
A Self-Maintained Memory Module Supporting DMM
Weixing JI, Feng Shi, Baojun QIAO

School of Computer Science and Technology, Beijing Institute of Technology
5 South Zhongguancun Street, Haidian District,

Beijing 100081, P. R. China
+86-010-81614439

pass@bit.edu.cn

ABSTRACT
The memory intensive nature of object-oriented languages such as
C++ and Java has created the need of a high-performance
dynamic memory management (DMM); however, it is a
challenging task to provide efficient reliable system without
violating real time performance constraints. Hardware approach
emerges as one of the candidate in improving the performance of
DMM. This paper presents an efficient design for explicit
dynamic memory management which exploits the high speed of a
pure hardware implementation. Object allocation and deletion are
strictly bounded in time. The whole heap space is divided into
two semi-spaces, and a concurrent bidirectional memory
compaction algorithm is proposed. So that memory compaction
can be done while mutator process is running on the processor. A
small built in object-based cache memory is available to avoid
indirect object addressing inefficiencies. Experiments show that
this hardware scheme can greatly improve the speed and
predictability of DMM.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, classes and objects, dynamic
storage management.

General Terms
Management, Measurement, Performance, Design, Languages.

Keywords
object-oriented programming, dynamic memory management,
active memory module, object-based cache.

1. INTRODUCTION
It is a well-known fact that object-oriented programs tend to be
dynamic memory intensive. Through the support from the
dynamic memory management system, programmers are allowed
to be more productive to enhance software reliability and
functionality. However, the characteristic of traditional software

approaches are also known to be slow and non-deterministic.
Studies show that DMM accounts for up to 43% of Java run time
[3]. C/C++ applications can spend from 23% to 38% of the
execution time performing DMM [15][1]. Embedded systems
have real-time constraints; therefore, non-deterministic allocation
and collection pause times can severely degrade run-time
performances and may even result in system failures. The
increasing popularity of object-oriented programming in
embedded system environments has created the need of a high-
performance DMM for embedded devices. Over the years, there
have been several attempts to incorporate hardware support as a
way to reduce run-time overhead, increase in system’s throughput,
and limit the worst case latencies. However, it is hard to build a
bounded time scheme without hardware support. With the
advancement in VLSI technology, a high density chip with
multimillion system gates is currently available and will continue
to grow in the future. To fully utilize these hardware resources, it
becomes more and more attractive to map basic software
algorithms into hardware. DMM is one of the cases and its
performance can be improved greatly by shifting high
computation extensive software algorithms to hardware domain.
In this paper, we propose a self-maintained memory module as a
way to provide hardware support for explicit dynamic memory
management. The two benefits of the proposed scheme are that
the allocation and deletion can be done in constant time.
Moreover, the module can perform heap compaction in parallel
with mutator process running on processor; thus the memory
compaction latency is greatly reduced. This is the major
departure from previously counterparts, which are all “stop-the-
world” collectors and memory compaction can vary from
thousand cycles to several million cycles. Allocation of a new
object and deletion of a live object in the proposed scheme is
strictly bounded. As a result, the overall speed-up is obvious
compared to software-only collection techniques.

The remainder of this paper is organized as follow. Section 2
discusses previous work and section 3 provides a top-level
architecture of our self-maintained memory module. Section 4
addresses the architectural support issues for object addressing,
while section 5 shows our new bidirectional compaction
algorithm. The object-based cache architecture is given in section
6. Section 7 analyzes the experiment results. The last section
concludes this paper.

2. Related work
Hardware-assisted DMM is a promising approach to achieve hard
real-time performance which no software-only techniques could
guarantee. Based on Baker’s incremental copying collector,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009...$5.00.

189

Nilsen and Schmidt proposed a hardware-assisted real-time
garbage collector [18][23]. A special memory module, called
garbage-collected memory module (GCMM), was designed
separately from general CPU so as to share the technology
investment cost and make economies of scale feasible. The
GCMM contains memory for to-space and from-space, local
memory and a microprocessor. The microprocessor communicates
with the CPU through a number of memory mapped I/O ports. A
design of an application specific instruction extension called
Dynamic Memory Management extension (DMMX) was
proposed in [14]. The allocation is done through the modified
buddy system and a complete binary tree of combinational logic,
which allows constant-time object creation. The hardware
solution provided utilizes a set of bit-maps and combinational
circuit components to perform mark-sweep garbage collection,
where the sweeping phase can be accomplished in constant time.
This hardware scheme can greatly improve the speed and
predictability of DMM [16] [24][17][25]. The proposed DMMX
is an add-on approach, which allows easy integration into any
CPU, hardware-implemented Java virtual machine, or processor
in memory. A replicating garbage collector for a persistent heap is
described in [13]. The garbage collector cooperates with a
transaction manager to provide safe and efficient transactional
storage management. Clients read and write the heap in primary
memory and can commit or abort their write operations. Their
implementation is the first to provide concurrent and compacting
garbage collection of a persistent heap.

 Other self-maintained memory modules can also be found in [9]
[4][26]. Due to the consideration of hardware complexity and cost,
these hardware assisted dynamic memory management systems
are all based on simple collecting algorithms, such as copying
collector, mark-sweep and mark-compact. Since the entire heap is
split into two semi-spaces for copy collectors, only one region can
be active during run-time. Copying also rearranges the allocation
order. This can be important in some applications where spatial
locality should be preserved. Additionally, long-living objects are
continuously swapped between the two sections every time the
copying collector is running. Though mark-compact and mark-
sweep are a bit more complex, they are still “stop-the-world"
garbage collection techniques as the same as copying collector;
that is, all application threads stop until garbage collection
completes. Many types of applications can't tolerate their stop-
the-world nature. That is especially true for applications that
require near real-time behavior or those that service large
numbers of transaction-oriented clients. Hence, in this paper we
propose a concurrent bidirectional compaction collector, which is
embedded in a self-maintained memory module and can run in
parallel with processors.

3. Self-maintained memory module
Figure 1 shows the top-level architecture of our self-maintained
memory module. The typical configuration of this memory block
consists of the following functional units: interface unit (IU),
dynamic memory management unit (DMMU), object-based cache
(OBC) and a dual-port RAM block. This self-maintained module
supporting explicit dynamic memory management takes
advantage of the speed of pure hardware implementation and it is
an add-on approach, which allows easy integration into any
hardware-implemented Java virtual machine, or object-based
architectures. In the view of Java processor, for example,

proposed memory module is just like a blank box. All the objects
are referred by a location-independent object reference. Processor
can send requests to this memory and data will be available on the
external bus immediately if return value is necessary.

Figure 1. The top-level architecture of active memory module

IU is responsible for communicating between the external
memory bus and internal functional units, and it contains a
number of memory-mapped I/O ports. Mutator process running on
the processor allocates a new object, for example, by writing a
request to one of these ports and reading the reference of the
allocated object from another. Ports are also used to initialize the
DMMU to indicate how large the heap is and read information
about the state of memory module itself. All the communicating
commands are listed in table 1.

Table 1. Communicating commands and specification

command parameter return Specification

New size referenc
e Allocate a new object

Delete reference NULL Delete an old object.

Getfield reference,
offset

field
data Get the field data

Putfield
reference,

offset,
field data

NULL Put the filed data

DMMU is composed of two separate parts: object allocator and
memory compactor. The memory intensive nature of object-
oriented languages such as C++ and Java has created the need of
high-performance DMM. In this paper, explicit dynamic memory
management is supported. Programmer has to delete the object if
it is required to free the occupied memory. Processor allocates a
new object by sending an allocation request to IU. And these
requests will be passed to DMMU to allocate or delete object
internally. Allocator notifies memory compactor that the heap
should be compacted whenever needed. A set of registers are
embedded in DMMU and maintained for recording the starting

O
bject-based

C
ache

Interface Unit

RAM

To External Memory Bus

Heap
Allocator

Heap
Compactor

Dynamic Memory Management Unit

Starting
Compaction

Compaction
Finished

RAM...

Dual-port Memory Controller

190

address and end address of semi-spaces. Four other registers are
also used to facilitate the utilization of object table. Table 2 shows
the registers that are required and the usage for the purpose. Their
utilization is explained in section 4 and section 5.

Table 2. Registers built in DMMU

Name Length Specification
FA 32-bit Free pointer of semi-space A
FB 32-bit Free pointer of semi-space B
FM 32-bit Middle pointer of free space

ULH 32-bit Used list’s head of object table
ULT 32-bit Used list’s tail of object table
FLH 32-bit Free list’s head of object table
FLT 32-bit Free list’s tail of object table

In order to facilitate object relocation and to simplify the process
of memory compaction, indirect addressing is supported in our
scheme. Although the direct addressing saves a load instruction
on field access, this presentation imposes many restrictions on the
system. Removing the indirection addressing on every memory
access makes it extremely expensive to relocate objects in the
memory. The implementation of indirect addressing on our
object-based architecture is achieved by maintaining a hardware
object table and performing a lookup of the object table on each
object access [12][21]. Object table indirection imposes a heavy
penalty on memory accesses. In order to avoid such inefficiencies,
an object-based built in cache memory is availed. Whilst
conventional caches perform an association between an address
and a memory location, a virtually addressed object-based cache
associates a concatenation of the reference and offset with a
memory location. The cache line of object-based cache is tagged
directly with (reference, offset), thus contains parts of objects
rather than blocks of physical memory. This organization is
similar to a virtually-addressed cache, except that the reference
and offset bits are concatenated rather than summed. Getfield and
Putfield request can be responded within one clock cycle if cache
hits.
It is worth noting that both object-based cache and DMMU may
access RAM simultaneously. Therefore, a dual-port memory is
provided to ensure that both of them can access the RAM
concurrently. However, Multi-port memory implementing all
ports in the memory cell results in great increase in area occupied.
To compromise between bandwidth and area, interleaving
technology are exploited and applied in our system based on 1-
port memory banks [27][8][10]. The system consists of M
memory banks numbered 1,2,3,…,M-1,M, among which the
addresses are distributed cyclically, that is, if i is the address of a
memory location, then j≡i(mod M) is the address of the bank
containing the location. Independent ports are connected to banks
dynamically via switching network. The least significant bits of
addresses select a bank, while the most significant bits are
regarded as bank addresses. On further consideration, the
processor is either accessing the object-based cache, or
allocating/deallocating an object; therefore, there is no conflict
between these two operations. Moreover, with the help of object-
based cache, memory access will be greatly reduced and internal
memory bus is always idle when cache hits. Thus memory
compactor can utilize internal memory idle gap and process its

job between cache misses. Once cache misses or object allocation
occurs, memory compaction will be stalled. In such a case, 1-port
memory block will satisfy system requirements and no dual-port
memory is needed. However, the first scheme is exploited in
current stage.

4. Object addressing
All the objects are referred by a location-independent object
reference, actually an index into an object table. This indirect
object presentation makes relocation easier because object’s
memory address is stored in only one place. Object table entry
(OTE) contains object’s size, memory base address, and object
state bits. The format of OTE is shown in fig. 2. Both object and
object table entry are word aligned in memory, thus the two least
significant bits of object base address, object size, and next entry
address can be used as object state bits. As we propose a
bidirectional compaction algorithm, the S bit of OTE is used to
indicate in which semi-space the object resides. And the D bit
renders deletion of the object if it is asserted. The R bits are not
used at present.

Figure 2. Object table entry

Profiling results for various Java programs indicate that the
average object size is around 30 bytes [2]. And C++ programs
allocate a significant number of dynamic objects on the average
size of 170 bytes [1]. Hence an offset of 12 bits would cover the
majority of objects in practice, and larger objects can be broken in
to smaller objects by the compiler. In order to keep the original
order of objects in memory, next entry address points to next OTE.
This can ameliorate locality problems because the allocation
ordering is usually more similar to subsequent access orderings
than an arbitrary ordering imposed by a garbage collector.
Furthermore, the sliding compaction process needs to know where
to find the next allocated object in heap semi-space. And for 32-
bit memory space, 20-bit is left for next entry.
The object table is organized as two lists: free-list and used-list, as
illustrated in fig. 3. Memory compactor scans the used-list and
produces free OTE, the free-list’s tail and used-list’s head are
maintained by allocator. Once memory compaction starts
operating, Compactor scans the used-list one by one. If a deleted
object of specified semi-space is found, the OTE is removed from
the used-list and added to the tail of free-list. On the contrary, the
head of free-list and the tail of used-list are maintained by
allocator, which consumes free OTE and produces used OTE. The
reason why we organize the object table in such a way is that:
firstly, the original allocation order of objects will not be changed.
Secondly, it’s convenient to search object table, avoiding
scanning the whole table to find out a free OTE. Finally, also the
most important one, the allocation and deallocation duration will
be bounded. This is really important for systems with real-time
constraints.Object table resides in the heap space, which is
identified by an object reference and initialized by processor
when system booting up.

Object Base Address D

RR RR

31 01

S

Object Size Next Entry Address

191

…
…

Next

NULL

Next

NULL

Next

Next

Next

Next

FLT

ULH

FLH

ULT

Figure 3. The organization of object table

5. Dynamic memory management
A bidirectional memory compaction algorithm is addressed in this
research which describes that processor can freely access the heap
space during heap compaction. The basic concept of this
algorithm is illustrated in fig. 4. Heap space is divided into two
semi-spaces, called semi-space A and semi-space B, as shown in
fig. 4 (A). At the beginning of system booting up, objects are
allocated in semi-space A until it is exhausted. The live objects
are then compacted into one side of this semi-space, while
allocation continues concurrently in semi-space B. When B is
exhausted, the process is repeated in reverse, as illustrated in fig.
4 (B), (C) and (D) respectively, and the processor can access the
heap while memory compaction is going on.
Storage is allocated by advancing a free space pointer over one of
the semi spaces. Allocator is the only consumer of heap space. If
allocation request is received, a block of memory is allocated for
the new object by advancing the free space pointer (FA or FB).
Allocator returns the free list head as reference to processor and
modifies the free-list and used-list as well. When deallocating
object, allocator just sets the deletion bits in the OTE and leaves
deallocation to memory compactor. Since all dead objects are
explicitly deleted by programmer, no mark phase is needed before
memory compaction. The memory compactor module scans the
used-list of OTE and slides live objects to one side of the heap,
and adds the freed OTE to the tail of free-list. In this case,
compaction phase typically performs one pass over semi-space.
As a result of compaction, all the live objects in one semi-space
are moved into a single contiguous block of semi-space; the
memory left unused after compaction is recycled. If semi-space
collection completes, the free space pointer of this space is
updated. As shown in fig. 4 (D), the free space pointer FA is
replaced with FA’. Since live objects slide to the two sides of
heap, we call this bidirectional compaction algorithm.
The boundary FM of A and B is not fixed. Once semi-space
compaction finished, the boundary will be redefined as the middle
point of free space between FA and FB. As it can be seen from fig.
4 (D), the free space middle pointer slides to left a little and points
to the middle point of free space. In such a way, the available free
space is equally distributed in the two semi-spaces. Accordingly,

the collection times may be reduced in some cases. For example,
programs always create some longevous objects when system
starting up. As a result, most of the space of A is occupied by
these long-live objects and has not enough space to allocate new
objects. Consequently, a new garbage collection is triggered
immediately by allocator, while the compaction of semi-space B
has not yet finished at this moment. Fixed boundary will result in
frequently processing unit stall and long time system pause.

Figure 4. Bidirectional memory compaction algorithm

From fig. 4 we can describe that the long-living objects move
towards the two sides of heap space. After several times
compaction, they will stay in one place for a long time if no older
objects in the same semi-space are deleted. This will greatly
reduce the memory traffic during space compaction. Additionally,
the whole space memory is utilized to run application, and no
twice the amount of memory is required. The most important
thing is that heap access and memory compaction can be done
concurrently. Of course, all of this is based on the support of the
dual-port memory.

6. Object-based cache
Object cache is mostly related to object-oriented architectures.
Smalltalk systems such as SOAR, Intel 432 and Mushroom
provide architectural support for efficient object addressing and
accessing [12][21][5]. Further, various stack based machine
provide hardware support for JVM and they are mainly focus on

O
bject 1

O
bject 2

O
bject 4

O
bject 1

...

O
bject 4

O
bject 1

O
bject n

O
bject 4

O
bject n+1

O
bject n+2

A B

O
bject n+1

O
bject n+3

O
bject n+j

(A)

(B)

(C)

(D)

Allocating

Compacting Allocating

Allocating

Dead Object Live Object Free Space

FM

FA FB

FM

FA FB

FM

FM

FA FB

FA' FBFA

O
bject n-1

O
bject n

192

efficient manipulation and relocation of objects. Object-based
caches were first proposed by Williams in Mushroom project. But
it was never completed and all performance data they obtained
was from earlier simulations. [20] and [7] incorporated some of
this good idea and object-based cache architecture was
implemented in Java processors respectively.
A 32-KByte, two-way associative, write-back cache with an
eight-word line size is exploited in our self-maintained memory
module. Memory operations that hit the cache complete in one
machine cycle. Memory operations that miss the cache require
approximately 80 cycles. Our simulation results show that object-
based cache is sensitive to cache block size and less insensitive to
cache capacities. Since most of objects are small, 32-byte cache
line size is recommended. Fig. 5 shows the overall architecture of
our new object cache with explanation that we can see that
reference and most significant bits of offset are concatenated to
form the input of hash function. In this research, we exploit a
XOR-based hash function making hash module a complete
combinational circuit and index can be calculated in constant time.
Another promotion of this new object cache is that the tag is not
the concatenation of reference and offset but just contains LSB of
reference and partial offset. The 32-bit object references and 16-
bit offset pair result in a large overhead for maintaining the tag
bits. As discussed previously, object reference is actually the
index into the object table, therefore, only 20 least significant bits
of reference is necessary.

Figure 5. The concept of object-based cache

When the index of tags is calculated, the reference selected from
tag is compared with the input reference. If they are equal, then
cache hits. Once cache miss occurs, object physical address is
obtained from object table according to reference. Missed data are
read from memory afterwards.
This object-based cache compromises between direct and indirect
addressing and eliminates the base-offset addition overhead; of
course the two memory accesses introduced by object table
indirection are also replaced by one cache access. Hash function
is of main concern while designing object-based caches. Cache
interference occurs when more addresses are mapped onto the
same cache location. Thus the partitioning of the address to
choose the tag bits, block index bits and block offset bits is
critical for the performance measure of object cache. Poor choice

of the block index bits would result in frequent cache interference.
[12] and [20] list four ways in which the block offset and block
index bits are generated. However, what constitutes a good hash
function depends on the application. In any application, good hash
functions have to perform well on two criteria. First, there is no
added latency of computing the hash value. Second, the hash
function must succeed in spreading the most frequently occurring
patterns over all indices. This in turn depends on the executed
programs and their input data [11]. Object programs obviously
have different memory access patterns from other programs: The
first pattern in object-oriented application is consecutive
accessing of objects with sequential references. Since lots of
object dies when they are young, the objects, which are being
accessed, are almost newly created, except some longevous ones,
which are created when application starts up. New objects are
allocated orderly with continuous references (index into object
table) and they are the most likely objects that will be accessed
recently. The second pattern is the same object access. Because of
the locality of programming execution and memory access, the
same object will be accessed again very likely as it is accessed
first time. These are the two obviously and important memory
access patterns of object-oriented application. Thus if we can
construct a hash function to map these two most frequently
occurring patterns without conflicts, the performance of object
cache can be greatly promoted.
 XOR-based hash function computes each set index bit as the
Exclusive OR (XOR) of a subset of the bits in the address. The
reason of selecting such configuration is that the XOR-based hash
functions have the benefit of computing set index with a low
latency. Furthermore, they perform well for all applications,
ranging from interleaved memories to branch predictors.
Vandierendonck et al. constructed XOR-based hash functions
based on NULL space theory, and these functions provided
conflict-free mapping for a number of patterns and their functions
map 2m bits to m(=2k) bits which are conflict free [11]. But they
didn’t construct hash functions which are conflict free when m is
odd. Sung-Jin Cho et al. developed this method and design new
hash functions, which compute each set index bit as XOR of a
subset of the bits in the address by using the concepts of rank and
NULL Space [22].
It’s proved that these hash functions map the patterns (rows,
columns, (anti)diagonal, and rectangles) without conflicting [22] .
Imaging objects make up of a two dimension arrays, each object
is a row of the array and object data members are elements in the
row. Then the object access patterns mentioned previously are
analog to the row pattern and column pattern of arrays. Because
modeled XOR-based hash functions map these patterns conflict
free, the objects with consecutive reference can be mapped to
different cache block, and different blocks of the same object can
also be mapped without conflicts. For details of this XOR-based
hash function, please refer to [11] and [22].

7. Preliminary Performance
We have developed the self-maintained memory module in
VHDL, and integrate this memory module into our object-
oriented processor system. We also developed a translator to
translate the object manipulate bytecode of Java programs into
native assembly language of our processor, so that the
performance of this memory module can be obtained before the
compiler of our object-oriented processor is available.

Reference=5

X
O

R

(5,0)

Tag Data

=
Hit/Miss

Displacement

Offset=0

Data

193

Furthermore, some manually generated benchmarks are used to
test the performance of our design.
We investigate some of the Java programs by traces obtained
from a modified JVM. The modified JVM emits object level
events, such as object allocation, object access and object
deallocation. Object reference, object size and access offset are
all logged in a trace file. The trace is a complete description of the
execution of programs in terms of its effects on the objects, but is
mostly independent of the actual implementation within JVM. In
this experiment, we use Sun’s Java2 Platform, Standard Edition,
1.3.1_01 as the experiment platform. By using the instruction
tracing ability of JVM and JVMPI, we collected the object
creation; object access and object destroy events for each Java
programs. The benchmarks and programs are configured to run in
interpreter mode in order to gather the original execution behavior
without hotspot’s distortion [19].

Table 3. Object-based cache hit ratio (%)

Cache Line Size
(Bytes) Benchmark

Cache
Size
(KB) 16 32 64

16 89.37 95.97 97.76

32 89.86 96.34 98.31

64 90.13 96.54 98.59
Address

128 90.27 96.67 98.73

16 96.11 99.26 99.54

32 96.32 99.46 99.70

64 96.39 99.51 99.89
Javacc

128 96.40 99.53 99.94

16 90.78 96.38 96.86

32 91.22 96.76 97.76

64 91.54 97.01 98.28
Jedit

128 91.79 97.19 98.60

16 93.26 97.10 98.34

32 93.63 97.52 98.87

64 93.82 97.73 99.07
Jtris

128 93.89 97.93 99.16

16 89.51 95.02 92.48

32 90.68 96.15 93.66

64 90.68 96.15 94.83
Xbrowser

128 91.22 96.64 94.82

16 87.34 94.65 91.51

32 87.96 95.16 92.21

64 87.95 95.15 92.83
Xerlin

128 88.29 95.43 92.82

The programs being analyzed include Xbrowser, Jedit, Javacc,
Xerlin, Jlayer, Jtris and Address. Xbrowser is totally free and
open-source java application for browsing the web. It will execute

on any OS supporting Java 2 platform. It is fully multithreaded
and it means that you can open several web pages simultaneously
in one session. Jlayer is a library that decodes/plays/converts
MPEG 1/2/2.5 Layer 1/2/3(i.e. MP3) in real time for the Java
platform. Xerlin is an open source XML modeling application
written for the Java 2 platform. It is being written by a team of
engineers interested in seeing a nice user interface for working
with XML files. Other benchmarks are also open source project
on www.souceforge.net.
In table 3, we illustrate the hit ratio of object caches when running
benchmarks. Table shows that object cache is highly sensitive to
cache line size. Compared to 16-byte cache line, 32-byte cache
line has a great upgrade in hit ratio, although the capacity of
cache is the same and the number of cache lines is reduced to one
half. This is because most of objects are relatively small and
studies show that the average size of objects is about 30-byte
around. Thus for 32-byte cache line, the entire object can be
loaded in for one cache miss while accessing the entire object
results in two cache misses for 16-byte cache line. In contrast
with cache line size, cache capacity has less effect on cache hit
ratio.
With hardware support for explicit memory management, the
allocation and deletion of object is strictly bounded. For object
allocation, 2 memory reads and 2 memory writes should be done
to modify the free-list, used-list and set class function table for
new object as well. However, only one memory write is needed
for object deletion. That is to set the deleted bit in the object table.
In this section, we compare our hardware bidirectional
compaction collector with copy collector and compaction
collector. The copy collector and compaction collector are
manually programmed using assembly language.
Two C++ benchmarks are investigated. The first one is a bank
simulation program. This simulation program carries out an
event-driven simulation that describes different expected arrival
rates for customers and different expected service times for a
teller to handle a customer. The second one allocates object of a
random size (0-5000 bytes) and creates objects at random position
in an array. The old object is explicitly deleted if this position is
already occupied. Table 4 lists the execution characteristics of
these two benchmarks. In both applications, the number of
collection invocations is greatly reduced in the proposed scheme
compared to copy collector, this is because live objects are
distributed over the two side of heap memory and the whole heap
space is available for allocating. It is worth noting that
compaction scheme invokes compaction only 50% as often as
proposed scheme. Compaction collector is trigged when the entire
space is exhausted, while for proposed scheme, compaction will
be started once one of the semi-spaces is full. Table 4 also
illustrates a comparison in terms of processor cycles. Both bank
simulation and random allocation are dynamic memory
management intensive. As a result, the proposed scheme improves
the overall system performance a lot.
 Since bidirectional compaction collector is a concurrent hardware
collector, processor stalls only when the accessed object is been
writing to or read from the memory by cache and at the same time
this object is been sliding to one side of heap memory, however,
processor always stalls for software-collector until garbage
collection finished. As a result, the maximum stall duration for
software-collector is much longer than bidirectional memory

194

compaction collector. As shown in table 4, the max stall duration
of software-collector can be as high as million cycles. In a parallel
or distributed setting this limitation is severe; delays due to DMM
may cause considerable waiting. Developers of real-time systems
avoid using dynamic memory because they fear that the worst-
case time and space requirements of typical dynamic memory
managers are insufficiently bounded. The concurrency
compaction scheme of our self-maintained memory module
greatly reduces the system delay introduced by memory
compaction. Long-living objects are continuously swapped
between the two sections every time the copy-collector is running,
thus it results in higher memory traffic than bidirectional
compaction collector.

Table 4. Execution behavior of benchmarks

 Execution
behavior BDCC Copy Compaction

Time exhausted
(×109cycles)

0.5 2.4 2.34

Compaction times 18 42 9

Stall times caused
by compaction 0 42 9

Max. stall duration
(×106cycles) 0.00035 0.89 1.21

B
ank Sim

ulation

Total memory
traffic (MB) 0.31 5.36 0.92

Time exhausted
(×109cycles) 0.006 0.16 0.04

Compaction times 99 256 52

Stall times caused
by compaction 0 256 52

Max. stall duration
(×106cycles) 0.00048 0.58 0.55

R
andom

 A
llocation

Total memory
traffic (MB) 1.26 9.04 1.41

The memory utilization comparison of these two benchmarks is
shown in fig. 6 and fig. 7. It can be seen that the bidirectional
compaction collector (BDCC) obtains higher memory utilization
ratio than copy collector. This is because only half of heap space
is available for copy collector. And also this explains why copy
collector results in more garbage collections. Although BDCC
splits the whole space into two semi-spaces as done by copy
collector, the whole space is utilized to allocate objects. BDCC is
a concurrent collector, thus memory compaction is going on in
one semi-space while new object is allocated in another semi-
space. And hardware-assisted memory compaction of first semi-
space always completes before the second semi-space is
exhausted. As a result of compaction termination, occupancy
factor decreases suddenly. This is why proposed scheme has
lower memory utilization than compaction collector, but not
comparable in theory.
Fig. 8 and fig. 9 show the accumulated memory traffic for these
three collectors. The program execution based on hardware

bidirectional compaction collector terminates much earlier than
copy collector and compaction collector. The bidirectional
compaction introduces higher memory traffic in the initial state,
since it is a concurrent hardware collector, both processor core
and DMMU can do their job simultaneously. In addition, all
memory compaction are done before program completion. For the
convenient of comparison, we think that the memory traffic dose
not change after program termination. As can be seen from the
figures, there has been a steady increase in memory traffic for
based copy collector. However, it is observed that BDCC and
compaction collector have similar memory traffic caused by
memory compaction.

Figure 6. Memory utilization ratio comparison for BS

Figure 7. Memory utilization ratio comparison for RA

8. Conclusion
In this paper, we propose hardware assisted memory module,
which supports explicit dynamic memory management. The
given architecture facilitates support for object addressing, object
allocation and heap compaction. A new bidirectional compaction
collector is presented which is a concurrent memory compactor

195

working with the help of object cache. Mutator process can access
object field while memory compaction under process which
ultimately optimizes the total operation time. Experiments results
show that this new collector will greatly speed up the execution of
object-oriented programs.

Figure 8. Accumulated memory traffic comparison for BS

Figure 9. Accumulated memory traffic comparison for RA

9. REFERENCES
[1] Benjamin Zorn, Custo-Malloc, efficient synthesized memory

allocators. Technical Report CU-CS-602-92, Computer
Science Department, University of Colorado, July 1992.

[2] Brad Calder, Dirk Grunwald, Benjamin Zorn, Quantifying
Behavioral Difference Between C and C++ programs.
Journal of Programming Languages, VOL. 2, NO.4, 313-
351, 1994.

[3] C. D. Lo, W. Srisa-an and J. M. Chang, A multithreaded
concurrent garbage collector which parallelizes the new
instruction in Java. In International Parallel and Distributed
Processing Symposium, Fort Lauderdale, Florida, April 15-
19, 2002, pp. 59-64.

[4] Chia-Tien Dan Lo, The Design of a Self-Maintained
Memory Module for Real-Time Systems. The 3rd IEEE
International Workshop on System-on-Chip for Real-Time
Applications, 337-342, 2003.

[5] Dieckmann S, Hölzle U, A Study of the Allocation Behavior
of the SPECjvm98 Java Benchmarks. In 13th European
Conference on Object-Oriented Programming, pp. 92-115,
1999.

[6] D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson,
Architecture of SOAR: Smalltalk on a RISC. In Eleventh
Annual International Symposium on Computer Architecture,
1984.

[7] Greg Wright, Matthew L. Seidl, Mario Wolczko, An object-
aware memory architecture. Sun Technical report, 2005.

[8] H. J. Mattausch, Hierarchical architecture for area-efficient
integrated Nport memories with latency free multi-gigabit
per second access bandwidth. ELECTRONICS LETERS,
vol.35, no.17, pp. 1441-1443, September 1999.

[9] Hasan Cam, Mostafa Abd-El-Barr, and Sadiq M. Sait, A
High-Performance Hardware-Efficient Memory Allocation
Technique and Design. International Conference on
Computer Design， Proceddings of ICCD’ 99, 274– 276,
1999.

[10] Hans Jiirgen Mattausch, Hierarchical N-Port Memory
Architecture based on 1-Port Memory Cells. The 23rd
European Solid-State Circuits Conference, Southampton,
UK, September 1997, pp..348-351.

[11] Hans Vandierendonck, Koen De Bosschere, XOR-Based
Hash Functions. IEEE Transactions on computers, vol. 54,
2005.

[12] Ifor W. Williams, Object-based memory architecture. PHD
thesis, university of Manchester, 1989

[13] James O'Toole , Scott Nettles , David Gifford, Concurrent
compacting garbage collection of a persistent heap.
Proceedings of the fourteenth ACM symposium on Operating
systems principles, pp.161-174, December 1993

[14] J. M. Chang, Gehringer E.F., A high-performance memory
allocator for object-oriented systems. IEEE Transactions on
Computers, VOL. 45, NO. 3, 357–366. 1996.

[15] J. M. Chang and W. H. Lee, A Study on Memory
Allocations in C++. Proceedings of 14th International
Conference on Advanced Science and Technology,
Naperville, Illinois, Apr. 4-5, 1998. pp. 53-62.

[16] J. Morris Chang, Witawas Srisa-an, Chia-Tien Dan Lo,
Edward F. Gehringer, DMMX: Dynamic memory
management extensions. The Journal of Systems
andSoftware, VOL. 63, 187-199, 2002

[17] J. Morris Chang, Witawas Srisa-an and Chia-Tien Dan Lo,
Architectural Support for Dynamic Memory Management.
Proceedings of the 2000 IEEE International Conference on
Computer Design, 99-104, 2000.

[18] KD Nilsen and WJ Schmidt, A high-performance hardware-
assisted real-time garbage collection system. Journal of
Programming Languages, VOL. 2, NO. 1, 1-40, 1994.

196

[19] L indho lm T, Yellin F., The Java Virtual Machine
Specification, Addison-Wesley, 1996.

[20] N. Vijaykrishnan, N. Ranganathan, R. Gadekarla, Object-
Oriented Architectural Support for a Java Processor,
ECOOP’98, pp.330-355, 1998.

[21] R. Colwell, E. Gehringer, and E. Jensen, Performance effects
of architectural complexity in the intel 432. ACM
Transactions on Computer Systems, vol. 6, pp. 296-339,
1988.

[22] Sung Jin Cho, Un-Sook Choi, Yoon-Hee Hwang, Han-Doo
Kim, Modeling Efficient XOR-Based Hash Functions for
Cache Memories. International Conference on
Computational Science, pp.1067-1070, 2006.

[23] William J. Schmidt, Kelvin D. Nilsen, Performance of a
Hardware-Assisted Real-Time Garbage Collector.
Proceeding of ASPLOS, 76-85, 1994.

[24] Witawas Srisa-an, Chia-Tien Dan Lo, and J. Moms Chang,

Scalable Hardware-algorithm for Mark-sweep Garbage
Collection. Proceedings of the 26th Euromicro Conference,
vol.1, 274 – 281, 2000

[25] Witawas Srisa-an,Chia-Tien Dan Lo,and Ji-en Morris Chang,
Active Memory Processor: A Hardware Garbage Collector
for Real-Time Java Embedded Devices, IEEE
TRANSACTIONS ON MOBILE COMPUTING, vol. 2, no. 2,
89-101,2003

[26] Yau Chi Hang, Tan Yi Yu, Fong Anthony S., and Yu Wing
Shing, Hardware Concurrent Garbage Collection for Short-
lived Objects in Mobile Java Devices. Lecture Notes in
Computer Science, vol. 3824, pp 47-56. Dec 2005, Springer

[27] Zhaomin Zhu, Koh Johguchi, A Novel Hierarchical Multi-
port Cache. In the 29th European Solid-State Circuits
Conference, Estoril, Portugal, September 2003, pp. 405 –
408.

197

