
A Fast and Generic Hybrid Simulation Approach
Using C Virtual Machine

Lei Gao, Stefan Kraemer, Rainer Leupers, Gerd Ascheid, and Heinrich Meyr
Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany
{gao,kraemer,leupers}@iss.rwth-aachen.de

ABSTRACT
Instruction Set Simulators (ISSes) are important tools for
cross-platform software development. The simulation speed
is a major concern and many approaches have been proposed
to improve the performance of ISSes. A prevalent technique
is compiled simulation, which translates target programs
into host instructions. But orders of magnitude of speed de-
terioration is inevitable since the difference between target
and host Instruction Set Architectures (ISAs) can be large.
An alternative is to emulate the program without sticking
to binary compatibility. The performance problem is solved
by using native execution. However, these emulators either
require a special programming language, or a given Applica-
tion Programming Interface (API). Last but not least, it is
not trivial to integrate an emulator into a system simulator
(which provides devices, external memory, etc., that the em-
bedded programmers do care). In this paper, we propose a
fast and generic hybrid simulation approach using virtualiza-
tion technique to accelerate simulation and simulator-based
debugging of C programs. A novel virtual coprocessor (VCP)
is introduced as a processing element which executes C func-
tions at high speed. This approach is C89 compliant and
compatible with third party libraries and platform depen-
dent code. It is also retargetable and can be integrated with
existing ISSes. Two different ISAs are supported at present:
MIPS and mAgic DSP. The average execution speed of the
coprocessor is about 100 million simulated instructions per
second.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—environments

General Terms
Design

Keywords
Simulation, Debugging, Virtual Machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

1. INTRODUCTION
Embedded system is a booming domain with a lot of new

architectures introduced every year. Nowadays, a very short
time-to-market is usually required in hardware/software co-
design. Software development usually has to be started be-
fore the hardware platform and mature tools are available.
This forces embedded software designers to undertake quick
target-dependent developing and porting with limited tools
at hand. In this situation, both compiling and debugging
have to be performed by using cross-platform software de-
velopment tools. Such tools can be divided into two major
categories: simulation-based and emulation-based. Each has
its strengths and weaknesses.

Simulation-based approaches rely on Instruction Set Sim-
ulators (ISSes) which interpret the behavior of target pro-
grams instruction by instruction. Fidelity and flexibility
are provided by nature. For both architecture and micro-
architecture design, simulators are irreplaceable for evalua-
tion. System level simulations are also feasible when system
models for buses and devices are integrated. Generally, com-
pilers generating target binaries are also needed to support
high level programming languages. The simulation-based
approach is generic, but providing the compilation and sim-
ulation tools is not trivial. The number of host instructions
have to be used to simulate one target instruction is orders
of magnitude larger. This is an overkill for software devel-
opment. Software developers do not care much about the
architecture of the platform they are developing for, how-
ever they do need some target dependent features, e.g. the
scratch-pad RAM and DMA. The speed of ISSes limits the
work efficiency. ISS-based debugging can be extremely an-
noying if the speed is too slow.

A widely used alternative method is to sidestep the target
ISAs, which means to compile and debug the code by using
the native tool-chain of the host. The feasibility of tar-
get ISA decoupling comes from the broad existence of the
software stacks, from operating systems (OSes) to middle-
ware, from drivers to bytecode virtual machines. Given an
abstraction layer, support routines can be provided to emu-
late the software. This approach is called emulation which
sometimes is also known as virtualization. For example,
the concept of VPU [13] abstracts processors and the OSes
so that users can execute their programs before the actual
hardware is ready. This enables the system architects to in-
vestigate the mapping of the application tasks with respect
to space and time. Hardware abstraction and simulation
environment abstraction layers [34] are proposed to build
fast and accurate software simulation models by executing

3

the software and OS in the host machine natively. In those
approaches, promising performance is achieved by using na-
tive execution on the host. But the problems arise when
platform dependent code has to be supported. For instance,
programs inlined with target assembly or linked with a third
party library which is presented as target object code. At
this high abstraction layer assembly level debugging is also
suppressed, and the accuracy of performance estimation is
affected for sure. Furthermore, extra efforts to integrate ex-
isting simulation components with an emulator (or virtual
machine) have to be invested [13, 34].

By observing that the C programming language [14] has
a dominating position in embedded software development,
we propose a hybrid of the above two approaches, in which
a C virtual machine is integrated with an existing ISS, pro-
viding high simulation speed and compatibility to platform
dependent code at the same time. The relation between an
ISS and the C virtual machine is similar to that between
a processor and its coprocessor, so we call it virtual copro-
cessor (VCP). VCP fetches and processes whole functions
instead of individual instructions. In other words, a func-
tion can be executed as if it were an instruction for VCP.
This approach is called Function-as-Instruction (FaI). With
FaI, hybrid simulation can be performed by switching dy-
namically the active processing element from ISS to VCP
and vice versa. This approach is made possible mainly by
two reasons. Firstly, only a very small portion of functions is
target dependent. Secondly, usually users do not care about
the details of all the functions during simulation and debug-
ging. FaI can be used to step over a selected target inde-
pendent function, or provide high overall simulation speed.
Compatibility will not be sacrificed as platform dependent
code can be processed by the original ISS. The objectives of
this solution are:

• Performance. High simulation speed is the major
goal. It is achieved by speeding up target independent
C code.

• Applicability. A wide spectrum of existing programs
should be supported by this technique. For example,
third party libraries or programs using assembly code.

• Retargetability. It should be possible to retarget
VCP to different ISAs.

• Compatibility. VCP can be integrated with other
system simulation components in place of an ISS.

• Usability. Good usability should be provided for both
simulation and debugging. To use this tool, additional
knowledge should not be required.

• Extensibility. By exposing an interface, various tools
can be built upon this technique.

The rest of this paper is structured as follows: The second
section gives an overview and some design decisions of this
approach. Section 3 describes the implementation of the
instrumenter which enables VCP. We present the technical
details of the bidirectional invocation for switching between
ISS and VCP in section 4. In section 5, some user interfaces
and extensions are given. Section 6 shows the evaluation
result. After that, we compare our approach with other
related works. The summary of this work is given in section
8.

2. PROPOSED APPROACH
This section describes the concept of combining the C vir-

tual machine with an ISS to accelerate the instruction set
simulation and ISS-based debugging. A conceptual hybrid
architecture is proposed in which the virtual coprocessor is
introduced. We also present why the current design is se-
lected.

2.1 Overview

Figure 1: Architecture of the simulation system. A
separate path is introduced to increase the simula-
tion speed by using VCP.

Figure 1 shows the overall workflow of the proposed ap-
proach. The ISS is called target processor (TP) correspond-
ing to VCP in this paper. The source code is compiled with
the target compiler as usual. At the same time (as shown
in the right path), the source code can be instrumented and
compiled to a host binary for running on VCP. During the
simulation, the execution of the program can be dynami-
cally switched between TP and VCP. The switching is con-
trolled statically or dynamically through command-line or a
graphical user interface. These components are going to be
introduced in this section:

• VCP is a coprocessor implemented as a C virtual ma-
chine. It is a fast execution engine for the target inde-
pendent C functions.

• Instrumenter works together with the host compiler
to provide inputs for VCP. The C source code is instru-
mented so that the functions executed at VCP behaves
the same as using an ISS. VCP provides service rou-
tines to be used by the instrumented code.

• TP and VCP Memories form the memory hierarchy
in this framework. TP memory stands for the original
resources of TP, and VCP memory is the container for
the local variables which are exclusively accessed by
VCP.

• Control Logic is used to enable bidirectional invoca-
tion between TP and VCP. Since neither TP itself nor
the target binary should be modified to keep this ap-
proach simple for retargeting, a monitoring mechanism
is introduced instead.

4

2.2 VCP and Instrumenter
The source level instrumenter translates a target inde-

pendent function into a form that can be natively executed
on the host. Argument passing, value returning and global
resource accesses must be modified to use service routines
provided by the VCP. The calling convention defined by the
target compilation system must be taken into account. Ad-
dresses of global resources at TP also need to be known. For
example, if a global variable is accessed by a function to be
virtually executed on VCP, then the address of that global
variable at the target memory space has to be determined.

As source level instrumentation is static, the instrumenter
suffers from incapability of self-modifying code supporting.
But as our objective is to provide a tool for embedded soft-
ware design, this does not represent a big limitation and we
decided to leave it for future.

Pure static instrumentation is not sufficient. As already
mentioned, some information (for example, the TP address
of a global variable) of the TP program should be known.
The information is not present in the source code itself,
and will not be revealed until the target program is being
linked. If the loader performs a relocation, the information
will change again. Therefore we proposed a mixed process:
instrument statically, and link the global resources at run-
time.

Then it comes to how to place the virtual machine. As we
want to support third party ISSes, implementing the virtual
machine inside the ISS is not feasible. On the other hand, if
the virtual machine is built below the ISS as a hypervisor, we
will have to face the integration problem with other system
components. Instead, we chose a solution that fuses another
execution engine as a coprocessor in parallel.

Coprocessor techniques are widely used in modern com-
puter systems to increase the overall performance of specific
applications. For instance, coprocessors are used for floating
point computation in i386 and ARM processors. Another ex-
ample is for instruction set extension of application specific
instruction-set processors. Usually a coprocessor works in
blocking mode, which means the processor has to be paused
to wait for the result. But since coprocessors are designed
to enable or speedup special instructions, a performance im-
provement of the throughput is usually feasible.

Figure 2: Relationship between TP and VCP. Func-
tions are fetched instead of instructions by VCP.

TP and VCP execute in a mutually exclusive way in this
approach. When TP is activated, the system is at simula-
tion mode. TP is blocked when VCP is activated, and this

is called virtual mode. As shown in Figure 2, TP performs
instruction level simulation, while VCP consumes instru-
mented C functions as instructions. The candidate function
for FaI must be consistent with the calling convention, and
will always return to the calling point. The C source code of
these functions is instrumented before being compiled by the
host compiler. Therefore VCP service routines can be used
to handle the target memory accesses. The instrumenter
also generates stubs for bidirectional invocations which will
be discussed later.

2.3 Virtual Memory Hierarchy
VCP allows instrumented code to access both native mem-

ory and TP resources. Generally, TP resources include TP
data memory, TP program memory and TP registers. As
TP resources exist in the memory of the ISS, we call them
TP memory for convenience. TP memory can be accessed by
both TP and VCP, so it works like shared memory. The host
compiler compiles the instrumented code to a host binary,
in which the native memory is used by default. The native
memory cannot be accessed by TP and is considered as an
affiliated local memory of VCP, so the name VCP memory
is given for convenience. These two memories constitute a
virtual memory hierarchy.

Figure 3: Virtual memory hierarchy.

Figure 3 shows the virtual memory hierarchy. Both TP
memory and VCP memory have their own address spaces,
which are called TP address space and VCP address space
respectively. These two address spaces can be overlapped
in value. For example, the memory address space for 32
bit MIPS processor and 32 bit i386 host processor are both
from 0 to 0xFFFFFFFF. If a pointer is not explicitly specified
to which address space it points, dereferencing cannot be
performed due to the ambiguity.

A pointer to VCP memory can be safely dereferenced.
Further optimization by the host compiler is also feasible,
if pointer analysis [2] is performed. However, any access
through a pointer to TP memory has to be handled by ser-
vice routines. There is a space of optimization for TP mem-
ory accesses, which is our future work.

2.4 Control Logic
FaI needs invocations from TP to VCP, and vice versa.

Some bridging method is needed to mimic stacks, pass pa-
rameters and handle return values. There are two options
to do this, binary instrumentation and monitoring.

As binary instrumentation will eventually increase the ef-
fort of retargeting, it is not selected. To be generic, the
desired approach should not modify ISS and the target bi-
nary running on it.

An external control logic is introduced to enable the mon-
itoring. The control logic monitors TP’s execution and calls

5

the corresponding stub code to shift the execution to VCP
when FaI is applied. Monitoring requires mapping informa-
tion or debug information of the target program to know
the TP address of each function. This information might be
unsafe if the program is relocated. It is not a severe limi-
tation for embedded software design, so we plan to address
this problem in the future work.

Inverse stubs which conduct the execution from VCP to
TP are injected to the instrumented functions directly by
the instrumenter.

3. INSTRUMENTATION
In this section, the implementation of VCP and instru-

menter is described. To enable FaI, the C source code is
instrumented and compiled to a host dynamically linked li-
brary, which can be loaded by VCP at runtime. VCP acts
as a service provider and the instrumenter modifies the C
source code using these services to enable FaI. Since the
C programming language is flexible and rich in features, the
description in this section is organized by how these features
are supported in virtual mode.

3.1 Local Variables
Local variables can only be accessed within the function

where they are defined, if their addresses are not exposed to
the outside. These variables are only visible to VCP if the
functions have FaI being applied. Thus, no instrumentation
is needed for them.

But there is an exception for the local static variables.
Different instances of the function share the values of the
local static variables. They are treated in a similar manner
as global variables, and will not be located onto the stack.
The instrumentation for them is similar as that of global
variables.

3.2 Global and Static Variables
Global variables can be accessed both by names or through

pointers. For each global variable, a unique linking pointer
is declared by the instrumenter. A linking pointer will be
dynamically linked to the corresponding global variable at
TP address space when VCP loads the instrumented binary.
Any access to the global variable is instrumented to use this
linking pointer indirectly. Since the linking pointers point to
another address space, support routines are used to handle
them.

Static variables in C can be classified into external static
variables and internal static variables [14], according to their
scopes. Note that static variables have the same storage as
global variables, therefore the same approach is applicable
for them. Figure 4 gives an example of instrumenting global
and static variables. Suppose foo is a function to be exe-
cuted on VCP, then several linking pointers for the global
and static variables have to be created. Then the accesses
can be performed indirectly by calling service routines, e.g.
RM_int reads an integer value from TP memory (4), (9), and
WM_int is used for writing to TP memory (6), (7), (8).

Accessing the TP address space is slower than accessing
a native global variable at the host. Therefore, unnecessary
TP accesses should be avoided. For global or static variables
declared with the const keyword, clones of the variables are
created at VCP address space and can be used from VCP
directly.

Figure 4: Example of instrumenting global and
static variables. (1)(2)(3): Addresses of global and
static variables are assigned to the linking variables.
(5)(6): Linking variables are used to represent the
TP addresses. (4)(7)(8)(9): And accesses of these
variables by names are replaced by using the linking
variables.

Mapping information reveals the addresses of global vari-
ables, so no dependency on debug information is there. Static
variable linking cannot be performed without debug infor-
mation. We try to resolve the addresses of static variables
by using debug information. If a static variable is irresolv-
able, then the functions accessing it should be suppressed
for FaI. Dependency on debug information will be further
minimized in our future work since it is not always reliable.

3.3 Dereferencing
Variable accessing and function calling through pointers

need the dereference operations. If a pointer holds a VCP
address, it can be dereferenced natively. But for TP ad-
dresses, service routines have to be used to reaching TP
memory, e.g. operations (4) and (6) to (9) in Figure 4.
When a pointer is being dereferenced, there must be no am-
biguity on whether it is holding a TP address or a VCP
address. Otherwise, a pointer hazard will happen.

Spilling is used to remove pointer hazards. For example,
pointer p in Figure 5 (a) has a conditional initialization (2),
which may be assigned with one of the three pointers parg,
pglobal or plocal. When FaI is applied to the function
foo, the three pointers used to initialize pointer p are not
consistent in address space. The caller passes parg (3) in
by value, so it holds a TP address. Being a pointer to a
global variable, pglobal (4) also holds a TP address. But
since the local variable local is allocated at VCP memory,
the pointer plocal (5) contains a VCP address. Because
of that, the correct method to dereference pointer p cannot
be decided at compile time (6). To convert the inconsistent
pointers, either temporarily copying a VCP variable to TP
or doing the opposite is needed. This is called a spilling.
Spilling VCP variables to TP memory space is chosen, be-
cause pointer hazard can also happen when passing a pointer
to a function as an argument (it means potential dereferenc-
ings may happen in the callee), in which case, the pointer
has to be assumed to hold a TP address. The push / pop
services PUSH_int and POP_int are used to move the data
to and from the TP memory (7). So that variables in VCP
memory can be migrated to TP memory temporarily to re-
solve this ambiguity.

6

Figure 5: Example of pointer hazard resolving.

3.4 Aggregate and Special Data Structures
The layouts of aggregate data like struct or union are

not defined by the C standard. When a member is accessed,
usually a compiler will calculate its offset in the aggregate
data structure first. The offsets are decided by the members’
declaration sequence and the padding between them.

This problem is sidestepped when virtualizing 32-bit little-
endian MIPS ISA at 32-bit i386 host, because they have
identical layouts. However, it is not the case for mAgic DSP
[17]. In mAgic, 40-bit is chosen as machine word width,
and the data addresses of mAgic are incremented in units of
machine words instead of bytes.

This problem is hard to be resolved especially when con-
sidering aggregate data manipulated by memcpy-like func-
tions, current there is no known method to copy an aggre-
gate data to TP by VCP or vice versa. So any function which
has usage of aggregate data is simply considered target de-
pendent and forced to be non-partitionable to the VCP for
mAgic.

floating point data in mAgic is also presented in a 40-
bit format instead of IEEE 754 standard formats [11]. The
instrumenter translates them to and from 64-bit IEEE 754
format when TP address space is accessed. The precision
of the computation results are slightly different from the
target processor, but this can be neglected for most of the
programs.

4. HYBRIDIZATION
The hybridization controls the communication of VCP

and TP. It also addresses the problem of when and how
VCP and TP are invoked by each other.

4.1 Function Identification
Not all the C functions are applicable to be distributed

to VCP. The instrumenter is used to identify functions for
FaI. If a function is consistent to the calling convention and
will always return to the point where it was called, then par-
titioning this function to VCP is safe, and this function is
called a Partitionable function (P-function). The counter-
part is a Non-Partitionable function (NP-function), which
can only be executed at TP. Numerous callees can be called
from one function. However, if the callees are NP-functions,

applying FaI to the caller will not be prevented. This is
important when assembly code or third party libraries are
used.

Function invocations between TP and VCP also need to
know the addresses of the functions. Function linking is
used to share the information. For the instrumented host
binary, the addresses of functions are collected when it is
loaded by VCP. But for target binary, since we do not want
to have a dependency on debug information, the addresses
are collected from the mapping information generated by
the linker of the target tools chain. Since static functions do
not expose their addresses to the linker, FaI is not applicable
for them. But if the caller of a static function is mapped to
VCP, the static function itself will be executed on VCP also.

Both the target compiler and the host compiler may per-
form aggressive optimizations which may be obstacles for
FaI. For example, function inlining and tail call optimiza-
tion [18]. These optimizations are forbidden to the host
compiler. But as one objective of the design, they cannot
be suppressed for the target compilers. When a function
is detected to be inlined or has been performed with other
aggressive optimizations, it becomes a NP-function.

4.2 Bidirectional Invocation
The invocation of a VCP function from TP is called for-

ward invocation and from VCP to TP inverse invocation.
Since TP and VCP functions are presented in different ISAs
and have different calling conventions, stub code has to be
used to bridge the invocations between VCP and TP func-
tions. The stubs are called forward stubs and inverse stubs
respectively.

There are two possible methods to trigger a stub, by in-
jecting the stub to the source code (or directly to the binary)
or through a monitor. Control logic is used as a monitor for
forward invocations. For inverse invocation, direct injec-
tion is performed during the instrumentation. The bodies
of both types of stubs are generated by the instrumenter and
reside in the native binary. When a function is mapped to
VCP, the control logic monitors the TP simulator by setting
a breakpoint at the entrance of the function, and when the
breakpoint is met, the corresponding forward stub in the
native binary is called.

7

Figure 6: Example of bidirectional invocation. The
forward stub is implemented by setting and mon-
itoring a breakpoint. Direct injection is used for
inverse stub.

Figure 6 shows an example of invocations for both sides.
The shadows show that the VCP function foo is called from
a TP function caller and is distributed to VCP. Function
foo will further call a function named bar at TP. The control
logic sets a breakpoint at the entrance of foo (2). When TP
breaks there, the control logic calls the forward stub of foo
(3). The forward stub bridges the execution of foo to the
host execution (4). Function bar is invoked from foo by
directly injected inverse stub (5). The inverse stub of bar
invokes bar at TP by mimicking the stack for calling and
returning (6), (7). When foo is finished at VCP the rest of
the execution is resumed from caller (8).

4.3 Library Support
When a function from a third party library is called in the

program, it can be easily identified that there is a function
without defination. Therefore, this function will be executed
at TP even if the caller is executed at VCP. But if the be-
havior of a library function is known, a VCP clone can be
used to replace it. Pure functions (with no side effect) can
be cloned for sure. Functions have defined side effect are also
applicable for cloning. For example, memcpy is a function in
Standard C Library, which has defined side effect. A VCP
clone can be used as an alternative safely. Note that the
native memcpy on the host cannot be used, because the VCP
clone accepts argument pointers holding TP address. On
the other hand, malloc is not applicable as it has side effect
on internal data structures. A set of Standard C Library
functions with defined side effect are supported in VCP as
services.

There are some library functions e.g. longjmp, setjmp

which manipulate the stack in a nonstandard manner. Con-
sequentially, not only these functions themselves, but also
the direct and indirect callers of them cannot be executed
at VCP. Thus, they are annotated as exceptional cases of the
NP-functions, named Recursively-Non-Partitionable functions
(RNP-functions). An RNP-function recursively suppresses
the partition of the callers. So if a function calls any RNP-
function direct or indirectly, it has to be executed at TP.

Generally, functions implemented in assembly or contain-
ing inline assembly are regarded as library functions. As
RNP is a very strong restriction, the default attribute for
them is NP. If there is any exception, the user has to set the
function’s attribute manually.

5. USER INTERFACES
By using the technique presented here, a program can be

partially executed at VCP. This is called partitioning. Func-
tion is the basic unit of partitioning. But it is insufficient
to only partition one single function. As a function can call
other functions, they can be grouped together. A cluster
is a group of functions with a root function. Starting from
the root, all the partitionable callees are included into this
group. The calling can be done natively and there is no in-
vocation overhead (But if there is any pointer hazard, they
do trigger a spilling).

To facilitate using VCP, both static and dynamic user
interfaces are defined, which can be further extended.

5.1 Static Partitioning
The user can set the functions to be partitioned to VCP

statically before the simulation proceeds. When the user
wants to run some regression test or benchmark some part
of the program regularly, he or she can define a partitioning
of the program manually or with the assistance of the tool
named HySim, as will be described below.

Another use case is to provide a pre-partitioned library
using this technique. The provider only needs to hand over
the target binary, headers, plus the host binary for FaI and
the pre-partitioning to the users. Then, the users can benefit
from VCP without any interference and awareness.

5.2 Fast Step Over
The basic dynamic partitioning use case is fast step over

when debugging. Step over is one of the most frequently
used command in debugging. With VCP technique, a user
instruct a fast stepping over on a function. Thus, the func-
tion (actually the cluster) will be executed in FaI mode.

5.3 Fast Breakpoint
A tool named HySim has been developed based on this

technique by introducing a new user command named fast-
forwarding (FF) breakpoint to an existing debugger. It fa-
cilitates users to get an automatic partitioning in order to
reach a given point of program in a fast execution speed.
The user can simply set a FF breakpoint instead of a nor-
mal breakpoint to trigger the automatic partitioning. At
this time, inter-procedural control flow is analyzed first to
get the knowledge about which functions may be executed
before reaching the specified FF breakpoint. Then the par-
titioning is performed based on the partition properties of
those functions.

6. EVALUATION RESULT
This section describes the experimental results, which have

been measured on a computer with an Athlon64 X2 4600+
processor and 4 GB of memory, running Fedora Core 4 dis-
tribution of Linux operating system. The cross compiler for
MIPS is GCC 2.96 for 32-bit little-endian MIPS, and Target
Compiler [31] is used for mAgic. The instrumented source
code for VCP is compiled with GCC 4.0.2.

8

6.1 Application Performance Improvement
To benchmark VCP technique for MIPS simulation, 5 al-

gorithms are chosen: encryption (DES), message digest (MD5),
image edge detection (Susan), audio codec (G721), and im-
age decoding (JPEG_Dec). Assuming that the user is not
an expert, only the evident hotspot functions (1 to 2 func-
tions for each case) are manually partitioned to VCP. For in-
stance, des_crypt and des3_crypt for DES, and idct_islow

for JPEG_Dec. The overall simulation speed has a signifi-
cant increase after applying FaI to these functions. Figure 7
shows the percentage of execution benefit from partitioning
the hotspot functions. As shown in Figure 8, the Original
Speed of the MIPS ISS is around 3 million Instruction Per
Second (IPS). After manual partitioning, the Overall Speeds
of these applications increase from 3.3 to 94.0 million IPS
with speedups from 1.3 to 34.5, related to the result of the
partitioning. The pure VCP Speed is about 110 million IPS.

Figure 7: Percentages of runtime execution count
for manual partitioning.

Figure 8: Performance and speedup.

6.2 Function Level Speedup
As described, another use case of this approach is to im-

prove step over speed in debugging. To evaluate the result,
some functions are selected from the above 5 cases. Not only
the hotspot functions used in application level benchmark-
ing, but also functions with both large and small runtime
execution counts are considered. Table 1 shows the individ-
ual function level results for the MIPS processor, sorted by
time spent on original simulation.

It can be obtained that this approach produces a good per-
formance improvement for large functions and a fair speedup
for small functions which are already less time consuming.
There are two major impact factors on the speed of FaI:

• TP Execution. Library routines for which source
code is not available and NP-functions can only be
simulated by TP. As an example, although the function

Time Spent Time Spent

Function Name on ISS on FaI Speedup

(millisecond) (millisecond) (times)

susan_edges 129019.029 2040.352 63.2

susan_thin 3217.940 83.147 38.7

jpeg_make_d_derived_tbl 7.314 3.783 1.9

md5_csum 4.926 0.392 12.5

md5_finish 4.663 0.384 12.1

ycc_rgb_convert 4.323 0.151 28.6

h2v2_fancy_upsample 4.125 0.068 60.3

md5_process 3.904 0.270 14.5

jpeg_idct_islow 3.242 0.058 56.3

decode_mcu 2.335 0.235 9.9

des_set_key 1.972 0.020 97.3

g721_encoder 1.759 0.043 41.1

g721_decoder 1.570 0.041 38.3

step_size 1.007 0.015 65.8

des3_crypt 0.837 0.006 138.1

reconstruct 0.810 0.014 59.8

update 0.675 0.025 27.4

predictor_zero 0.417 0.015 28.4

jpeg_fill_bit_buffer 0.283 0.018 15.5

des_crypt 0.247 0.003 83.0

jpeg_huff_decode 0.240 0.018 13.4

predictor_pole 0.102 0.013 7.6

g72x_init_state 0.096 0.010 9.7

md5_update 0.076 0.011 6.7

fullsize_upsample 0.052 0.015 3.5

Table 1: Individual Function Level Results.

jpeg_make_d_derived_tbl has a quite large runtime
execution count, the speedup after applying FaI is only
1.9 times. The reason is this function calls several C
library functions, which are simulated at TP by inverse
invocations.

• TP Memory Access. For instance, both susan_thin

and des3_crypt are completely executed on VCP, but
the speedups of them have a significant difference. Be-
cause the former mainly operates on pointers which
are instrumented to use TP memory accesses, but the
later uses global constant variables which have a clone
at VCP memory space.

6.3 Retargetability
To verify the retargetability, the integration with ISS for

mAgic DSP is performed. mAgic is a floating point DSP
with Very Long Instruction Word (VLIW) architecture. This
architecture is extremely fast, e.g. it can finish a whole
butterfly of floating point Fast Fourier Transform (FFT) in
a single cycle. But for us, this architecture is extremely
slow in simulation. Since functions using aggregate data
structures are not supported for mAgic, only 3 cases are
selected to show the preliminary results. Floating point op-
erations are used to implement the cases FIR and FFT, and
Edge_detection is a fixed point case. As 40-bit floating
point format is used in the mAgic ISS, the original simu-
lation speed of floating point cases is slower than the fixed
point one. After partitioning the hotspot functions to VCP,
results are generated for these applications in Table 2. The
execution speed of the VCP is quite close to the one for
MIPS simulation.

9

Original Overall Speed

Case Name Operation Number of ISS Speed using VCP Speedup

Type Instructions (million IPS) (million IPS) (times)

Edge_detection fixed point 682314 0.699 110.765 158.5

FIR floating point 215732 0.395 67.628 171.1

FFT floating point 227579 0.320 28.698 89.7

Table 2: Preliminary Application Level Results for mAgic DSP.

7. RELATED WORK
Three kinds of related work are discussed in this section.

Firstly, previous techniques to improve the speed of ISSes are
described. Thereafter, the existing instrumentation tech-
niques are discussed. Finally, some interesting execution
switching approaches are given, though some of them are
used in other domains rather than simulation.

7.1 Fast Simulation Techniques
Simulation techniques can be coarsely divided into inter-

pretive, statically compiled and dynamically compiled ap-
proaches. Interpretive simulation is the basic technique which
is flexible but slow. Simplescalar [6] is a retargetable inter-
pretive simulator widely used for performance estimation
and scientific research [26, 27, 32].

Compiled simulation moves some computation such as
fetching and decoding from run-time to compile-time to im-
prove the simulation speed. In statically compiled approaches
[7, 35] dynamic decoding of target binary code is avoided.
For example, SyntSim [7] is a simulator synthesizer, which
generates statically compiled/interpretive mixed simulators.
In their approach, target binary can be translated into C
language and further compiled to host instructions. Rather
than using C language as a code generation interface, an
improvement [35] is introduced, in which an aggressive low
level code generation interface is used.

Statically compilation based approaches are limited, since
self modifying code cannot be supported. Dynamically com-
piled simulation approaches are proposed in [24, 9, 25, 22,
23]. A Just-In-Time Cache Compiled Simulation (JIT-CCS)
technique that combines retargetability, flexibility and high
simulation performance is presented by Nohl et al. [22]. The
compilation of target program takes place at run time but
the compilation result is cached for reuse. Once the pro-
gram at a given address is changed, the cache is invalidated
and a new compilation for the modified code can triggered
on demand. A multiprocessing approach [23] is proposed to
benefit from multiple processing units. The heart of the ap-
proach is a simulation engine capable of mixed interpretative
and compiled simulation. Instead of pausing the simulation
for compilation, frequently executed blocks can be dynami-
cally compiled using assistant processors. This multiprocess-
ing approach offers higher performance and improved speed
consistency.

Dynamically compiled simulation is close to Dynamic Bi-
nary Instrumentation (DBI), in the sense that both generate
and execute native code. But unfortunately, since high level
information is irreversiblly lost in the target binary, the per-
formance of the generated native code is much lower than
the natively compiled one from the source code. This draw-
back is extremely significant for complex architectures.

On the other hand, the VCP approach described in this

paper does not mine information from target binaries but
from target independent part of the source code. There are
two major advantages, utilizing high level information to get
higher speed, and being easy to retarget.

7.2 Instrumentation Techniques
As the core of our approach is a source level instrumenter,

some reviews and comparison of the instrumentation tech-
niques are presented here.

Source level instrumentation techniques are used for source
code simplification [19], error detecting [20] and fine grain
application profiling [12]. Source level instrumentation is
processed at compile time in nature.

The technique presented in this paper is based on a vari-
ance of source level instrumenter, but the instrumented code
behaves like a target function (in the sense of compatibility
with an ISS) instead of a native function.

Numerous DBI tools/frameworks [29, 28, 21, 16, 3, 33]
are designed for application profiling, error detection, virtu-
alization etc. DBI tools are powerful as they can support
self-modifying code and even privileged instruction emula-
tion.

Probe based dynamic binary instrumenters [29, 28] in-
ject the instrumentation code into the executable by some
means, and the instrumentation code can be invoked conse-
quentially.

A more flexible approach is to use binary translation,
which can be further classified into copy and annotate [16,
5, 3, 33], copy and modify [1], or Just-In-Time (JIT) com-
pilation [21] based approaches. In binary translation based
instrumenters, the original executable is not executed but
only the translation. More functionality and consolidation
can be achieved by these approaches.

The hybridization approach in this paper uses breakpoints
to monitor the execution of target binary. It can be seen as
a combination of using probe based approach to facilitate
source level instrumentation.

7.3 Execution Switching Approaches
For architecture design space exploration, mixed level sim-

ulation is used to fast forward the program to a specific point
by functional simulation and continue from there with de-
tailed simulation [27, 32]. This hybrid approach sacrifices
some accuracy at irrelevant pieces of code to get an overall
performance improvement of the entire simulation.

The SimSnap [30] framework utilizes application level check-
pointing to perform the switching from host execution to
simulation. The application’s source code is instrumented
by the Cornell Checkpoint Compiler [4] in order to save the
state of the program at a given point. The target binary to
be simulated also needs a corresponding instrumentation so
that the execution can be resumed from that point. Cur-

10

rently, the proposed approach works only if the ISA of the
simulator is compatible with the ISA of the host machine.
However, the authors have pointed out it is possible to use
this approach if the host ISA is different from the ISA to be
simulated.

C virtual machines are used as log recorders for reversible
debuggers [10, 15]. An interesting approach of switching
between native execution (called native mode) and C vir-
tual machine execution (virtual mode) is proposed by [15].
Virtual mode is slower but reverse execution information is
logged, and native mode do not have this overhead. Users
can dynamically switch the debugging between each mode
based on their requirements. The dynamic switching be-
tween native mode and virtual mode is enabled by utilizing
the debug information.

One interesting instrumentation tool BitRaker Anvil [8]
is proposed by Calder et al.. The target binary to be sim-
ulated is instrumented by invoking host native annotation
code. Thus better performance can be achieved. In contrast,
VCP technique allows interaction by using bidirectional in-
vocation.

8. SUMMARY
We proposed a novel hybrid simulation approach which

uses a virtual coprocessor to accelerate the instruction set
simulation and ISS-based debugging.

The VCP is a C virtual machine which leverages the sim-
ulator for target processor by executing some C functions in
virtual mode as if they were single instructions for the VCP.
The coprocessor can achieve a speed of more than 100 mil-
lion IPS for both RISC and a quite complicated VLIW DSP.
A wide spectrum of C89 compliant programs can be sup-
ported. Good compatibility with platform dependent code
is provided. Assembly and third party libraries can also be
used.

The introduction of VCP is seamless for the existing sim-
ulation systems. The interfaces between the orignal ISS and
other simulation components are untouched.

Various user interfaces are provided, from which embed-
ded software development, debugging and testing can bene-
fit. Library providers can also use this technique to package
a FaI enabled library without leaking source code informa-
tion. By using this technique, various tools can be devel-
oped, e.g. a performance estimator is built as an extension.

The tool is retargetable and supports two different target
processors at present: the MIPS processor and the mAgic
DSP. To support a new ISA, integration with an existing ISS
is needed and the retargeting should be performed according
to the target ISA and the calling convention of the target
compiler. Limited efforts need to be invested to retarget
VCP to different ISAs.

This work is only the first step, and there are several
known weaknesses. The aggregate data structures cannot
be generically supported. The spilling method for derefer-
encing is brute force. Target independent code detection is
not smart enough. Dynamically relocatable code (e.g. dy-
namically linked libraries) is not supported. Self modifying
code is not supported. The dependency on debug informa-
tion is not completely removed. We plan to address them in
the future work. Although the current approach has some
shortcomings, it is still applicable for DSP or embedded pro-
cessor simulation.

9. ACKNOWLEDGMENTS
This work is part of the European project SHAPES

(shapes-p.org). We would like to thank Pier Paolucci, Al-
berto Dell’Olio and Stefano Fasciani of Atmel for provid-
ing us mAgic hardware information to develop the mAgic
simulator. Thanks to Torsten Kempf, Jianjiang Ceng and
Jeronimo Castrillon for assisting the mAgic simulator devel-
opment. And thanks to the anonymous reviewers for their
valuable comments.

10. REFERENCES
[1] K. Adams and O. Agesen. A comparison of software

and hardware techniques for x86 virtualization. In
ASPLOS-XII: Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2–13, New
York, NY, USA, 2006. ACM Press.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison Wesley, August 2006.

[3] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In VEE ’06: Proceedings of the
2nd International Conference on Virtual Execution
Environments, pages 154–163, New York, NY, USA,
2006. ACM Press.

[4] G. Bronevetsky, D. Marques, K. Pingali, and
P. Stodghill. Automated application-level
checkpointing of MPI programs. In PPoPP ’03:
Principles and Practice of Parallel Programming, New
York, NY, USA, 2003. ACM Press.

[5] P. P. Bungale and C.-K. Luk. PinOS: a programmable
framework for whole-system dynamic instrumentation.
In VEE ’07: Proceedings of the 3rd International
Conference on Virtual Execution Environments, pages
137–147, New York, NY, USA, 2007. ACM Press.

[6] D. C. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. Technical Report CS-TR-1997-1342,
1997.

[7] M. Burtscher and I. Ganusov. Automatic synthesis of
high-speed processor simulators. In MICRO 37:
Proceedings of IEEE/ACM International Symposium
on Microarchitecture, pages 55–66, Washington, DC,
USA, 2004. IEEE Computer Society.

[8] B. Calder, T. Austin, D. Yang, T. Sherwood, S. Sair,
D. Newquist, and T. Cusac. Bitraker Anvil: Binary
instrumentation for rapid creation of simulation and
workload analysis tools. In Proceedings of Global
Signal Processing (GSPx) Conference, 2004.

[9] B. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling. ACM
SIGMETRICS Performance Evaluation Review,
22(1):128–137, May 1994.

[10] C. Demetrescu and I. Finocchi. A portable virtual
machine for program debugging and directing. In SAC
’04: Proceedings of the 2004 ACM Symposium on
Applied Aomputing, pages 1524–1530, New York, NY,
USA, 2004. ACM Press.

[11] IEEE Standards Committee 754. IEEE Standard for
Binary Floating-Point Arithmetic, ANSI/IEEE

11

Standard 754-1985. Institute of Electrical and
Electronics Engineers, New York, 1985. Reprinted in
ACM SIGPLAN Notices, 22(2):9-25, 1987.

[12] K. Karuri, M. A. A. Faruque, S. Kraemer, R. Leupers,
G. Ascheid, and H. Meyr. Fine-grained application
source code profiling for ASIP design. In DAC ’05:
Proceedings of the 42nd Annual Conference on Design
Automation, pages 329–334, New York, NY, USA,
2005. ACM Press.

[13] T. Kempf, M. Doerper, R. Leupers, G. Ascheid,
H. Meyr, T. Kogel, and B. Vanthournout. A modular
simulation framework for spatial and temporal task
mapping onto multi-processor SoC platforms. In
DATE ’05: Conference on Design, Automation and
Test in Europe, Washington, DC, USA, 2005. IEEE
Computer Society.

[14] B. W. Kernighan and D. Ritchie. The C Programming
Language (2nd Edition). Prentice Hall PTR, March
1988.

[15] T. Koju, S. Takada, and N. Doi. An efficient and
generic reversible debugger using the virtual machine
based approach. In VEE ’05: Proceedings of the 1st
ACM/USENIX International Conference on Virtual
Execution Environments, pages 79–88, New York, NY,
USA, 2005. ACM Press.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 190–200, New York, NY, USA,
2005. ACM Press.

[17] mAgic DSP. www.atmel.com.

[18] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[19] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
Computational Complexity, pages 213–228, 2002.

[20] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In POPL ’02:
Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 128–139, New York, NY, USA, 2002. ACM
Press.

[21] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 89–100, New York, NY, USA,
2007. ACM Press.

[22] A. Nohl, G. Braun, O. Schliebusch, R. Leupers,
H. Meyr, and A. Hoffmann. A universal technique for
fast and flexible instruction-set architecture
simulation. In DAC ’02: Conference on Design
automation, New York, NY, USA, 2002. ACM Press.

[23] W. Qin, J. D’Errico, and X. Zhu. A multiprocessing
approach to accelerate retargetable and portable
dynamic-compiled instruction-set simulation. In
CODES+ISSS ’06: Conference on Hardware/Software

Codesign and System Synthesis, New York, NY, USA,
2006. ACM Press.

[24] M. Reshadi, P. Mishra, and N. Dutt. Instruction set
compiled simulation: A technique for fast and flexible
instruction set simulation. In DAC ’03: Proceedings of
the Conference on Design Automation, New York, NY,
USA, 2003. ACM Press.

[25] E. Schnarr and J. R. Larus. Fast out-of-order
processor simulation using memoization. In
ASPLOS-VIII: Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 283–294,
New York, NY, USA, 1998. ACM Press.

[26] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In ASPLOS-X: Proceedings of the
10th International Conference on Architectural
Support for Programming Languages and Operating
Systems, New York, NY, USA, 2002. ACM Press.

[27] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE Micro, December 2003.

[28] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary
Transformation in a Distributed Environment.
Technical Report MSR-TR-2001-50, 2001.

[29] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. In PLDI
’94: Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and
Implementation, pages 196–205, New York, NY, USA,
1994. ACM Press.

[30] P. K. Szwed, D. Marques, R. M. Buels, S. A. McKee,
and M. Schulz. SimSnap: Fast-forwarding via native
execution and application-level checkpointing. 8th
Workshop on Interaction between Compilers and
Computer Architectures, 00, 2004.

[31] Target Compiler Technologies. www.retarget.com.

[32] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In 30th Annual
International Symposium on Computer Architecture,
June 2003.

[33] J. Yang, S. Zhou, and M. L. Soffa. Dimension: an
instrumentation tool for virtual execution
environments. In VEE ’06: Proceedings of the 2nd
International Conference on Virtual Execution
Environments, pages 164–174, New York, NY, USA,
2006. ACM Press.

[34] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and
A. A. Jerraya. Building fast and accurate SW
simulation models based on hardware abstraction
layer and simulation environment abstraction layer. In
DATE ’03: Conference on Design, Automation and
Test in Europe, Washington, DC, USA, 2003. IEEE
Computer Society.

[35] J. Zhu and D. D. Gajski. A retargetable, ultra-fast
instruction set simulator. In Proceedings Design,
Automation and Test Europe Conference and
Exhibition, pages 298–302, 1999.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

