not only loops will benefit from procedure cloning.
Propagation of constants as specialized function arguments
may enable the elimination of infeasible paths. Infeasible
paths are paths which are executable according to the con-
trol flow graph structure, but not feasible when considering
the semantics of the program and the possible inputs. Re-
moval of infeasible paths may thus lead to tighter WCET
estimates.

The contributions of this paper are twofold: First, it is
the very first study of the impact of procedure cloning on
WCET. Up to now, only the effect of cloning on average-
case execution time (ACET) and code size was studied. We
carefully examine how cloning influences the specification
and consideration of precise loop bounds and the detection
of infeasible paths during WCET analysis. Experimental re-
sults underline the performance of this optimization in terms
of WCET. Our measurements show WCET reductions from
12% up to 95% for real-life benchmarks. In contrast, cloning
affects ACETs only marginally with maximum speed-ups
of 3%. Second, we show that these considerable improve-
ments do not translate into an increased overhead during
WCET analysis. It can be concluded that procedure cloning
is highly effective in WCET minimization with no additional
overhead required during WCET analysis.

The rest of this paper is organized as follows: Section 2
describes related work. Procedure cloning and its benefits
for WCET analysis are presented in Section 3. Section 4
describes the experimental environment, followed by bench-
marking results in Section 5. Section 6 summarizes the con-
tributions of this paper and gives directions for future work.

2. RELATED WORK
Procedure cloning was initially published in [3] and is

now part of standard literature on compiler construction [8].
However, cloning was exclusively studied in the context of

1

10

100

1,000

10,000

100,000

1 2 3 4# Contexts

A
n

a
ly

s
is

T
im

e
[s

]

EPIC MPEG2 GSM Average

Figure 1: Context-Sensitive WCET Analysis Times

ACET and code size. All publications on cloning discussed
how it reduces function call overhead, how it enables other
optimizations focusing on ACET, and how growth of code
size can be limited. Procedure cloning was not yet discussed
in the context of compilation and optimization of real-time
embedded software which is the key contribution of this pa-
per.

In general, development of compiler optimizations con-
centrated on ACET in the past decades. Recently, the min-
imization of energy dissipation as optimization goal of com-
pilers moved into the focus of research. However, WCET
minimization by compiler optimizations is only sparsely dealt
within today’s literature. Loop Nest Splitting [5, 6] is one
of the few examples where the influence of an optimization
originally developed for ACET and energy dissipation min-
imization on WCET was examined.

In [10], an algorithm for code positioning for WCET re-
duction is presented. It rearranges basic blocks in functions
such that the number of branches taken on the worst-case
execution path is minimized. Since WCET minimization by
compiler optimizations is only barely researched, an in-depth
survey of the influence of standard optimizations on WCET
is missing in literature. This paper is a first step towards
such a survey by studying one well-known optimization.

[4] presents a design study for an entire WCET-aware
compiler. However, that paper focuses on the overall de-
sign of the proposed compiler and concentrates on the in-
tegration of a WCET analyzer into the compiler. Since it
does not focus on the WCET-awareness of built-in compiler
optimizations, it is complementary to this work.

As shown in Section 1, functions containing data-depen-
dent loops have a strong negative impact on WCET ana-
lysis since the effective number of loop iterations depends
on the calling context of the surrounding function. A call-
ing context represents a history of a call of function F and
thus indicates a particular way of calling F [1, 9]. However,
modern WCET analyzers [1] are able to distinguish between
different calling contexts of functions and thus can theoreti-
cally deal with precise numbers of loop iterations depending
on such contexts.

In practice, such a context-sensitive WCET analysis often
is not feasible since runtimes of WCET analyses grow enor-
mously. This phenomenon is depicted in Figure 1. For three
complex real-life applications, it shows the time taken for
WCET analysis using aiT [1] for different (small) numbers
of considered calling contexts. As can be seen, WCET ana-
lyses require exponential runtimes for increasing numbers of
contexts. In practice, this makes context-sensitive WCET
analysis infeasible and leads to the WCET overestimations
described in Section 1. Another important advantage of the

138

int f(float *x, int n, int p) { int f1(float *x) {

for (i=1; i<=n; i++) { for (i=1; i<=5; i++)

x[i] = pow(x[i], p); x[i] = x[i]*x[i];

if (i==10) {...} } return x[5]; }

return x[n]; }

int main(void) { int main(void) {

return f(a, 5, 2); } return f1(a); }

Figure 2: Example for Procedure Cloning

techniques studied in this paper is that they achieve a sig-
nificant WCET reduction without increasing analysis times
noticeably.

3. PROCEDURE CLONING
Procedure cloning belongs to the class of inter-procedural

compiler transformations where the optimizing compiler gen-
erates a specialized copy of the original procedure. After-
wards, the original function calls are replaced by calls to
the newly created clones. The optimized code provides a
more beneficial basis for aggressive inter-procedural data-
flow analyses [3]. On the other hand, cloning often of-
fers the opportunity for improved optimizations, particularly
for constant propagation and folding, copy propagation and
strength reduction. Also, entire paths might be eliminated
when cloning yields conditions that can be evaluated by the
compiler as always false and thus be never executed.

Figure 2 demonstrates cloning of function f allowing im-
proved optimizations across function call boundaries [2, 8].
Replacing the function parameters n and p by the constants
5 and 2, respectively, offers a significant amount of optimiza-
tion potential for the cloned function f1. First, applying
strength reduction allows the replacement of the expensive
call to function pow by a multiplication. Second, the propa-
gated constant value of n results in a simplified control flow
graph. By exposing the value range of the loop induction
variable i, it is known at compile time that the condition
(i==10) will never become true. Thus, this infeasible path
can be eliminated yielding a smaller number of instructions
and a better pipeline behavior due to the reduced number of
control hazards. Last but not least, the calling overhead is
reduced. The decreased number of passed arguments mini-
mizes the number of required instructions for both the caller
and the callee.

Besides the improvements concerning the program run-
time, the optimization has one drawback. Each specialized
copy of the function body increases code size. In general,
it is also not always permitted to remove the original func-
tion even if it is not called anymore in the optimized pro-
gram. On general purpose systems there is no guarantee
that this function might be called from another compilation
unit not considered in the current optimization course and
its removal would be illegal. In the domain of embedded sys-
tems, this restriction is usually not given and the removal of
original functions can be performed more aggressively. The
designer knows in advance what software will be running
on the system and can thus definitely determine the func-
tions never called from other modules than the one they are
located in. These original functions can be removed after
cloning without endangering the systems consistency.

Hence, this compiler optimization should be used with
caution, and a trade-off between the resulting speed-up and

the increased code size, especially in the domain of embed-
ded system’s with restricted memories, should be considered.

3.1 Selection of Functions to be cloned
There are different strategies to define how extensively

procedure cloning should be performed. Two factors are
relevant for the optimization. First, the maximum size of
the function permitted to be cloned must be specified. This
parameter can, for example, be defined by the number of
source code expressions found within the function. All func-
tions that exceed this parameter are omitted and not con-
sidered for procedure cloning since they may possibly result
in a too large code size increase.

The second factor guides the choice of functions to be
cloned by setting constraints on the occurrence of the con-
stant arguments. It defines how frequently a particular con-
stant argument must occur within all calls of the function
to be cloned. For example, the user might specify that con-
stant argument values must be present in more than half of
all function calls. When this frequency is not reached, it will
not be considered for optimization and the function will not
be cloned for this parameter. If the code size increase is cru-
cial, the number of additionally generated functions must be
kept minimal. The only candidates for cloning are functions
that are called most of the time with the same constant ar-
gument. The extreme case is the choice of functions that are
always invoked with the same constant value for a particular
function parameter.

This strict policy of trying to keep the code size small
would however strongly restrict the use of procedure cloning
for most embedded systems applications since the constant
values for a particular function parameter rarely remain the
same, but vary between a small set of constant values. The
second parameter mentioned above, defining the frequency
of the occurrence of identical constant values, must thus be
chosen adequately to allow procedure cloning at all.

Procedure cloning is performed in three stages where each
function is analyzed separately. In the first step, constant
arguments and the number of their occurrences for each
function parameter are collected. Hereafter, the collected
arguments that do not meet the specified frequency are re-
moved and omitted for procedure cloning. This is done by
counting all function calls the considered argument is used
in and comparing it to the number of parameter occurrences
from the previous step. In the final stage, all constant argu-
ments that were not removed are used for procedure cloning.
The original function is cloned and assigned a unique func-
tion name. The specialized argument is removed from the
parameter list and directly propagated into the code by re-
placing the parameter variables by the constant value. Fi-
nally, the original function calls within the source code are
redirected to the cloned functions.

3.2 Improvements to the WCET
Primarily, the objective of procedure cloning is to reduce

the ACET. But obviously, the optimization also reduces the
WCET when code considered by the timing analyzer is im-
proved. These pure improvements resulting from a better
code quality, however, yield a minimal reduction of both the
ACET and WCET for typical embedded systems applica-
tions as will be indicated in the following section.

In addition to the pure code improvements mentioned
above, procedure cloning yields a program structure that

139

strongly improves the WCET analysis by making the code
more predictable. It tackles the two major problems dis-
cussed in Section 1: the explicit specification of loop bounds
and the elimination of infeasible paths that may otherwise
contribute to the WCET for the sake of safeness. Both con-
tributions of procedure cloning enhance the tightness of the
estimates since they result in a more accurate description of
the program behavior.

Typical embedded software is loop-dominated. As studies
on MiBench benchmarks [7] pointed out, many loops are
located in functions and their number of iterations is often
specified by function parameters as shown on the left-hand
side of Figure 2. These functions, in turn, are called multiple
times with varying constant arguments resulting in strongly
deviating execution times spent in the loops.

To statically analyze these loops, the timing analyzer must
be provided manually with loop iteration counts. To pre-
serve WCET safeness, the loops are annotated with the
maximal number of iteration counts the loop is ever exe-
cuted with, i. e. the annotations must represent the global
maximum of iterations for this loop.

These loose loop annotations can be specified more pre-
cisely after procedure cloning. When a function is called
multiple times with varying constant values that dictate the
upper loop bound, this is exploited by the transformation
(see right-hand side of Figure 2). The variables in the spe-
cialized functions are replaced by the individual constants
and thus provide clones that are dedicated to individual loop
executions. The new user loop annotations can focus on
each specialized function explicitly and annotate their loops
more realistically. During WCET analysis with restricted
contexts, these loops contribute with their corrected maxi-
mal number of iterations. Thus, the transformation aims at
making the code more predictable.

Yet another code simplification has a positive effect on
the tightness of the WCET estimates. Loops often consist
of multiple paths. Some paths may have the longest exe-
cution time (WC path in the loop) but are never executed
due to unfulfilled conditions. A conservative timing analysis
with restricted contexts must assume the worst-case scenario
where each loop iteration goes through the WC path. After
procedure cloning, these infeasible paths can be eliminated
in the specialized functions.

This is illustrated by an example. As shown in function f1
on the right-hand side of Figure 2, the path through the if -
block is never traversed for parameter n = 5. Compiler data-
and control-flow analyses like Loop Nest Splitting [6] are ca-
pable of detecting conditions that are evaluated as being
always false and remove them from the control-flow graph.
Thus, these infeasible paths are not taken into account dur-
ing WCET analysis and don’t unnecessarily contribute to
the estimated upper timing bounds.

In the following sections, procedure cloning transforma-
tions described in this section are applied to real-world bench-
marks and their improvements concerning the WCET esti-
mates are presented.

4. EXPERIMENTAL ENVIRONMENT
This section describes the choice of benchmarks used to

evaluate the influence of procedure cloning on the WCET.
Furthermore, the benchmarking workflow is described.

The benchmarks come from the widely used MiBench
suite representing different applications typically found in

Compiler
Binary

Executable
ANSI-C
Source

Optimized
ANSI-C
Source

WCET

Timing
Analyzer

Simulator

ACET

Flow
Facts

ICD-C
Optimizer

Figure 3: Workflow of Procedure Cloning

the embedded systems domain. The first benchmark is EPIC,
an experimental lossy image compression utility. MPEG2 is
a motion estimation for frame pictures, while GSM repre-
sents a speech compression. Table 1 lists their number of
code lines, followed by the number of functions and finally
the number of loops.

Benchmark LoC # Functions # Loops
EPIC 334 6 41

MPEG2 1226 14 33
GSM 1066 36 48

Table 1: Evaluated MiBench benchmarks

All measurements were performed for two different 32bit
processors. The first was an Infineon TriCore 1796 micro-
controller. The other was an ARM7TDMI that supports
two different instruction sets: a full set of 32bit instructions
and the so called THUMB instruction set consisting of 16bit
instructions. Both modes were exploited for the evaluation
of the results.

The workflow is depicted in Figure 3. Two different bi-
nary executables are generated. One derived from the orig-
inal code that is used as reference object (marked with the
dotted line). The other binary is the resulting program after
procedure cloning and the standard optimizations constant
folding, constant propagation and dead-code elimination [6]
to remove infeasible paths. The optimizations are automat-
ically performed by a source-to-source optimizer (ICD-C
optimizer). Our parameters for procedure cloning as de-
scribed in Section 3.1 were a maximal function size of 2000
expressions and a frequency of 50% (constant argument to
be cloned must occur in at least half of all function calls).
The output of the optimizer, the optimized source code, is
provided as input for the compiler. Depending on the ar-
chitecture under test, different commercial compilers were
employed. For the TriCore processor the tricore-gcc was
used. For the ARM7TDMI the compilers armcc and tcc for
the ARM and THUMB mode, respectively, generated the
binary executable.

In the last test phase, the binaries are passed to the cycle-
true simulator to obtain the program’s ACET. In addition,
the binary executables are passed to the timing analyzer
aiT together with the configuration file containing the man-
ually generated information about the loop bounds (flow
facts). The result is the WCET for the evaluated TriCore
and ARM instructions sets for both the original and the op-
timized code. Since the ARM7TDMI does not use a cache,
code and data for the TriCore processor were mapped to
non-cached areas in order to get equivalent results. Due to
the complexity of the timing analysis as indicated in Figure
1, the number of contexts was restricted to one distinguished
context (no remarkable improvements were observed for the
distinction of two or three contexts).

140

5. RESULTS

WCET
Compared to the ACET, the impact on the WCET was enor-
mous. As presented in Figure 4, on average reductions of the
WCET by 47.56% for TriCore, 47.23% for the ARM mode
and 53.38% for the THUMB mode were achieved. In the
following, the transformations performed by the ICD-C op-
timizer are briefly discussed for each benchmark.

The WCET for the EPIC benchmark decreased by 94.61%
for the TriCore processor. Similarly remarkable improve-
ments were achieved for the ARM processor, namely 95.72%
for the ARM mode and 95.65% for the THUMB mode. This
is due to the code structure containing a large number of
nested loops. The image coder benchmark contains a func-
tion that is highly appropriate for cloning. It is a filter con-
taining 32 loops nested up to four times, and their number
of iteration counts partially depends on the function param-
eters. Furthermore, the function is called six times with dif-
ferent constant values. After procedure cloning, each func-
tion call is specialized. The passed constants are propagated
and in some cases explicitly define the upper loop bounds.
The result is tighter min / max intervals for each loop execu-
tion e.g. [1 . . . 15] (in non-optimized code) becomes [1 . . . 1]
after the transformation, meaning that the timing analyzer
can assume one loop iteration in contrast to the pessimistic
assumption of 15 iterations.

The second benchmark MPEG2 contains two functions
that were optimized by Procedure Cloning. The first func-
tion implements the Fullsearch algorithm to detect the mo-
tion of macro-blocks. It is called with two different constant
values defining the height of the image block. Within this
function, another procedure is called computing the distance
between these blocks. It is invoked with the same block
height constants as passed to its caller. These values are
used to control the number of iteration counts for multiple
loops. The source-to-source optimizer performs cloning for
each of these functions. The result is a transformed code
that has a dedicated version of the Fullsearch implementa-
tion for each block size. The loop bounds in the nested func-
tion can again be defined more precisely. As for EPIC, the
timing analysis of the loops becomes better analyzable and
thus more predictable. This is confirmed by the benchmark
results. For TriCore, the WCET after procedure cloning
is reduced to 70.08% compared to the unoptimized code.
Similar improvements were gained for the ARM processor:
the worst-case execution time was reduced to 66.75% and
66.55% for the ARM and THUMB modes, respectively. The
reason for the strong reduction is the large number of func-
tion calls for the nested function. In total, it is called more
than 1.4 million times. For the unoptimized code with im-
precise loop bound specifications, each analyzed loop con-
tributes to the overestimation.

GSM, the last evaluated benchmark, contains a function
representing a filter for the short term residual signal. The
function is called with strongly varying constants (13, 14 and
120) defining the number of iterations for its loop. Without
procedure cloning, the designer must specify the loop bounds
safely, and annotate the maximal number of loop iteration
with 120. Obviously, for all calls with the constants 13 and
14, the timing results show an overestimation since the tim-
ing analyzer assumes 120 loop iterations. Procedure cloning
solves this problem by cloning this function twice, one spe-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TriCore ARM Thumb

R
e
l.

W
C

E
T

[%
]

EPIC MPEG2 GSM Average

Figure 4: Relative WCETs after Procedure Cloning

cialized version for the constant 13 and one for 120. Due
to the small number of occurrences of the constant 14, this
argument was not considered for specialization. The origi-
nal version is kept and handles calls with the constant 14.
Due to the improved analyzability, the loops can be exactly
specified by the system designer. This has a positive effect
on the estimated WCETs. Reductions from 12.73% (ARM
mode) up to 31.03% (THUMB mode) with regard to the
WCET of the non-optimized code were achieved.

The significant WCET reductions after procedure cloning
comes basically from the possibility to tighten the min / max
intervals specifying the loop bound iterations. Another rea-
son for the success of this compiler transformation was the
fact that the specialized functions were part of the WC path.
Otherwise, their optimization would have had no effect on
the WCET. As discussed in Section 3.2, the elimination of
infeasible paths might also have positive effects on the tim-
ing results. However, for the benchmarks considered in this
paper, they were marginal as comparisons between the orig-
inal and optimized code indicated. Although some paths
could be eliminated in the cloned function, they did not im-
prove the WCET results since they had not lied on the WC
path and were thus irrelevant for the timing analysis.

ACET
To examine the impact of procedure cloning on the ACET,
the simulated execution times of the original and optimized
code were compared. The improvements were negligible.
For the EPIC benchmark, the ACET even slightly increased
between 0.02% and 3% for TriCore and THUMB mode, re-
spectively. For MPEG2, the optimization gain was between
0.21% (for TriCore) and 2.6% (for the THUMB mode). No
improvements were achieved for the GSM benchmark exe-
cuted on the ARM7TDMI, and a minimal ACET reduction
of 0.01% was observed for the TriCore processor. On aver-
age for all benchmarks, an ACET decrease between 0.06%
and 1.8% for TriCore and THUMB mode, respectively, was
achieved. The minimal degree of ACET reduction came
from the fact that the cloned functions did not provide ad-
ditional opportunities to further improve the code by the
performed source-to-source optimizations, i. e. the newly
created functions did not allow to additionally simplify the
code with the performed optimizations like constant folding.

Code size
Finally, the code size is examined. As mentioned in Section
3, the code size increase is a drawback. Each cloned function
increases the code size in particular when the functions are
large or multiple specialized copies of a function are created.
In Figure 5, the relative code size is shown. 100% corre-

141

0%

25%
50%

75%

100%

125%
150%

175%

200%

225%
250%

275%

300%

325%
350%

TriCore ARM Thumb

R
e

l.
C

o
d

e
S

iz
e

[%
]

EPIC MPEG2 GSM Average

Figure 5: Relative Code Sizes after Cloning

spond to the code size of the benchmarks before procedure
cloning. The code size of the optimized EPIC benchmark
rose to more than 300% for all instruction sets since a large
function with 32 nested loops was cloned six times. How-
ever, this increase is acceptable since the absolute code size
of the optimized code remains small, namely 21 kilobytes.
For MPEG2, the code size increased between 22.0% and
28.94% for TriCore and ARM7TDMI in the THUMB mode,
respectively. Although procedure cloning created multiple
specialized copies, they all were relatively small so that the
code size increase was acceptable. For the GSM benchmark,
the code size increase was negligible and achieved the high-
est value of 3.28% for the ARM mode. Again the reason is
that just few and small functions were specialized.

Runtime of the WCET analysis
To evaluate the impact on the complexity of the WCET
analysis, all benchmarks were analyzed in their original and
optimized version. The runtime of the timing analyzer aiT
on an AMD Sempron 3000+ with 2 GB RAM on average
increased by 14% for the analysis of the optimized code by
procedure cloning compared to the analysis of the original
code. The reason is a larger control-flow graph containing
more functions than the original one. However, concern-
ing the large WCET improvements, the increased analysis
runtime is acceptable.

6. CONCLUSIONS AND FUTURE WORK
This paper studies the positive impact of procedure cloning

on the worst-case execution time. The timing analysis of
loops is an inherent source of unpredictability since the re-
quired number of loop iterations can be rarely specified pre-
cisely. The resulting WCET is heavily overestimated. Pro-
cedure cloning improves the analyzability and thus makes
the code more predictable since specialized functions allow
an explicit definition of the loop bounds. Moreover, the op-
timization aids at detecting infeasible paths that must not
contribute to the timing analysis for tight WCET estimates.

The effects of procedure cloning were evaluated with real-
world benchmarks from the MiBench suite. The results em-
phasize the effectiveness of procedure cloning, a WCET re-
duction between 12% and 95% was achieved. In contrast,
the simulated ACET for the optimized code hardly changed
after the optimization. The results also show that the opti-
mization implies only a small overhead for the WCET ana-
lysis runtime.

In the future, we plan to incorporate a WCET-aware C
compiler into the workflow by replacing the commercial com-
pilers. This would enable an improved exploitation of pro-
cedure cloning. Currently, the compiler is not aware of

any WCET information and employs heuristics to improve
the average-case execution time. Within the WCET-aware
compiler, cloning could be guided by data provided by the
timing analyzer and primarily functions on the worst-case
path could be aggressively optimized. The integration into
a WCET-aware compiler also offers the opportunity to per-
form a trade-off between the improvements concerning the
WCET and the resulting code size. Thus, to meet the re-
strictions on the code size defined by the system, the com-
piler could evaluate the functions that produce the best gain
after specializing and exclusively optimize them.

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. Worst-Case

Execution Time Analyzer aiT for TriCore. 2007.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp.
Compiler transformations for high-performance
computing. ACM Comput. Surv., 26(4):345–420, 1994.

[3] K. D. Cooper, M. W. Hall, and K. Kennedy. A
Methodology for Procedure Cloning. Computer
Languages, 19(2):105–117, 1993.

[4] H. Falk, P. Lokuciejewski, and H. Theiling. Design of
a WCET-Aware C Compiler. In 4th IEEE Workshop
on Embedded Systems for Real-Time Multimedia,
October 2006.

[5] H. Falk and P. Marwedel. Control Flow driven
Splitting of Loop Nests at the Source Code Level. In
Proceedings of DATE, Munich, March 2003.

[6] H. Falk and M. Schwarzer. Loop Nest Splitting for
WCET-Optimization and Predictability Improvement.
In 4th IEEE Workshop on Embedded Systems for
Real-Time Multimedia, October 2006.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and T. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. pages 3–14, December 2001.

[8] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[9] S. Thesing. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. PhD
thesis, Saarland University, 2004.

[10] W. Zhao, D. Whalley, C. Healy, et al. Improving
WCET by Applying a WC Code-Positioning
Optimization. ACM Transactions on Architecture and
Code Optimization, 2(4):335–365, Dec 2005.

142

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

