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ABSTRACT This paper presents the first automatic
scheme to allocate local (stack) data in recursive functions
to scratch-pad memory (SPM) in embedded systems. A
scratch-pad is a fast directly addressed compiler-managed
SRAM memory that replaces the hardware-managed cache.
It is motivated by its significantly lower access time, energy
consumption, real-time bounds, area and overall runtime.
Existing compiler methods for allocating data to scratch-pad
are able to place only code, global, heap and non-recursive
stack data in scratch-pad memory; stack data for recursive
functions is allocated entirely in DRAM, resulting in poor
performance.

In this paper we present a dynamic yet compiler-directed
allocation method for recursive function stack data that for
the first time, is able to place a portion of recursive stack
data in scratch-pad. It has almost no software-caching over-
head, and is able to move recursive function data back and
forth between scratch-pad and DRAM to better track the
program’s locality characteristics. With our method, all
code, global, stack and heap variables can share the same
scratch-pad. When compared to placing all recursive func-
tion data in DRAM and all other variables in scratch-pad,
our results show that our method reduces the average run-
time of our benchmarks by 29.3%, and the average power
consumption by 31.1%, for the same size of scratch-pad fixed
at 5% of total data size. Furthermore, significant savings
were observed when comparing our method against cache-
based alternatives for SPM allocation. Finally, we show
results that analyze the effects of profile variation on our
allocation approach and present a modified version of our
method which minimizes variation for profile-based alloca-
tions.
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1. INTRODUCTION

In embedded systems, program data is usually stored in
one of two kinds of writable memories — SRAM or DRAM
(Static or Dynamic Random-Access Memories). SRAM is
fast but expensive while DRAM is slower (by a factor of 10
to 100) but less expensive (by a factor of 20 or more). To
combine their advantages, often a large DRAM is used to
build low-cost capacity, and then a small SRAM is added
for efficient access to frequently used data.

In desktops, the usual approach to adding SRAM is to
configure it as a hardware cache. The cache dynamically
stores a subset of the frequently used data. Caches have
been a success for desktops — a trend that is likely to con-
tinue in the future. One reason for their success is that code
compiled for caches is portable to different sizes of cache;
on the other hand, code compiled for scratch-pad is usually
customized for one size of scratch-pad. Binary portability is
valuable for desktops, where independently distributed bi-
naries must work on any cache size. In embedded systems,
however, the software is usually considered part of the co-
design of the system: it resides in ROM or another perma-
nent storage medium, and cannot be easily changed. Thus,
there is really no harm to the binaries being customized
to one memory size, as required by scratch pad. Source
code is still portable, however: re-compilation with a differ-
ent memory size is automatically possible in our framework.
This is not a problem, as it is already standard practice
to re-compile for better customization when a platform is
changed or upgraded.

For embedded systems, the serious overheads of caches
are less defensible. Caches incur a significant penalty in
area cost, energy, hit latency and real-time guarantees. All
of these, other than hit latency, are more important for em-
bedded systems than desktops. A detailed study [5] com-
pares caches with scratch pad. Their results are definitive: a
scratch pad has 34% smaller area and 40% lower power con-
sumption than a cache of the same capacity. These savings



are significant since the on-chip cache typically consumes
25-50% of the processor’s area and energy consumption, a
fraction that is increasing with time [5]. Even more surpris-
ing, the run-time cycle count they measured was 18% better
with a scratch pad using a simple static knapsack-based [5]
allocation algorithm, compared to a cache. Defying conven-
tional wisdom, they found absolutely no advantage to using
a cache, even in high-end embedded systems in which perfor-
mance is important. With the superior dynamic allocation
schemes proposed here, the run-time improvement will be
larger. Given the power, cost, performance and real time
advantages of scratch-pad, and no advantages of cache, it is
not surprising that scratch-pads are the most common form
of SRAM in embedded CPUs today (eg: [7, 1, 26, 34]), ahead
of caches. Trends in recent embedded designs indicate that
the dominance of scratch-pad will likely consolidate further
in the future [28, 5], for regular as well as network proces-
SOrS.

Although many embedded processors with scratch-pad ex-

ist, compiling program data to effectively use the scratch-
pad has been a challenge. Recent advances have made much
progress in compiling code, global, heap and non-recursive
stack variables into scratch-pad memory. Two classes of
compiler methods for allocating these objects to scratch-pad
exist. First, static allocation methods are those in which the
allocation does not change at run-time; these include [4, 31,
15, 3, 30] and others not listed here. In such methods, the
compiler places the most frequently used variables, as re-
vealed by profiling, in scratch pad. Placing a portion of
the stack variables in scratch-pad is not easy — [4] is the
first method to solve this difficulty by partitioning the stack
into two stacks, one for scratch-pad and one for DRAM.
Second, more recently proposed dynamic methods improve
upon static methods by allowing variables to be moved at
run-time [35, 33, 19, 38, 10]. Being able to move variables
enables tailoring the allocation to each region in the program
rather than having a fixed allocation as in a static method.
Dynamic methods aim to keep variables that are frequently
accessed in a region in scratch-pad during the execution of
that region.
Recursive functions Recursive functions are widely used
for large classes of computational problems. They are the
most natural and efficient way of programming many al-
gorithms, including those that use graphs, trees, and hi-
erarchical databases. Virtually all graph or tree-traversal
algorithms are recursive. In addition, some algorithms us-
ing arrays, such as quicksort, are also recursive. Recursive
functions are common in many embedded domains, include
communications, networking, planning, control, and trans-
portation. Indeed, we had no difficulty finding embedded
benchmarks with recursive functions. Moreover, in many of
these benchmarks, recursive functions dominated the run-
time, especially after other optimizations had been done.

Unfortunately, even the most robust of the published SPM
allocation schemes lacks support for recursive function stack
data. This is not surprising since all existing allocation
methods work by finding frequently used variables and plac-
ing them into SPM until filled. The allocator must know both
the size of each allocated variable as well as the total amount
of SPM available. Published research has dealt almost en-
tirely with program objects having a fixed size at compile-
time and run-time (code, global and stack data), although
one recent publication does present a method for heap data
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as well. For recursive functions, the stack frame size is fixed
at compile-time but not the total number of frames allocated
at runtime. Without knowing their total size, existing SPM
allocation methods must leave recursive stack data in main
memory.

Allocating recursive stack data to main memory, which is
much slower than SRAM, can cause very poor performance.
The importance of allocating recursive stack data rises dra-
matically for programs making significant use of recursive
functions, even more so when all other data has been op-
timized for SPM placement. Also, as embedded platforms
become more complex, so will their software, increasing the
likelihood that dynamic storage methods such as recursive
stack data will be used more heavily. Finally, automatic
methods for SPM placement exist only in the form of hard-
ware caches, which have higher power and execution costs
when compared against a good compiler-directed SPM allo-
cation scheme, particularly for dynamically allocated data
exhibiting randomized accesses.

This paper presents a new approach to handling recursive
stack data for allocation purposes. We first take advantage
of the fact that a recursive function has a fixed size stack
frame known at compile-time. Our approach is to examine
the runtime behavior of individual stack frames at different
depths corresponding to the discrete stack frames. Using
this information, we place the most commonly used depths,
as detected by profiling, into SPM and all other depths are
left in main memory. Finally, we also present a method
to reduce profile-dependence for allocation decisions, crucial
when dealing with dynamically allocated program data.

2. RELATED WORK

Among existing work, static methods to allocate data
to SPM include [30, 31, 5, 27, 15, 3, 4]. Static methods
are those in which the contents of SPM do not change at
run-time. Some of these [30, 5, 27] allocate only global
variables to SPM, while others [31, 15, 3, 4] can allocate
both global and non-recursive stack variables to SPM. Other
static methods [39, 32] can allocate both code and data
to SPM. These static allocation methods either use greedy
strategies to find an efficient solution, or model the prob-
lem as a knapsack problem or an integer-linear programming
problem (ILP) to find an optimal solution.

Another approach to SPM allocation are dynamic meth-
ods; in such methods the contents of the SPM can change
at run-time [24, 35, 33, 10, 25, 12, 37, 32]. The method
in [24] can place global and stack arrays while the method
in [32] can place global and code. The method in [35] allo-
cates global and stack data to SPM dynamically, with ex-
plicit compiler-inserted copying code that copies data be-
tween slow memory and SPM when profitable. All dynamic
data movement decisions are made at compile-time based on
profile information. The method by Verma et. al. in [37] is
a dynamic method that allocates code as well as global and
stack data. It uses an ILP formulation for deriving an alloca-
tion. The work in [33] also allocates code, global and stack
data, but using a polynomial-time heuristic. Finally, the
method in [10] is the first dynamic SPM allocation method
to place a portion of the heap data in the SPM, making it the
most complete to date among the SPM allocation schemes
by handling code, global, heap and non-recursive stack data.
Recursive functions None of the SPM allocation pub-
lications in the literature discuss recursive stack handling;



instead they leave such data in main memory. However a
few techniques aim to convert recursive functions into non-
recursive functions. This is best seen in the tail recursion (or
tail-end recursion) optimization [6, 8]. In tail-recursive func-
tions, stack frames at different depths can share the same
space in memory since they have non-overlapping lifetimes.
Since their total stack size is now bounded, scratch-pad al-
location is easy. However, most modern compilers such as
GCC (also our experimental platform) already implement
tail recursion optimizations. Hence all the results present in
this paper show benefits beyond those that can be achieved
by tail recursive optimizations.

Transformation methods have also been studied that con-
vert limited classes of recursive functions into other forms,
such as loops [13]. Another method performs procedure in-
lining to convert mutual recursion to direct recursion [20].
This allows use of optimization techniques that are most eas-
ily applied to directly recursive procedures. A noteworthy
publication presents a manual method for transformation of
general recursive cycles into iteration [22]. However, their
analyses and measurements show that some previously con-
sidered optimizations can actually result in slower programs.
The fact is that there are many algorithms in computer sci-
ence which are most elegantly and efficiently expressed as
recursive functions and not automatically or beneficially op-
timizable by existing methods. Indeed, as far as we know,
none of the above techniques have been implemented in com-
mercial or widely-used open-source compilers, despite being
available for decades.

3. RECURSIVE FUNCTION STACK
ALLOCATION

In order to consider recursive stack data for allocation to
scratch-pad memory (SPM), our approach is to treat each
possible recursive function instance called into creation at
runtime as an individual variable representing that particu-
lar invocation. For this approach, we set the unit size for re-
cursive function stack allocation to be the entire stack frame
for that function. The total stack frame size (allocated each
time the procedure is called) is fixed at compile-time for
functions in written in C. Of course, the trivial case when
a recursive function does not consume any stack space does
not need to be considered for SPM placement.

We choose to allocate recursive stack data to SPM at
the granularity of an entire stack frame for several reasons.
First, some architectures (like ARM) may not allocate the
entire frame upon function entry. These platforms instead
grow the stack as needed when execution reaches certain
points in the function code. For safety, we conservatively
bound the size of a recursive function instance to its to-
tal maximum frame size and not to any of the possibly
smaller sizes seen at runtime during different visits to the
function !. Second, by not attempting to handle individ-
ual variables within a stack frame, we greatly reduce the
bookkeeping and code-insertion overheads required by our
method to control the allocation of individual instances. Fi-
nally, most recursive functions tend to contain a relatively

'For this same reason, we do not set the granularity down
to the individual variable level as some variables may not
appear in all invocations at runtime, severely complicating
safe dynamic allocation decisions along all possible program
paths
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int foo() { |
code 1 Region 1
code 2 <}>
loop 1 { }Region 2
code3_|

loop 2

}Region 3
} _

code 4 %Region 4
}

codeS
Figure 1: A method foo() is divided into code re-
gions

small number of stack variables and consume small amounts
of space per frame as compared to non-recursive functions,
making the stack frame an attractive abstraction without
significant loss of fine-grain control.

To implement our approach to allocating recursive func-

tion stack data, we have developed a complete compiler-
directed analysis and allocation framework based on the
best existing dynamic SPM allocation scheme for heap data
from [10]. This publication describes a heuristic approach
to dynamic placement of code, global, stack (non-recursive)
and heap data into SPM for embedded systems. Our method
can be integrated directly to such a scheme using the details
provided in the next few paragraphs.
Dynamic SPM allocation framework Since our overall
SPM allocation framework is dynamic — in that the contents
of SPM are different in different regions of the program — we
need to define what our choice of regions is. Our SPM al-
location strategy has a fixed allocation inside each region,
although the allocation can change at region boundaries.
Since our choice of regions is mostly orthogonal to our allo-
cation strategy for recursive frames, we only briefly outline
our choice of regions here; the region definition is borrowed
from our earlier work in [33]. Regions are defined to be-
gin at (i) the start of each procedure; and (ii) just before
the start, and at the end of every loop (even inner loops of
nested loops). A region ends when the next one begins. An
example of how code is partitioned into regions is in Fig-
ure 1. Other choice of regions are possible, but we have not
explored them since our experiments have found the above
choice to perform well.

For code, global and stack our earlier work has found
dynamic allocation to be superior to static allocation [33].
However within recursive functions, for reasons mentioned
above, each recursive stack frame goes to a single memory
(although different frames go to different regions.) Hence
inside recursive functions, there is little benefit do dividing
into regions, and it would also complicate code generation.
For this reason, each recursive function is always consid-
ered a single region, regardless of any loops inside it. Of
course, recursive functions are in different regions from any
non-recursive functions that call them, or that they call.
Program Profiling When attempting to allocate recur-
sive stack data, it is important to gather both static and dy-
namic profile information on the program being optimized.
Static profile information can be obtained from a compiler
by estimating the frequency of code. For example, most
register allocators estimate the iteration count of all loops
as a fixed value of 10. Nested loops are estimated with a
cumulative iteration count of 10° for loops at nesting depth
i. In contrast, dynamic profile information can be obtained



preorder(node v) {
visit(v); Name Size Acc
for each child w ofv Preorder depth 1 stack 20 100
preorder(w); }
(a) Code Preorder depth 2 stack 20 60
Preorder depth 3 stack 20 40
Name Size Acc
(c) Dynamic Profile
Preorder 20 ?

(b) Static Profile

Figure 2: Example recursive function showing (a)
function code, (b) static profile, (c) dynamic profile.

through instrumented execution of the program binary using
appropriate program inputs. Very simple programs that do
not take inputs will have an accurate program representa-
tion from only the static profile, but complex programs that
are input-dependent will have incomplete program behav-
ior information without a large amount of dynamic profile
data. When attempting to optimize dynamically allocated
variables such as recursive function stack objects, dynamic
profile information becomes much more important to obtain
a clear picture of probable program behavior at runtime.

To illustrate dynamic profiling useful for allocating recur-

sive stack data, we present a simple example of a recursive
function performing an in-order visitation of data structure
nodes forming a graph. Figure 2(a) shows pseudocode which
implements the recursive function. This function simply vis-
its each node in a graph before visiting each of its children.
Figure 2(b) shows the static profile frequency table (PFT)
for the function including extra variable information for this
function. Figure 2(c) shows the dynamic PFT for same func-
tion for a program input where the function recursed to a
maximum depth of three invocations. This last figure shows
our approach to dealing with recursive functions and their
stack variables. Our method treats each possible runtime
depth as a separate variable for profiling and allocation pur-
poses, each with its own size, access and lifetime informa-
tion.
Deciding Allocations Before proceeding further, let us
consider that what we really would like: we would like to
specify exactly the recursive depths for which stack frames
should be allocated. For example in figure 2, if we only had
space for two recursive stack frames, we would choose those
at depths 1 and 2, since those had the greatest dynamic fre-
quency of access. Another example of more frequent access
at the root of the recursive tree is presented in Figure 3.
This figure shows a tree data structure, and how accesses
are more frequent at root nodes. Recursive functions of-
ten have this behavior in that the first few frames are more
frequent. However, we have also found programs with the
exact opposite behavior, when the last few frames are more
frequent; or where some intermediate-depth frames are the
most frequent. To distinguish these cases, we need dynamic
profiling as described above.

As an example of the behavior that may result, consider
that for some program, depths 3,4 and 5 may be most fre-
quently accessed for some recursive function, and our SPM
allocator should preferentially allocate them to SPM. All
other depths (1,2,6,7,...) should be allocated to DRAM.
Our code generator should be sophisticated enough to gen-
erate code to implement this depth-specific behavior. Note
that it is incorrect to simply allocate all depths to SPM,
since the total SPM size needed for that is unbounded at
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Figure 3: Binary Tree with each node marked by its
access frequency for use by allocation analysis.

compile-time. No existing SPM allocation method is able
to distinguish between recursive depths or allocate recursive
functions to SPM.

What we need to implement the above desired allocation
is a code generation method that can create efficient code to
implement the above. At first glance it seems that unwind-
ing the recursive function by repeatedly inlining it might
help with code generation, since it provides individual copies
corresponding to each invocation depth of the function, es-
sentially cloning the function into separate related functions.
A drawback with this approach is that it is hard to deter-
mine how many times the function should be inlined in it-
self since the theoretical maximum is unbounded. Moreover
even limited inlining increases code size. For these reasons,
our approach never does inlining or cloning. Instead it takes
advantage of the behavior observed in applications using re-
cursive functions to logically split them into individual in-
stances which can each be allocated separately and safely.

The key to segmenting a recursive function into its individ-

ual invocation instances is to take advantage of its allocation
behavior at runtime. Recursive function stack frames must
be de-allocated strictly in reverse order of their creation, so
each stack frame is de-allocated once that invocation has ex-
ited and returned to its parent function. We take advantage
of this restriction to make better guarantees on predicting
the accesses to different instances of recursive variables and
correlation of different depths to access frequency of those
variables. Through judicious code insertion, it is possible for
a compiler to treat each possible depth of invocation a re-
cursive function may reach as a logically separate function,
allowing individual stack frame control for allocation to a
chosen memory area.
Code generation To actually make use of the notion of
separate recursive function instances for allocation, proper
code generation is essential. Our method begins by inserting
a few lines of code at the entry and exit points of each re-
cursive function which are used to increment and decrement
a depth counter, respectively, for each optimized function
body. This counter tracks the current invocation depth of
that function at runtime and serves as a way to virtualize a
recursive function into separate instances.

The entry point into the function is modified so that the
depth counter is checked upon entry and used to decide if
the stack pointer should be updated to an SPM location or
left at the current program value for main memory. The
most general check that is currently supported is that the
depth counter for a certain contiguous range of its values
should be allocated to SPM. For example, if depths 3, 4 and
5 are to be allocated to SPM, the check is (depth_counter
> 3) or (depth_counter < 5). As another example, if
depths 1, 2 and 3 are to be allocated to SPM, the check
is depth_counter < 3. Although it is possible that the



most frequently used depths are not all contiguous, we found
in our experiments that is rare, hence our current imple-
mentation only supports a single contiguous range. When
such a rare case is found, we choose the single range of
depth counter values with the greatest cumulative frequency.
Checks for multiple contiguous ranges can be supported, but
the checking overhead will increase, so it is not clear they
would be a good idea.

Each optimized invocation of the function must also re-
serve enough space to store its stack pointer address for use
when swapping the current function in and out of SPM, if
dynamic movement of recursive stack frames is desired.
Mutual recursion When a function calls itself, that is
direct recursion. Occasionally functions do not call them-
selves, but are part of a recursive cycle of functions in the
program’s call graph. For example, function A4() may call
B(), which in turn may call A(). Recursive cycles which
span more than a single function are rare, and our own large
benchmark set does not contain any examples of this type
of recursion. However, to support the full range of possible
programs, we have implemented support for multi-function
recursive regions. Our solution is to increment the depth
counter at the root function in the recursive cycle — this is
the function that is called from non-recursive procedures.
Checks are inserted at each function in the recursive cycle,
as usual. If there is more than one root function in the recur-
sive cycle, then the depth counter increment can be placed
at any one of the roots.

3.1 Profile sensitivity

Profile dependence is a problem inherent to any mem-
ory allocation scheme which bases its decisions on program
profiles, whether they be compile-time (static) or runtime
(dynamic) profiles. As individual programs become more
complex, they also tend to exhibit a much higher degree
of input profile dependence in terms of execution and data
access patterns. This is particularly true for dynamically al-
located data such as heap or recursive stack objects. For ex-
ample, the most frequently accessed recursive depths could
be different for a certain input data set compared to the rep-
resentative input data set used for profiling. For such pro-
file sensitive applications, this dependence can cause poor
results with bad allocation predictions.

For some applications profile sensitivity is not a prob-
lem, as their allocation and execution patterns vary minutely
when different program inputs are applied. For other appli-
cations however, there is an intrinsic dependence between in-
put data and data allocated and accessed at runtime. Meth-
ods for optimizing dynamically allocated data must rely on
dynamic profiling of the program using typical inputs. When
basing general decisions on a limited set of profiles, it is vi-
tally important to reduce the sensitivity of the program allo-
cation scheme program profiles used. Comprehensive anal-
ysis methods greatly increase the chance that a chosen allo-
cation will work well for the majority of expected program
inputs, particularly when dynamically allocated memory ac-
counts for a sizable percentage of total data accesses. Our
approach to reducing profile sensitivity lies in accounting
for both the static program profile and as many dynamic
profiles as can be obtained from representative inputs.

We take the following steps to improve the robustness of
performance improvements across data sets. First we cre-
ate the profile frequency tables (PFTs) for each region for
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Variable Size | Input | Input Average
Name (bytes) | set 1 | set 2 | Frequency
Preorder Code 28 200 180 190
Preorder depth 1 stack 20 100 80 90
Preorder depth 2 stack 20 60 66 63
Preorder depth 3 stack 20 40 34 37
Global G 4 20 18 19

Figure 4: Dynamic profile frequency table for the
recursive program region in figure 2(a). This is a
more complete version of figure 2(c) with additional
variables and an additional data set 2.

each program input, containing the code frequency of that
region, as well as the profile frequency of variables accessed
in that region. For recursive functions (which always con-
tain only one region), the PFT should contain one row per
stack depth. An example of the complete PFT for the recur-
sive function region in figure 2(a) is in figure 4. This is an
extended version of the PFT in figure 2(c), but containing
extra rows for the code block, and for a global variable G
accessed in the region (not shown in the code). The second-
to-last column of figure 4 shows the access frequencies for an
extra data set (numbered input data set 2). The last column
shows the average access frequency across data sets 1 and 2
for each variable. This average is used in the calculation of
the depths to be allocated to SPM, instead of the frequen-
cies from only one data set. This averaging mechanism is
a good way to prevent the profile data from being misled
by extremes in input data sets. We have found that this
averaging improves the robustness of the performance gain
across data sets by avoiding over-specialization for any one
data set.

4. RESULTS

This section presents the results obtained by comparing
our allocation method for recursive function stack data against
the usual practice of placing such data in DRAM, for a vari-
ety of compiler and architecture configurations. For compar-
ison, since there exists no other automatic compiler methods
to handle recursive function stack data, we use the most gen-
eral existing compiler-directed SPM allocation scheme for
code, global, heap and non-recursive stack data from [10].
The scheme in [10] is chosen for comparison since it is one of
the only schemes in the literature that can also handle heap
data. Its handling of code, global and non-recursive stack
data is based on the dynamic method in [33]. Hence the
comparison method represents the state-of-the-art method
for SPM allocation today.

Our method for allocation of recursive stack data is built
on top of the comparison scheme and augments its capabili-
ties. Since our method and the comparison are implemented
in the same compiler and simulation environment, the com-
parison is fair. All applications are compiled automatically
using full optimization levels without requiring the user to
specify anything other than the SPM space available on the
target platform. An external DRAM with 20-cycle latency,



an external Flash memory of 20-cycle latency, and an inter-
nal SPM (SRAM) with 1-cycle latency is simulated in the
default configuration. Flash is used to store code; DRAM
and SPM store program data. The default configuration
has an SPM size which is 5% of the total data size of the
program. This was chosen due to the wide range of data
sizes seen across the benchmark suite. The total data size
for a program is the maximum memory occupancy during
the course of its execution and not simply a sum of the total
data objects allocated throughout its lifetime. The DRAM
size, of course, is assumed to be large enough to hold all
program data.

Methodology Details Our compiler-based allocation me-
thod is implemented on the GNU Compiler Collection(GCC)
v4.1 cross-compiler[11] released by CodeSourcery and tar-
geting the ARM vbe embedded processor family[16]. Execu-
tion results are obtained from an ARM simulator included
as part of the Gnu Debugger (GDB) v6.2 software, aug-
mented to accurately model its execution and power char-
acteristics. The energy consumed by programs is estimated
using the instruction-level power model proposed in[21] us-
ing ARM specific information from[29]. To model SPM, we
have adopted an approach similar to those in [5],[32] and
[18], in which we simplify the CACTI[9] estimation model
to match an SRAM memory module. We have also incor-
porated the DRAM power estimation model provided by
MICRON [17] for their external DDR Synchronous DRAM
chip [23]. All devices were simulated at 200MHz with an
operating voltage of 1.5V.

Benchmark Suite For our experiments, we gathered a
large number of freely available applications suited to the
embedded domain. All applications make use of code, global,
stack, heap and recursive stack data and have not been
modified. Figure 5 shows important statistics from each
program. Each program contains between 1-100 unique re-
cursive stack instances. For the set, recursive stack data
makes up less than 1% of the data size, yet recursive stack
accesses make up more than 50% of total accesses for fully
half of the programs. At only 5% SPM, our method is able
to place more than 90% of all recursive stack accesses into
SPM for 70% of the benchmarks. As with any allocation
method, improvement is proportionate to the contribution
of the optimized variable to total program runtime.
Runtime and energy gain Figure 6 compares the nor-
malized runtime from our method versus from the existing
practice of placing all recursive stack data in DRAM. With-
out our method, this SRAM is used only by code, global,
heap and non-recursive stack data; with our method the
SRAM is shared by all types of variables. The figure shows
that the average runtime reduces by 29.3% by using our
method for the exact same architecture. The large average
improvement shows the potential of our method to reduce
runtime of recursive applications beyond today’s state-of-
the-art.

In general, runtime and energy improvements from alloca-
tion of recursive stack data to SPM are proportional to the
percentage of data accesses made to recursive data, and in-
versely proportional to the percentage of the program data
size consumed by recursive stack variables. Applications
with a small percentage of accesses going to recursive data
will not benefit greatly from our scheme, and can be seen in
the performance of Anagram, Cfrac, Epic, MST and Patri-
cia. Other applications in our set are almost dominated by

70

Runtime Gain %
(3
o

Figure 6: Normalized runtime from using our method

versus allocating heap data in DRAM.
100

Energy Reduction %
=N WwahHOO
oo o0oo0oo

< E L
RO
v

Figure 7: Normalized energy consumption comparing
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recursive functions and more than half of all data accesses
are made to recursive stack frame. This is the case in Bh,
Bisort, Health, Perimeter, Treeadd, Treesort, Trie and Tsp.
Some applications may have high percentages of recursive
stack accesses, but cannot be easily placed at 5% spm due
to allocation pressure from more important code and other
variables at limited SPM sizes. This is the case in Qbsort,
where most recursive data is placed at 10% SPM and larger
sizes. Yacr is also interesting in that the allocation of re-
cursive data is done statically and reduces the transfer costs
incurred by non-recursive functions allocated by the baseline
method. Other programs with modest amounts of recursive
stack accesses will show more modest improvements in run-
time, such as Voronoi.

Energy gain Figure 7 compares the energy consumption
of programs using our method versus placing recursive stack
data in DRAM. The figure shows an average reduction of
31.1% in energy consumption using our method. This result
demonstrates that our approach has the potential to not only
significantly improve runtime, but also energy consumption.
While our method primarily seeks to reduce runtime, this
corresponds with a proportionate reduction in the energy
consumption of the system for applications in our experi-
ments. The energy reduction from SPM allocation for two
reasons: because SRAM cells take less energy to access than
DRAM cells; but much more importantly, the latency sav-
ing with SRAM means the processor pipeline is stalled for
less time, saving on processor idle-cycle energy, which is very
significant.

Reduction in recursive stack DRAM accesses Fig-
ure 8 shows the percentage of memory accesses to recursive
stack data going to DRAM after applying our method. In
this figure, any applications without a bar indicate that our
method was able to allocate all accessed recursive stack vari-
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Benchmark Source PtrDist | Olden | Olden [MallocBenchMediaBench Olden |Olden|MiBench| Olden |McCat Suitq Olden |LLVM SuitgMcCat Suitel Olden | Olden |PtrDist
% Data that is Rec. Stack 0.08 0.93 | 0.57 0.20 0.03 0.04 0 0.02 0.06 0.04 0.03 0.02 0.18 0.06 | 0.05 [ 0.03
% Data Access by Rec.Stack 0.07 | 58.20 | 66.08 1.02 0.15 7414 11.07| 2.71 78.18 15.64 [97.70]| 56.34 68.79 [50.89| 8.86 |12.48
% Rec. Access to SPM 100 96.78 | 41.87 0 100 99.75 | 100 | 97.03 | 99.54 0 100 100 92.21 28.68 [ 83.58198.90
# Unique Rec. Stack Depths 1 18 22 5 32 11 1 6 24 13 21 15 106 14 11 45
Figure 5: Benchmark Statistics Table.
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to DRAM.

ables into an SPM of 5% data size. The number of DRAM
accesses is sometimes increased by the DRAM-to-SPM copy-
ing code at the beginning of dynamic regions, but is reduced
much more by the increased locality afforded by SPM. Con-
sidering both effects, the average net reduction across bench-
marks is a significant 77.4% reduction in DRAM accesses for
an SPM size that is only 5% of the total data size. Analyzing
the results shows that our method was able to place many
important recursive stack variables into SRAM without in-
volving transfers, explaining the high reduction in DRAM
accesses for many benchmarks. This was somtimes corre-
lated with a small increase in transfers for less important
variables, which were evicted to make room for the more
frequently accessed recursive stack variables.

Effect of varying SPM size Figure 9 shows the effect
of increasing SRAM size on the percentage gain in runtime
from our method. The SRAM size is expressed as the per-
centage of the total data size for the application. The av-
erage runtime gain from our method varies from 29.3% to
39.5%, when the scratch-pad size percentage is varied from
5% to 25%. From this we see that increasing the SRAM
space beyond 5% gives only a relatively small additional
benefit on average. This is because only a small fraction of
the program data is frequently used. A similar effect is seen
for caches: a very large cache does not yield much better
performance than a moderately sized cache [14]. We also
observed a reduction in energy consumption ranging from
31.1% to 43.5% when spm size is varied (not shown). The
results from this experiment reinforce the effectiveness of our
technique for a range of SPM sizes in embedded platforms.

5. COMPARISON WITH CACHES

This section compares the performance of our method
for scratch-pad memories (SPM) versus alternative architec-
tures using either cache memory alone, SPM alone or cache
and SPM together. It is important to note that our method
is useful regardless of this comparison because there are a
great number of embedded architectures which have SPM
and DRAM, but have no data cache. These architectures
are popular because SPMs are simple to design and verify,
and provide better real-time guarantees for global and stack
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Figure 9: Effect of varying SPM size on runtime im-
provement.

data [40], power consumption, and cost [2, 32, 37, 5] com-
pared to caches. Nevertheless, it is interesting to see how
our method compares against processors containing caches.

Our dynamic SPM allocation method shares similarities
with a cache memory design but also has some important
differences. Like caches our method gives preference to more
frequently accessed variables by allocating them more space
in SPM. One advantage of our method is that it avoids copy-
ing infrequently used data to fast memory; a cache copies
in infrequent data when accessed, possibly evicting frequent
data. One downside of our method is that a cache retains
the used subset of recursive stack variables in SRAM, while
our method retains a fixed subset.

We compare three architectures (i) an SPM-only architec-
ture; (ii) a cache-only architecture; and (iii) an architecture
with both SPM and cache of equal area. To ensure a fair
comparison the total silicon area of fast memory (SPM or
cache) is equal in all three architectures and roughly equal
to the silicon area of the SPM in our main results section
(which holds 5% of the memory footprint for each bench-
mark). Since cache must be a power of two in size and Cacti
has a minimum line size of 8 bytes, the sizes of caches are
not infinitely adjustable. To overcome this difficulty we first
fix the size of cache whose SPM-equivalent in area holds the
nearest to 5% of the data size. Then an SPM of the same
area is chosen; this is easier since SPM sizes are less con-
strained. For an SPM and cache of equal area the cache has
lower data capacity because of the area overhead of tags and
other control circuitry. Area and energy estimates for cache
and SPM are obtained from Cacti [9, 41]. The unified cache
simulated is direct-mapped (better hit rate for very small
cache sizes), has a line size of 8 bytes (minimum supported
by Cacti), and is in 0.5 micron technology. The SPM is of
the same technology but we remove the tag memory array,
tag column multiplexers, tag sense amplifiers and tag output
drivers in Cacti that are not needed for SPM. The Dinero
cache simulator [36] is used to obtain run-time results; it is
combined with Cacti’s energy estimates per access to yield
the energy results.
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Figure 10: Normalized run-times for architectures con-
taining different combinations of SPM and cache.

Figure 10 shows the normalized run-times for different ar-
chitecture and compiler pairs, obtained for all benchmarks.
The first bar is without our recursive stack allocation meth-
ods for the SPM-only design, against which the other bars
are normalized. The second bar shows the runtime for the
SPM-only design when we also apply our recursive stack al-
location method. The third and fourth bars are similar to
the first and second, except that for these two we have a SPM
and cache available on the same platform. The third bar
shows the results when we allocate code, global, heap and
non-recursive stack objects to SPM and let the cache handle
all recursive stack accesses. With a cached DRAM present,
both the transfers required for our methods as well as stan-
dard DRAM memory accesses are accelerated through the
cache. The fourth bar corresponds to the case when we ap-
ply our full SPM allocation scheme to all data objects, and
let the cache handle all DRAM accesses made, again im-
proving transfers and accesses to DRAM. The fifth and final
bar is for the cache only architecture where all data resides
in DRAM and is accessed through the cache only.

From the results shown in figure 10, we see that the cache-
only approach performs significantly worse than any of the
other methods on average. This correlates with our results
from previous work on heap data allocation, where we found
that very small caches perform very poorly for programs
that make heavy use of dynamically allocated data, usually
causing "‘cache thrashing” at runtime. The scenarios where
our method was applied on the Cache + SPM platform per-
formed better than the cache-only scenario, but failed to
reach the performance of the SPM-only hardware platform
using a compiler-directed dynamic allocation scheme. Fi-
nally, the scenario where our allocation scheme is applied
to an SPM-only platform performed the best with a 32.6%
improvement in runtime compared to the baseline, and a
remarkable 72.1% improvement on average over the cache-
only architecture, which itself performed 40.45% worse than
the baseline. Figure 11 shows the normalized energy con-
sumption for the same configurations as in figure 10, and
tracks the execution results.

It is interesting to analyze the strengths and weaknesses
of our method versus caches in the light of these results.
From careful analysis of individual benchmark results, we
have found that in many cases, caches simply do not per-
form well for dynamically allocated program data, partic-
ularly at small sizes where cache conflicts are more com-
mon. Comparing the results of the SPM + cache scenar-
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Figure 11: Normalized energy usage averaged across all
benchmarks for different architecture/compiler pairs.

ios, they show that caches generally have a much harder
time with recursive stack data (and heap) than with non-
recursive stack and global data. The most common use of
recursive functions in applications is for processing of dy-
namic data structures such as lists, trees and graphs. Dy-
namic and recursive traversal of such data structures is often
unlocalized with pointer reference chains tending to access
non-sequential memory locations; both are problematic for
caches. Caches, on the other hand, perform best by localiz-
ing sequential memory accesses from applications such as a
media encoders and are also able to localize accesses to vari-
ables too large to place in SPM. The cache scenarios also
tended to make useless cache transfers for data which our
method left in main memory. We found that a great deal
of program data should always remain in main memory, as
transferring it in and out for only a few accesses is seriously
detrimental to efficiency.

Furthermore, when the runtime stack for a recursive func-
tion is viewed as a stacked memory array, most recursive
functions also tend to make most of their memory accesses
at either the deepest or shallowest levels of recursion. Our
method is able to select which invocations of a recursive
function are placed in SPM and allowed to evict other vari-
ables. Caches, on the other hand, must transfer a cache line
from DRAM to SRAM for every access miss incurred. Of-
ten in recursive functions, the entire recursive stack frame
will be loaded into SRAM, evicting more useful data and
deteriorating the performance of cache-based systems.

6. PROFILE SENSITIVITY

Having shown that are method is able to analyze and opti-
mize an application for a given input set, we also wish to see
how well our method performs on a nonprofiled input set.
We would also like to evaluate the performance of our pro-
file averaging pass for reducing profile sensitivity. Because
we are dealing with two very different program inputs, each
with its own data size and runtime characteristics, for these
experiments we fix the SPM size to be 5% of the larger data
size for a fair comparison. All other experiments in this pa-
per are based on input A. Other experiments (not shown)
based on input B showed some fluctuations in results for
the applications, but on average achieved runtime and en-
ergy savings within 2% of those from input A.

Figure 12 shows the runtime gain comparison results for
our profile sensitivity experiments. The first bar shows the
scenario we use profile information from input A to optimize
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Figure 13: Runtime improvement results illustrating
profile input sensitivity (Input B).

and gather results. The second bar shows the case where we
optimize based on input A’s profile, but gather results using
input B. The third bar shows the results from using input A
when we combine both inputs profiles using our averaging
pass. By examining the difference between the first and
second bars, we may observe which applications are profile
dependant in terms of their recursive stack allocations. We
present similar results in figure 13 except these are based on
input B as the primary input instead of A. In general, we
saw more sensitivity when basing an allocation on a small
program input profile and then using a much larger and more
complex input on the optimized binary. This is reflected
in the generally better performance in figure 13, where the
input B set was generally more complex and consumed a
much larger amount of runtime and energy than input A.

Looking at both sets of results, we find that our averaging
optimization is able to greatly reduce the profile sensitivity
from our allocation approach. This can be seen by com-
paring the three bars in each figure. In most cases, the
average profile results are the same or only slightly worse
when using an averaged profile versus the original profile for
each input. We find that as little as two different profile
inputs can significantly reduce the sensitivity of recursive
stack data allocations to the input profile used. These re-
sults serve to reinforce the fact that programs making heavy
use of dynamically allocated data are much more prone to
input profile dependance for allocation schemes decided at
compile-time.

7. CONCLUSION

This paper presents the first automatic scheme to allo-
cate local (stack) data in recursive functions to scratch-pad
memory (SPM) in embedded systems. With our method, all
code, global, stack and heap variables can share the same
scratch-pad dynamically at runtime. Our method is shown
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to significantly reduce runtime and energy for applications
making heavy use of recursive stack data and also outper-
forms cache-based schemes. Finally, we present an evalua-
tion and solution to the input dependence problem common
to profile-based allocation schemes which most commonly
afflicts dynamically allocated data such as heap and recur-
sive stack data.
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