
SCCP/x - A Compilation Profile to Support Testing and
Verification of Optimized Code ∗

Raimund Kirner
Institut für Technische Informatik

Technische Universität Wien, Austria
raimund@vmars.tuwien.ac.at

ABSTRACT
Embedded systems are often used in safety-critical environ-
ments. Thus, thorough testing of them is mandatory. A
quite active research area is the automatic test-case gener-
ation for testing embedded systems. To achieve high re-
targetability of the testing framework, the test-case gener-
ation has to be done at source-code level. However, it is
challenging to guarantee that the test-cases obtained from
the source code are also valid at the object-code level, since
even in safety-critical domains programs are optimized dur-
ing compilation, i.e., the compiler may also introduce new
control-flow decisions to the program.

In this paper we address the issue of how to guarantee the
preservation of structural code coverage of test data during
the optimizing compilation of the program. We analyze the
formal program properties that have to be maintained to
preserve different structural testing coverages, like branch
coverage or modified condition/decision coverage. Based on
this we describe a compilation profile that can be integrated
into a compiler to allow the enforcement of structural code-
coverage preservation. This work was motivated by current
research activities to generate test data automatically from
the source code, for example, for measurement-based timing
analysis of real-time programs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers; B.8.1 [Performance and Reliability]: Reliability,
Testing, and Fault-Tolerance

General Terms
Theory

∗This work has been partially supported by the Austrian
Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung) within the research project “Compiler-Support
for Timing Analysis” (COSTA) under contract P18925-N13
and by the ARTIST2 Network of Excellence (http://www.
artist-embedded.org/)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

1. INTRODUCTION
In embedded computing, testing is very important, since

the system behavior typically depends on the target plat-
form, like, for example, the correct timing behavior of
the system. In case of safety-critical computing, there
are additional requirements to be met. For example, the
RTCA/DO178b, which is a document describing software
engineering for commercial airborne systems, requires that
structural code coverage analysis has to be used as an addi-
tional measure to ensure adequate testing [12].

Using structural code coverage as an additional measure
for functional testing is a well-known approach. Sometimes,
structural code coverage was mistakenly referred to as pri-
mary goal in functional testing for generating test data (see
the clarification in [6]). However, there are also legitimate
testing approaches using structural code coverage as primary
metrics for automatic generation of test data. For example,
in measurement-based worst-case execution time (WCET)
analysis one is interested in achieving custom structural code
coverage of execution time measurements [14, 13, 15, 2].

Besides the mature research on applying structural code
coverage, there doesn’t seem to be any research on how to
preserve the structural code coverage when modifying the
code. Actually, this is the subject of this paper, because we
want to automatically generate test data from the source
code, since this allows easy retargeting of the framework to
new platforms. But at the same time we have to ensure that
no hidden paths in the object code have been missed when
we are doing measurement-based WCET analysis.

To describe the effects of code transformations, we devel-
oped notations described in Section 2. To analyze the effects
of structural code coverage criteria, we formally model them
in Section 2.1. Based on the formal descriptions of structural
code coverage criteria, we develop in Section 3 restrictions
that code transformations must fulfill to preserve code cov-
erage.

In Section 4 we show how to integrate this compilation
profile into a compiler and give a classification of several
code transformations. Besides conventional compilers, this
compilation profile also applicable to source-to-source trans-
formations.

2. BASIC DEFINITIONS
In this section we give a list of definitions that will be

used in the following sections to describe the properties of
structural code coverage and how to preserve them.

basic block of a program P is a code sequence of maxi-
mal length with a single entry point at the beginning

38

and with the only allowed occurrence of a control-flow
statement at its end. We denote the set of basic blocks
in a program Pi as Bi.

decision is a Boolean expression composed of conditions
that are combined by Boolean operators. If a condition
occurs more than once in the decision, each occurrence
is a distinct condition [3]. However, the input of a
condition is the set of its conditions without duplicates.
We denote the set of decisions of a program Pi as Di.

Note, that even in the C statement a = (b && c); the
expression (b && c) is a decision. This makes sense,
since due to the short-circuit evaluation semantics of
the && operater, the compiler will produce for this ex-
pression code with conditional control flow.

condition is a Boolean expression containing no Boolean
operators [3]. We denote the set of conditions of a
decision d as C(d). The set of all conditions within a
program Pi is denoted as C(Di).

P1, P2 denotes the program P before (P1) and after (P2) the
transformations for which we want to preserve struc-
tural code coverage.

test data TD is the set of test data that has been gen-
erated with structural code coverage analysis done at
source-code level. TD is a (true) subset of the pro-
gram’s input data space ID.

reachability valuation IVR(x) defines the set of valua-
tions1 of the input variables that trigger the execution
of expression x.

satisfiability valuation IVT (x),IVF (x) defines the sets of
valuations of the input variables that trigger the exe-
cution of the Boolean expression x with a certain re-
sult of x: IVT (x) is the input-data set where x evalu-
ates to True and IVF (x) is the set where x evaluates
to False. The following properties always hold for
IVT (x),IVF (x):

IVT (x) ∩ IVF (x)=∅
IVT (x) ∪ IVF (x)=IVR(x)

For example, consider the following C code:

void f (int a,b) {

if (a==3 && b==2)

return 1;

return 0;

}

For this code fragment we have IVT (b==2) = {〈3, 2〉}
(and not the larger set {〈a, 2〉 | a ∈ int}). Only those
input data that trigger the execution of condition b==2

and evaluate it to True are within IVT (b==2). Fur-
ther, is holds that IVF (b==2) = {〈3, b〉 | b ∈ int ∧ b
=
2}.

Above definitions allow to formally describe structural
code coverage criteria formally. We will also use them to
describe requirements to preserve structural code coverage.

1Valuation of a variable means the assignment of concrete
values to it. The valuation of an expression means the as-
signment of concrete values to all variables within the ex-
pression.

2.1 Structural Code-Coverage Criteria
Structural code-coverage criteria measure the flow of con-

trol between a program’s statements. The satisfaction of a
structural code-coverage criteria isn’t the primary test-case
generation strategy in functional testing. Instead, struc-
tural code-coverage achieved during testing is analyzed as a
supplementary measure to decide whether the implemented
functionality has been sufficiently tested and does not con-
tain any unintended functionality. However, there are also
applications of testing where the satisfaction of a certain
code-coverage is also the primary directive for test-data gen-
eration. For example, in measurement-based timing analysis
an estimation of the worst-case execution time (WCET) is
derived by systematic measurements [13].

In the following we review the properties of several struc-
tural code-coverage criteria:

Line coverage: is not a serious code coverage criteria, as
without strict code guidelines it is not defined what a
source line consists of. Historically, line coverage was
used as an easy hack, where tools for analyzing state-
ment coverage were missing. Thus, we do not discuss
preservation of line coverage in this work.

Statement coverage (SC) : requires that every state-
ment of the program is executed at least once.
Statement coverage alone is quite weak for functional
testing [10] and should best be considered as a
minimal requirement. Using our above definitions, we
can formally define SC as follows:

∀b∈B . (TD ∩ IVR(b))
= ∅ (1)

Decision coverage (DC): requires that each decision of
the program has been tested at least once with each
possible outcome. Decision coverage is also known as
branch coverage or edge coverage. Decision coverage
implies statement coverage.

∀d∈D. (IVT (d) ∩ TD)
= ∅ ∧ (IVF (d) ∩ TD)
= ∅ (2)

Condition coverage (CC): requires that each condition
of the program has been tested at least once with each
possible outcome. It is important to mention that CC
does not imply DC. A formal definition of CC is given
in Equation 3

∀c∈C(D). (IVT (c)∩TD)
= ∅∧(IVF (c)∩TD)
= ∅ (3)

Note that our definition requires in case of short-circuit
operators that each condition is really executed. This
is achieved by the semantics of IVT (),IVF (). However,
often definitions are used that do not explicitly con-
sider short-circuit operators (as, for example in [6]),
thus having in case of short-circut operators only a
“virtual” coverage since they do not guarantee that the
short-circuit condition is really executed for the evalu-
ation to True as well as for the evaluation to False.

Condition/Decision coverage (CDC): requires that
both, condition coverage and decision coverage are
achieved.

Modified Condition/Decision Coverage (MC/DC):
requires to show that each condition can indepen-
dently affect the outcome of the decision [12]. Thus,

39

having n conditions in a decision, n + 1 test cases
are required to achieve MC/DC. Note, that MC/DC
also implies both, DC and CC. A formal definition of
MC/DC given in [8].

The original definition of MC/DC given in the
RTCA/DO178b document [12] is rather strict, so that
people thought of some less restrictive definitions.
For example, it is not possible with the original
defintion to cover a decision with strongly coupled
conditions.2 As described in [3], there exist at least
three definitions of MC/DC:

• Unique-Cause MC/DC: this is the original defini-
tion given in [12].

• Unique-Cause + Masking MC/DC: this definition
of MC/DC is less restrictive as it requires in case
of strongly coupled conditions to test only that
one of them covers the decision (masking) [4].

• Masking MC/DC: this definition is less restrictive
than the two above, as it does not require any-
more to test whether conditions do independently
cover the decision. It focuses more on testing the
correct implementation of subexpressions within
a Boolean expression.

For sake of simplicity, we focus within this work on
the original definition of MC/DC. However, extending
the formal definition of MC/DC to Unique-Cause +
Masking MC/DC is straight-forward, as shown above.

3. PRESERVATION OF CODE COVERAGE
When transforming a program, we are interested in the

program properties that must be maintained by the code
transformation such that a structural code coverage of the
original program by the test-data set TD is preserved to
the transformed program. Based on this properties one can
adjust a src-to-src transformer or a compiler to use only
those optimizations that preserve the intended structural
code coverage.

is bool covered (x′, xT , xF) ⇒
∃S1, S2 ⊆ ID . is TFSubset(S1, S2, x

′) ∧
(S1 ⊇ IVT (xT) ∧ S2 ⊇ IVF (xF));

(4)

is TFSubset(S1, S2, x) ⇒
(S1=IVT (x) ∨ S1=IVF (x)) ∧
(S2 = (IVT (x) ∪ IVF (x)) \ S1);

The predicate symbol is bool covered (x′, xT , xF) (defined
in Equation 4) tests whether a Boolean coverage (covering
the result values True and False) of the expressions xT ,xF

implies that also the expression x′ is covered. The auxiliary
symbol is TFSubset(S1, S2, x) states that one of the input-
data subsets S1,S2 matches the input data set IVT (x) and
the other one matches the input data set IVF (x). The sym-
bol is bool covered (x′, xT , xF) is used in the following on the
discussion of coverage preservation of the different coverage
metrics.

2Two conditions c1,c2 are strongly coupled, iff IVT (c1) =
IVT (c2)

In the following subsections we show the program proper-
ties that have to be maintained by the code transformations
to preserve the different structural code coverage criteria.
The preservation of the MC/DC code coverage is described
in [8].

3.1 Statement Coverage (SC)

Theorem 3.1. (Preservation of SC) Assuming that a
set of test data TD achieves statement coverage on a given
program P1, then Equation 5 provides a sufficient - and with-
out further knowledge about the program and the test data,
also necessary - criterion for guaranteeing preservation of
statement coverage on a transformed program P2.
(Proof given in [8])

∀b′∈B2 ∃b∈B1. IVR(b′) ⊇ IVR(b) (5)

3.2 Condition Coverage (CC)

Theorem 3.2. (Preservation of CC) Assuming that a
set of test data TD achieves condition coverage on a given
program P1, then Equation 6 provides a sufficient - and with-
out further knowledge about the program and the test data,
also necessary - criterion for guaranteeing preservation of
condition coverage on a transformed program P2.

∀c′∈C(D2) ∃c1, c2∈C(D1). is bool covered(c′, c1, c2) (6)

Proof (Preservation of CC): Part 1, showing sufficiency:
Since TD is assumed to achieve CC on P1, it holds for each
c ∈ C(D1) that for each c′ ∈ C(D2) (IVT (c) ∩ TD)
= ∅ and
(IVF (c) ∩ TD)
= ∅. Since Equation 6 states that

∃c∈C(D1). (IVT (c′) ⊇ IVT (c) ∨ IVT (c′) ⊇ IVF (c)) and
∃c∈C(D1). (IVF (c′) ⊇ IVF (c) ∨ IVF (c′) ⊇ IVT (c)), it

follows that for each c′ ∈ C(D2) we also have (IVT (c′) ∩
TD)
= ∅ and (IVF (c′)∩TD)
= ∅. Thus, CC is preserved at
P2.
Part 2, showing necessity by indirect proof: Assuming there
exists a condition c′ ∈ C(D2) of P2 such that for all condi-
tions c1, c2 ∈ C(D1) of P1 it either holds that

a) ¬(IVT (c′) ⊇ IVT (c1) ∨ IVT (c′) ⊇ IVF (c1)), and
b) ¬(IVF (c′) ⊇ IVF (c2) ∨ IVF (c′) ⊇ IVT (c2)), then

it can happen that
a) ∀c1∈C(D1). TD∩IVT (c′)∩(IVT (c1)∪IVF (c2)) = ∅,

or
b) ∀c2∈C(D1). TD∩IVF (c′)∩(IVF (c2)∪IVT (c2)) = ∅,

which in both cases violates the preservation of CC.

3.3 Decision Coverage (DC)

Theorem 3.3. (Preservation of DC) Assuming that
a set of test data TD achieves decision coverage on a given
program P1, then Equation 7 provides a sufficient - and with-
out further knowledge about the program and the test data,
also necessary - criterion for guaranteeing preservation of
decision coverage on a transformed program P2.
(Proof given in [8])

∀d′∈D2 ∃dT∈D1 ∃dF∈D1. is bool covered (d′, dT , dF) (7)

40

4. INTEGRATION INTO COMPILER
The final goal of this research would be to have a compiler

where the user can select compilation profiles that ensure
that structural code coverage criteria are preserved during
optimizing compilation. For example, the compiler might
be started with a command line option like

cc --SCCP/DC file.c

to enable structural code coverage preservation of decision
coverage (DC). Of course, the suffix “DC” may be replaced
by any other code coverage criteria of which the compiler is
able to preserve coverage. The compiler will be restricted
to use only those code transformations that do not disrupt
a given structural code coverage.

The formal criteria that must be fulfilled to preserve a
given structural code coverage criteria are presented in Sec-
tion 3. The interesting question is, how to use these criteria
to decide on a series of code transformations whether they
preserve the interested structural code coverage.

One possible approach would be to formalize each code
transformation in an axiomatic semantics [5, 7], i.e., by pro-
viding preconditions, postconditions and invariants of the
code transformation. A research area quite related to this
is the translation validation of optimizing compilers [11, 16].
Within this work, we analyze the transformations manually.
Once, a classification of code transformations is available, in-
cluding this profile into a compiler shouldn’t be that much
effort. Thus, we hope that also commercial compiler vendors
will adopt the idea and integrate it into their compilers.

4.1 Classification of Code Transformations
There are two types of code transformations that challenge

the preservation of structural code coverage:

• transformations that change the reachability of state-
ments or conditions. For example, reordering the con-
ditions within a decision can change the reachability
of conditions and thus also statements.

• transformations that add new conditional control-flow
paths into the program. For example, branch opti-
mization can introduce new conditional branches.

Sometimes, the effects of code transformations are not
quite obvious. For example, even common subexpression
elimination (aka CSE) can modify the control-flow paths,
since a subexpression can also contain conditional control
flow, as for example, the C operators && and || do.

A summary of several code transformations used in op-
timizing compilers is given in Table 1. The column Trans-
formation lists the name of different code transformations.
We do not describe these transformations here; one can find
detailed descriptions of them in [1, 9]. The column Cat de-
scribes how the control flow is changed: control flow is not
changed (=), paths are removed (⊥), paths are added (+), or
paths are modified (�). Paths get added by introducing new
conditions, or splitting existing ones. Paths get removed by
removing or joining existing conditions. We say that paths
get modified, if the criteria for both, adding and removing do
apply. The four right-most columns states whether the code
transformation preserves the given structural code coverage
(
√

) or not (-). Classifications given in parenthesis mean
that there is a different effect between typical implementa-
tions and the generic form of a code transformation.

Transformation Cat SC CC DC MC/DC
Algebraic simplif. (=) (

√
) (

√
) (

√
) (

√
)

CSE � √ √ √ √
Constant folding =

√ √ √ √
Branch optimization � - - - -
Empty loop removal ⊥ √ √ √ √
Loop blocking � - - - -
Loop fusion � √ √ √ √
Loop interchange � - - - -
Loop inversion +

√
- - -

Loop peeling � - - - -
Loop unrolling � - - - -
Software pipelining (�) - - - -
Unreachable code ⊥ √ √ √ √
elimination
Useless code elimin. ⊥ √ √ √ √

Table 1: Classification of Code Transformations
Algebraic simplification preserves the coverage criteria in

case of common implementations that do not introduce new
operators with conditional control flow. However, the cate-
gorizations are given in parenthesis, since special implemen-
tations may also introduce new operators that contain con-
tain conditional control flow that split the set IVR() of the
expression into two sets IVT () and IVF (), in which case no
preservation of code coverage is possible. CSE might move
expressions with conditional control flow, however their cov-
erage is preserved, as for their conditions c the sets IVR(c),
IVT (c), and IVF (c) are not changed. Constant folding pre-
serves code coverage because it does not shrink the sets
IVR(), IVT (), and IVF () of any decision or condition.

Branch optimization does not guarantee code coverage as
it can shrink the sets IVR(), IVT (), and IVF () of decisions
or conditions.

Loop fusion can introduce new paths because the bodies
of the fused loops get merged. However, as both original
loops have the same iteration count, the sets IVR(), IVT (),
and IVF () of decisions or conditions inside the loop bodies
do not change, thus preserving all code coverages.

Loop inversion splits the loop exit decision d into two sep-
arate decisions, i.e., it splits the sets IVR(d), IVT (d), and
IVF (d), thus all coverages except SC are not preserved. SC
is preserved, because the set IVR() of the loop body may
not be changed.

Loop blocking, loop interchange, loop peeling, software
pipelining, and loop unrolling do not preserve any of the
mentioned code coverage, as none of the coverage criteria
guarantees that all paths within the original loop are cov-
ered, as they may, for example, split the sets IVR(), IVT (),
and IVF () of decisions or conditions.

Empty loop removal, unreachable code elimination, and
useless code elimination may only reduce the number of
paths, in which case the sets IVR(), IVT (), and IVF () of de-
cisions or conditions may only increase; thus, all mentioned
code-coverage metrics are preserved.

As a final note, one should take the results of this ta-
ble with care, since every compiler vendor may implement
transformations with the same name slightly different.

4.2 Assembly-Code Generation
There is a general difference between source-to-source pro-

gram transformations and assembly code generation. Doing
source-to-source transformations, the destination language
still provides the same features as the target language to

41

code control-flow decisions composed of multiple conditions.
However, when generating assembly code, it happens that
the instruction set of most processors does not include in-
structions with complex control-flow decisions. Thus, nu-
merous operations are used to set Boolean flags and a condi-
tional jump evaluates these flags to decide whether to trans-
fer control to the jump target or not. Thus, at assembly
code there is typically no distinction between decision and
condition, as all decisions contail only one condition.

As a consequence, at assembly level there is no difference
between decision coverage (branch coverage), condition cov-
erage, and MC/DC. To give an example of how generated
assembly code would look like, consider the following simple
C program code:

if (a && (b || c)) { ... }

An example of a possible assembly code structure for this
code would be

if (!a) goto skip;

if (b) goto process;

if (!c) goto skip;

process:

...

skip:

In the above example, every condition has become its own
decision, though sometimes being inverted. And as long as
the compiler uses such a code generation schema, it holds
on assembly level that branch coverage is the same as CC,
DC, or MC/DC.

5. SUMMARY AND CONCLUSION
Preserving structural code coverage seems to be an al-

most new field of research. Our motivation is to ensure
that measurement-based worst-case execution time (WCET)
analysis based on test data derived from the source code re-
ally covers the intended execution paths, and that there are
no code structures missed by the tests. Current practice is
to analyze the coverage at object-code level, requiring addi-
tional analysis tools that support the concrete platform.

In this paper we worked out the fundamentals of how to
achieve preservation of structural code coverage when trans-
forming programs. While our original motivation was to
achieve solely decision coverage on assembly code, we an-
alyzed four different structural code coverage criteria and
developed criteria of how to preserve them: statement cov-
erage (SC), decision coverage (DC), condition coverage (CC)
and modified condition/decision coverage (MC/DC).

First classifications of code transformations, done manu-
ally based on the formal criteria, have shown that the crite-
ria are helpful to decide whether a code transformation pre-
serves a given structural code coverage. Future work would
be to apply this classification in a more formal way, e.g., by
formalizing the transformations themself and using formal
verification to decide whether the preservation of coverage
is achieved. Further, we plan to implement this approach in
an open source compiler and perform a quantitative analysis
of the impact on the WCET when restricting the allowed set
of code transformations to preserve a specific code coverage.

6. REFERENCES
[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler

transformations for high-performance computing.
ACM Computing Surveys, 26(4):345–420, 1994.

[2] G. Bernat, A. Colin, and S. M. Petters. WCET
analysis of probabilistic hard real-time systems. In
Proc. 23rd Real-Time Systems Symposium, pages
279–288, Austin, Texas, USA, Dec. 2002.

[3] J. J. Chilenski. An investigation of three forms of the
modified condition decision coverage (mcdc) criterion.
Technical Report DOT/FAA/AR-01/18, Boeing
Commercial Airplane Group, Apr. 2001.

[4] J. J. Chilenski and S. Miller. Applicability of modified
condition decision coverage to software testing.
Software Engineering Journal, 7(5), Sep. 1994.

[5] R. Floyd. Assigning meaning to programs. In Proc. of
AMS Symposia in Applied Mathematics, pages 19–32,
1967.

[6] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and
L. K. Rierson. A practical tutoral on modified
condition/decision coverage. Technical Report
NASA/TM-2001-210876, National Aeronautics and
Space Administration, Hampton, Virginia, May 2001.
available in pdf format.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, Oct. 1969.

[8] R. Kirner. Formal requirements for structural
code-coverage preservation of code optimization: The
SCCP/x framework. Technical report, Technische
Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2007.

[9] S. S. Muchnick. Advanced Compiler Design &
Implementation. Morgan Kaufmann Publishers, Inc.,
1997. ISBN 1-55860-320-4.

[10] G. J. Myers. The Art of Software Testing. John Wiley
& Sons, 1979.

[11] G. C. Necula. Translation validation for an optimizing
compiler. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 83–95, Vancouver, 2000.

[12] Software considerations in airborne systems and
equipment certification. RTCA/DO-178B, 1992.

[13] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner.
Automatic timing model generation by CFG
partitioning and model checking. In Proc. Conference
on Design, Automation and Test in Europe
(DATE’05), pages 606–611, Munich, Germany, Mar.
2005. IEEE.

[14] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner.
Measurement-based worst-case execution time
analysis. In Proc. 3rd IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous
Systems (SEUS’05), pages 7–10, Seattle, Washington,
May 2005.

[15] F. Wolf, J. Kruse, and R. Ernst. Segment-wise timing
and power measurement in software emulation. In
Proc. IEEE/ACM Design, Automation and Test in
Europe Conference, Designers’ Forum, pages 165–169,
Munich, Germany, Mar. 2001.

[16] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC:
A translation validator for optimizing compilers. In
International workshop on Compiler Optimization
meets Compiler Verificaiton (COCV), pages 178–190,
Apr. 2002.

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

