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ABSTRACT 
The memory intensive nature of object-oriented languages such as 
C++ and Java has created the need of a high-performance 
dynamic memory management (DMM); however, it is a 
challenging task to provide efficient reliable system without 
violating real time performance constraints. Hardware approach 
emerges as one of the candidate in improving the performance of 
DMM. This paper presents an efficient design for explicit 
dynamic memory management which exploits the high speed of a 
pure hardware implementation. Object allocation and deletion are 
strictly bounded in time. The whole heap space is divided into 
two semi-spaces, and a concurrent bidirectional memory 
compaction algorithm is proposed.  So that memory compaction 
can be done while mutator process is running on the processor. A 
small built in object-based cache memory is available to avoid 
indirect object addressing inefficiencies. Experiments show that 
this hardware scheme can greatly improve the speed and 
predictability of DMM.   

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Contructs and 
Features – abstract data types, classes and objects, dynamic 
storage management.  

General Terms 
Management, Measurement, Performance, Design, Languages. 

Keywords 
object-oriented programming, dynamic memory management, 
active memory module, object-based cache. 

1. INTRODUCTION 
It is a well-known fact that object-oriented programs tend to be 
dynamic memory intensive. Through the support from the 
dynamic memory management system, programmers are allowed 
to be more productive to enhance software reliability and 
functionality. However, the characteristic of traditional software 

approaches are also known to be slow and non-deterministic. 
Studies show that DMM accounts for up to 43% of Java run time 
[3]. C/C++ applications can spend from 23% to 38% of the 
execution time performing DMM [15][1]. Embedded systems 
have real-time constraints; therefore, non-deterministic allocation 
and collection pause times can severely degrade run-time 
performances and may even result in system failures. The 
increasing popularity of object-oriented programming in 
embedded system environments has created the need of a high-
performance DMM for embedded devices. Over the years, there 
have been several attempts to incorporate hardware support as a 
way to reduce run-time overhead, increase in system’s throughput, 
and limit the worst case latencies. However, it is hard to build a 
bounded time scheme without hardware support. With the 
advancement in VLSI technology, a high density chip with 
multimillion system gates is currently available and will continue 
to grow in the future. To fully utilize these hardware resources, it 
becomes more and more attractive to map basic software 
algorithms into hardware. DMM is one of the cases and its 
performance can be improved greatly by shifting high 
computation extensive software algorithms to hardware domain. 
In this paper, we propose a self-maintained memory module as a 
way to provide hardware support for explicit dynamic memory 
management. The two benefits of the proposed scheme are that 
the allocation and deletion can be done in constant time. 
Moreover, the module can perform heap compaction in parallel 
with mutator process running on processor; thus the memory 
compaction latency is greatly reduced.  This is the major 
departure from previously counterparts, which are all “stop-the-
world” collectors and memory compaction can vary from 
thousand cycles to several million cycles. Allocation of a new 
object and deletion of a live object in the proposed scheme is 
strictly bounded. As a result, the overall speed-up is obvious 
compared to software-only collection techniques.  

The remainder of this paper is organized as follow. Section 2 
discusses previous work and section 3 provides a top-level 
architecture of our self-maintained memory module. Section 4 
addresses the architectural support issues for object addressing, 
while section 5 shows our new bidirectional compaction 
algorithm. The object-based cache architecture is given in section 
6. Section 7 analyzes the experiment results. The last section 
concludes this paper. 

2. Related work 
Hardware-assisted DMM is a promising approach to achieve hard 
real-time performance which no software-only techniques could 
guarantee. Based on Baker’s incremental copying collector, 
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Nilsen and Schmidt proposed a hardware-assisted real-time 
garbage collector [18][23]. A special memory module, called 
garbage-collected memory module (GCMM), was designed 
separately from general CPU so as to share the technology 
investment cost and make economies of scale feasible. The 
GCMM contains memory for to-space and from-space, local 
memory and a microprocessor. The microprocessor communicates 
with the CPU through a number of memory mapped I/O ports. A 
design of an application specific instruction extension called 
Dynamic Memory Management extension (DMMX) was 
proposed in [14]. The allocation is done through the modified 
buddy system and a complete binary tree of combinational logic, 
which allows constant-time object creation. The hardware 
solution provided utilizes a set of bit-maps and combinational 
circuit components to perform mark-sweep garbage collection, 
where the sweeping phase can be accomplished in constant time. 
This hardware scheme can greatly improve the speed and 
predictability of DMM [16] [24][17][25]. The proposed DMMX 
is an add-on approach, which allows easy integration into any 
CPU, hardware-implemented Java virtual machine, or processor 
in memory. A replicating garbage collector for a persistent heap is 
described in [13]. The garbage collector cooperates with a 
transaction manager to provide safe and efficient transactional 
storage management. Clients read and write the heap in primary 
memory and can commit or abort their write operations. Their 
implementation is the first to provide concurrent and compacting 
garbage collection of a persistent heap. 

 Other self-maintained memory modules can also be found in [9] 
[4][26]. Due to the consideration of hardware complexity and cost, 
these hardware assisted dynamic memory management systems 
are all based on simple collecting algorithms, such as copying 
collector, mark-sweep and mark-compact. Since the entire heap is 
split into two semi-spaces for copy collectors, only one region can 
be active during run-time. Copying also rearranges the allocation 
order. This can be important in some applications where spatial 
locality should be preserved.  Additionally, long-living objects are 
continuously swapped between the two sections every time the 
copying collector is running. Though mark-compact and mark-
sweep are a bit more complex, they are still “stop-the-world" 
garbage collection techniques as the same as copying collector; 
that is, all application threads stop until garbage collection 
completes. Many types of applications can't tolerate their stop-
the-world nature. That is especially true for applications that 
require near real-time behavior or those that service large 
numbers of transaction-oriented clients. Hence, in this paper we 
propose a concurrent bidirectional compaction collector, which is 
embedded in a self-maintained memory module and can run in 
parallel with processors. 

3. Self-maintained memory module 
Figure 1 shows the top-level architecture of our self-maintained 
memory module. The typical configuration of this memory block 
consists of the following functional units: interface unit (IU), 
dynamic memory management unit (DMMU), object-based cache 
(OBC) and a dual-port RAM block. This self-maintained module 
supporting explicit dynamic memory management takes 
advantage of the speed of pure hardware implementation and it is 
an add-on approach, which allows easy integration into any 
hardware-implemented Java virtual machine, or object-based 
architectures. In the view of Java processor, for example, 

proposed memory module is just like a blank box. All the objects 
are referred by a location-independent object reference. Processor 
can send requests to this memory and data will be available on the 
external bus immediately if return value is necessary. 

Figure 1. The top-level architecture of active memory module 
 
IU is responsible for communicating between the external 
memory bus and internal functional units, and it contains a 
number of memory-mapped I/O ports. Mutator process running on 
the processor allocates a new object, for example, by writing a 
request to one of these ports and reading the reference of the 
allocated object from another. Ports are also used to initialize the 
DMMU to indicate how large the heap is and read information 
about the state of memory module itself. All the communicating 
commands are listed in table 1. 
 

Table 1.  Communicating commands and specification 

command parameter return   Specification 

New size referenc
e Allocate a new object 

Delete reference NULL Delete an old object. 

Getfield reference,  
offset 

field 
data Get the field data 

Putfield 
reference, 

offset, 
field data 

NULL Put the filed data 

 
DMMU is composed of two separate parts: object allocator and 
memory compactor. The memory intensive nature of object-
oriented languages such as C++ and Java has created the need of 
high-performance DMM. In this paper, explicit dynamic memory 
management is supported. Programmer has to delete the object if 
it is required to free the occupied memory. Processor allocates a 
new object by sending an allocation request to IU.  And these 
requests will be passed to DMMU to allocate or delete object 
internally.  Allocator notifies memory compactor that the heap 
should be compacted whenever needed. A set of registers are 
embedded in DMMU and maintained for recording the starting 
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address and end address of semi-spaces. Four other registers are 
also used to facilitate the utilization of object table. Table 2 shows 
the registers that are required and the usage for the purpose. Their 
utilization is explained in section 4 and section 5. 
 

Table 2.  Registers built in DMMU 

Name Length Specification 
FA 32-bit Free pointer of semi-space A 
FB 32-bit Free pointer of semi-space B 
FM 32-bit Middle pointer of free space 

ULH 32-bit Used list’s head of object table 
ULT 32-bit Used list’s tail of object table 
FLH 32-bit Free list’s head of object table 
FLT 32-bit Free list’s tail of object table 

 
In order to facilitate object relocation and to simplify the process 
of memory compaction, indirect addressing is supported in our 
scheme. Although the direct addressing saves a load instruction 
on field access, this presentation imposes many restrictions on the 
system. Removing the indirection addressing on every memory 
access makes it extremely expensive to relocate objects in the 
memory. The implementation of indirect addressing on our 
object-based architecture is achieved by maintaining a hardware 
object table and performing a lookup of the object table on each 
object access [12][21]. Object table indirection imposes a heavy 
penalty on memory accesses. In order to avoid such inefficiencies, 
an object-based built in cache memory is availed. Whilst 
conventional caches perform an association between an address 
and a memory location, a virtually addressed object-based cache 
associates a concatenation of the reference and offset with a 
memory location. The cache line of object-based cache is tagged 
directly with (reference, offset), thus contains parts of objects 
rather than blocks of physical memory. This organization is 
similar to a virtually-addressed cache, except that the reference 
and offset bits are concatenated rather than summed. Getfield and 
Putfield request can be responded within one clock cycle if cache 
hits. 
It is worth noting that both object-based cache and DMMU may 
access RAM simultaneously. Therefore, a dual-port memory is 
provided to ensure that both of them can access the RAM 
concurrently. However, Multi-port memory implementing all 
ports in the memory cell results in great increase in area occupied. 
To compromise between bandwidth and area, interleaving 
technology are exploited and applied in our system based on 1-
port memory banks [27][8][10]. The system consists of M 
memory banks numbered 1,2,3,…,M-1,M, among which the 
addresses are distributed cyclically, that is, if  i  is the address of a 
memory location, then j≡i(mod M) is the address of the bank 
containing the location. Independent ports are connected to banks 
dynamically via switching network. The least significant bits of 
addresses select a bank, while the most significant bits are 
regarded as bank addresses. On further consideration, the 
processor is either accessing the object-based cache, or 
allocating/deallocating an object; therefore, there is no conflict 
between these two operations. Moreover, with the help of object-
based cache, memory access will be greatly reduced and internal 
memory bus is always idle when cache hits. Thus memory 
compactor can utilize internal memory idle gap and process its 

job between cache misses. Once cache misses or object allocation 
occurs, memory compaction will be stalled. In such a case, 1-port 
memory block will satisfy system requirements and no dual-port 
memory is needed. However, the first scheme is exploited in 
current stage. 

4. Object addressing 
All the objects are referred by a location-independent object 
reference, actually an index into an object table. This indirect 
object presentation makes relocation easier because object’s 
memory address is stored in only one place. Object table entry 
(OTE) contains object’s size, memory base address, and object 
state bits. The format of OTE is shown in fig. 2. Both object and 
object table entry are word aligned in memory, thus the two least 
significant bits of object base address, object size, and next entry 
address can be used as object state bits. As we propose a 
bidirectional compaction algorithm, the S bit of OTE is used to 
indicate in which semi-space the object resides. And the D bit 
renders deletion of the object if it is asserted. The R bits are not 
used at present. 

Figure 2. Object table entry 
 
Profiling results for various Java programs indicate that the 
average object size is around 30 bytes [2].  And C++ programs 
allocate a significant number of dynamic objects on the average 
size of 170 bytes [1]. Hence an offset of 12 bits would cover the 
majority of objects in practice, and larger objects can be broken in 
to smaller objects by the compiler. In order to keep the original 
order of objects in memory, next entry address points to next OTE. 
This can ameliorate locality problems because the allocation 
ordering is usually more similar to subsequent access orderings 
than an arbitrary ordering imposed by a garbage collector. 
Furthermore, the sliding compaction process needs to know where 
to find the next allocated object in heap semi-space. And for 32-
bit memory space, 20-bit is left for next entry.  
The object table is organized as two lists: free-list and used-list, as 
illustrated in fig. 3. Memory compactor scans the used-list and 
produces free OTE, the free-list’s tail and used-list’s head are 
maintained by allocator. Once memory compaction starts 
operating, Compactor scans the used-list one by one. If a deleted 
object of specified semi-space is found, the OTE is removed from 
the used-list and added to the tail of free-list. On the contrary, the 
head of free-list and the tail of used-list are maintained by 
allocator, which consumes free OTE and produces used OTE. The 
reason why we organize the object table in such a way is that: 
firstly, the original allocation order of objects will not be changed.  
Secondly, it’s convenient to search object table, avoiding 
scanning the whole table to find out a free OTE. Finally, also the 
most important one, the allocation and deallocation duration will 
be bounded. This is really important for systems with real-time 
constraints.Object table resides in the heap space, which is 
identified by an object reference and initialized by processor 
when system booting up. 
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Figure 3. The organization of object table 

 

5. Dynamic memory management 
A bidirectional memory compaction algorithm is addressed in this 
research which describes that processor can freely access the heap 
space during heap compaction. The basic concept of this 
algorithm is illustrated in fig. 4. Heap space is divided into two 
semi-spaces, called semi-space A and semi-space B, as shown in 
fig. 4 (A). At the beginning of system booting up, objects are 
allocated in semi-space A until it is exhausted. The live objects 
are then compacted into one side of this semi-space, while 
allocation continues concurrently in semi-space B. When B is 
exhausted, the process is repeated in reverse, as illustrated in fig. 
4 (B), (C) and (D) respectively, and the processor can access the 
heap while memory compaction is going on. 
Storage is allocated by advancing a free space pointer over one of 
the semi spaces. Allocator is the only consumer of heap space. If 
allocation request is received, a block of memory is allocated for 
the new object by advancing the free space pointer (FA or FB). 
Allocator returns the free list head as reference to processor and 
modifies the free-list and used-list as well. When deallocating 
object, allocator just sets the deletion bits in the OTE and leaves 
deallocation to memory compactor. Since all dead objects are 
explicitly deleted by programmer, no mark phase is needed before 
memory compaction. The memory compactor module scans the 
used-list of OTE and slides live objects to one side of the heap, 
and adds the freed OTE to the tail of free-list. In this case, 
compaction phase typically performs one pass over semi-space. 
As a result of compaction, all the live objects in one semi-space 
are moved into a single contiguous block of semi-space; the 
memory left unused after compaction is recycled. If semi-space 
collection completes, the free space pointer of this space is 
updated. As shown in fig. 4 (D), the free space pointer FA is 
replaced with FA’. Since live objects slide to the two sides of 
heap, we call this bidirectional compaction algorithm. 
The boundary FM of A and B is not fixed. Once semi-space 
compaction finished, the boundary will be redefined as the middle 
point of free space between FA and FB. As it can be seen from fig. 
4 (D), the free space middle pointer slides to left a little and points 
to the middle point of free space. In such a way, the available free 
space is equally distributed in the two semi-spaces. Accordingly, 

the collection times may be reduced in some cases. For example, 
programs always create some longevous objects when system 
starting up. As a result, most of the space of A is occupied by 
these long-live objects and has not enough space to allocate new 
objects. Consequently, a new garbage collection is triggered 
immediately by allocator, while the compaction of semi-space B 
has not yet finished at this moment. Fixed boundary will result in 
frequently processing unit stall and long time system pause. 

Figure 4. Bidirectional memory compaction algorithm 
 
From fig. 4 we can describe that the long-living objects move 
towards the two sides of heap space. After several times 
compaction, they will stay in one place for a long time if no older 
objects in the same semi-space are deleted. This will greatly 
reduce the memory traffic during space compaction. Additionally, 
the whole space memory is utilized to run application, and no 
twice the amount of memory is required. The most important 
thing is that heap access and memory compaction can be done 
concurrently. Of course, all of this is based on the support of the 
dual-port memory. 

6. Object-based cache 
Object cache is mostly related to object-oriented architectures. 
Smalltalk systems such as SOAR, Intel 432 and Mushroom 
provide architectural support for efficient object addressing and 
accessing [12][21][5]. Further, various stack based machine 
provide hardware support for JVM and they are mainly focus on 
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efficient manipulation and relocation of objects. Object-based 
caches were first proposed by Williams in Mushroom project. But 
it was never completed and all performance data they obtained 
was from earlier simulations. [20] and [7] incorporated some of 
this good idea and object-based cache architecture was 
implemented in Java processors respectively. 
A 32-KByte, two-way associative, write-back cache with an 
eight-word line size is exploited in our self-maintained memory 
module. Memory operations that hit the cache complete in one 
machine cycle. Memory operations that miss the cache require 
approximately 80 cycles. Our simulation results show that object-
based cache is sensitive to cache block size and less insensitive to 
cache capacities. Since most of objects are small, 32-byte cache 
line size is recommended. Fig. 5 shows the overall architecture of 
our new object cache with explanation that we can see that 
reference and most significant bits of offset are concatenated to 
form the input of hash function. In this research, we exploit a 
XOR-based hash function making hash module a complete 
combinational circuit and index can be calculated in constant time. 
Another promotion of this new object cache is that the tag is not 
the concatenation of reference and offset but just contains LSB of 
reference and partial offset. The 32-bit object references and 16-
bit offset pair result in a large overhead for maintaining the tag 
bits. As discussed previously, object reference is actually the 
index into the object table, therefore, only 20 least significant bits 
of reference is necessary. 
 

Figure 5. The concept of object-based cache 
 
When the index of tags is calculated, the reference selected from 
tag is compared with the input reference. If they are equal, then 
cache hits. Once cache miss occurs, object physical address is 
obtained from object table according to reference. Missed data are 
read from memory afterwards. 
This object-based cache compromises between direct and indirect 
addressing and eliminates the base-offset addition overhead; of 
course the two memory accesses introduced by object table 
indirection are also replaced by one cache access. Hash function 
is of main concern while designing object-based caches. Cache 
interference occurs when more addresses are mapped onto the 
same cache location. Thus the partitioning of the address to 
choose the tag bits, block index bits and block offset bits is 
critical for the performance measure of object cache. Poor choice 

of the block index bits would result in frequent cache interference. 
[12] and [20] list four ways in which the block offset and block 
index bits are generated. However, what constitutes a good hash 
function depends on the application. In any application, good hash 
functions have to perform well on two criteria. First, there is no 
added latency of computing the hash value. Second, the hash 
function must succeed in spreading the most frequently occurring 
patterns over all indices. This in turn depends on the executed 
programs and their input data [11]. Object programs obviously 
have different memory access patterns from other programs: The 
first pattern in object-oriented application is consecutive 
accessing of objects with sequential references. Since lots of 
object dies when they are young, the objects, which are being 
accessed, are almost newly created, except some longevous ones, 
which are created when application starts up. New objects are 
allocated orderly with continuous references (index into object 
table) and they are the most likely objects that will be accessed 
recently. The second pattern is the same object access. Because of 
the locality of programming execution and memory access, the 
same object will be accessed again very likely as it is accessed 
first time. These are the two obviously and important memory 
access patterns of object-oriented application. Thus if we can 
construct a hash function to map these two most frequently 
occurring patterns without conflicts, the performance of object 
cache can be greatly promoted. 
 XOR-based hash function computes each set index bit as the 
Exclusive OR (XOR) of a subset of the bits in the address. The 
reason of selecting such configuration is that the XOR-based hash 
functions have the benefit of computing set index with a low 
latency. Furthermore, they perform well for all applications, 
ranging from interleaved memories to branch predictors. 
Vandierendonck et al. constructed XOR-based hash functions 
based on NULL space theory, and these functions provided 
conflict-free mapping for a number of patterns and their functions 
map 2m bits to m(=2k) bits which are conflict free [11]. But they 
didn’t construct hash functions which are conflict free when m is 
odd. Sung-Jin Cho et al. developed this method and design new 
hash functions, which compute each set index bit as XOR of a 
subset of the bits in the address by using the concepts of rank and 
NULL Space [22]. 
It’s proved that these hash functions map the patterns (rows, 
columns, (anti)diagonal, and rectangles) without conflicting [22] . 
Imaging objects make up of a two dimension arrays, each object 
is a row of the array and object data members are elements in the 
row.  Then the object access patterns mentioned previously are 
analog to the row pattern and column pattern of arrays. Because 
modeled XOR-based hash functions map these patterns conflict 
free, the objects with consecutive reference can be mapped to 
different cache block, and different blocks of the same object can 
also be mapped without conflicts. For details of this XOR-based 
hash function, please refer to [11] and [22]. 

7. Preliminary Performance 
We have developed the self-maintained memory module in 
VHDL, and integrate this memory module into our object-
oriented processor system. We also developed a translator to 
translate the object manipulate bytecode of Java programs into 
native assembly language of our processor, so that the 
performance of this memory module can be obtained before the 
compiler of our object-oriented processor is available. 
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Furthermore, some manually generated benchmarks are used to 
test the performance of our design.  
We investigate some of the Java programs by traces obtained 
from a modified JVM. The modified JVM emits object level 
events, such as object allocation, object access and object 
deallocation.  Object reference, object size and access offset are 
all logged in a trace file. The trace is a complete description of the 
execution of programs in terms of its effects on the objects, but is 
mostly independent of the actual implementation within JVM. In 
this experiment, we use Sun’s Java2 Platform, Standard Edition, 
1.3.1_01 as the experiment platform. By using the instruction 
tracing ability of JVM and JVMPI, we collected the object 
creation; object access and object destroy events for each Java 
programs. The benchmarks and programs are configured to run in 
interpreter mode in order to gather the original execution behavior 
without hotspot’s distortion [19].  
 

Table 3. Object-based cache hit ratio (%) 

Cache Line Size 
(Bytes) Benchmark 

Cache 
Size 
(KB) 16 32 64 

16 89.37 95.97 97.76 

32 89.86 96.34 98.31 

64 90.13 96.54 98.59 
Address 

128 90.27 96.67 98.73 

16 96.11 99.26 99.54 

32 96.32 99.46 99.70 

64 96.39 99.51 99.89 
Javacc 

128 96.40 99.53 99.94 

16 90.78 96.38 96.86 

32 91.22 96.76 97.76 

64 91.54 97.01 98.28 
Jedit 

128 91.79 97.19 98.60 

16 93.26 97.10 98.34 

32 93.63 97.52 98.87 

64 93.82 97.73 99.07 
Jtris 

128 93.89 97.93 99.16 

16 89.51 95.02 92.48 

32 90.68 96.15 93.66 

64 90.68 96.15 94.83 
Xbrowser 

128 91.22 96.64 94.82 

16 87.34 94.65 91.51 

32 87.96 95.16 92.21 

64 87.95 95.15 92.83 
Xerlin 

128 88.29 95.43 92.82 

 
The programs being analyzed include Xbrowser, Jedit, Javacc, 
Xerlin, Jlayer, Jtris and Address. Xbrowser is totally free and 
open-source java application for browsing the web. It will execute 

on any OS supporting Java 2 platform. It is fully multithreaded 
and it means that you can open several web pages simultaneously 
in one session. Jlayer is a library that decodes/plays/converts 
MPEG 1/2/2.5 Layer 1/2/3(i.e. MP3) in real time for the Java 
platform. Xerlin is an open source XML modeling application 
written for the Java 2 platform. It is being written by a team of 
engineers interested in seeing a nice user interface for working 
with XML files. Other benchmarks are also open source project 
on www.souceforge.net. 
In table 3, we illustrate the hit ratio of object caches when running 
benchmarks. Table shows that object cache is highly sensitive to 
cache line size. Compared to 16-byte cache line, 32-byte cache 
line has a great upgrade in hit ratio, although the capacity of 
cache is the same and the number of cache lines is reduced to one 
half. This is because most of objects are relatively small and 
studies show that the average size of objects is about 30-byte 
around. Thus for 32-byte cache line, the entire object can be 
loaded in for one cache miss while accessing the entire object 
results in two cache misses for 16-byte cache line. In contrast 
with cache line size, cache capacity has less effect on cache hit 
ratio.  
With hardware support for explicit memory management, the 
allocation and deletion of object is strictly bounded. For object 
allocation, 2 memory reads and 2 memory writes should be done 
to modify the free-list, used-list and set class function table for 
new object as well. However, only one memory write is needed 
for object deletion. That is to set the deleted bit in the object table. 
In this section, we compare our hardware bidirectional 
compaction collector with copy collector and compaction 
collector. The copy collector and compaction collector are 
manually programmed using assembly language.  
Two C++ benchmarks are investigated. The first one is a bank 
simulation program. This simulation program carries out an 
event-driven simulation that describes different expected arrival 
rates for customers and different expected service times for a 
teller to handle a customer. The second one allocates object of a 
random size (0-5000 bytes) and creates objects at random position 
in an array. The old object is explicitly deleted if this position is 
already occupied. Table 4 lists the execution characteristics of 
these two benchmarks. In both applications, the number of 
collection invocations is greatly reduced in the proposed scheme 
compared to copy collector, this is because live objects are 
distributed over the two side of heap memory and the whole heap 
space is available for allocating. It is worth noting that 
compaction scheme invokes compaction only 50% as often as 
proposed scheme. Compaction collector is trigged when the entire 
space is exhausted, while for proposed scheme, compaction will 
be started once one of the semi-spaces is full. Table 4 also 
illustrates a comparison in terms of processor cycles. Both bank 
simulation and random allocation are dynamic memory 
management intensive. As a result, the proposed scheme improves 
the overall system performance a lot.  
 Since bidirectional compaction collector is a concurrent hardware 
collector, processor stalls only when the accessed object is been 
writing to or read from the memory by cache and at the same time 
this object is been sliding to one side of heap memory, however, 
processor always stalls for software-collector until garbage 
collection finished. As a result, the maximum stall duration for 
software-collector is much longer than bidirectional memory 
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compaction collector. As shown in table 4, the max stall duration 
of software-collector can be as high as million cycles. In a parallel 
or distributed setting this limitation is severe; delays due to DMM 
may cause considerable waiting. Developers of real-time systems 
avoid using dynamic memory because they fear that the worst-
case time and space requirements of typical dynamic memory 
managers are insufficiently bounded. The concurrency 
compaction scheme of our self-maintained memory module 
greatly reduces the system delay introduced by memory 
compaction. Long-living objects are continuously swapped 
between the two sections every time the copy-collector is running, 
thus it results in higher memory traffic than bidirectional 
compaction collector. 
 

Table 4. Execution behavior of benchmarks 

 Execution 
behavior BDCC Copy Compaction 

Time exhausted 
(×109cycles) 

0.5 2.4 2.34 

Compaction times 18 42 9 

Stall times caused 
by compaction 0 42 9 

Max. stall duration 
(×106cycles) 0.00035 0.89 1.21 

B
ank Sim

ulation 

Total memory 
traffic (MB) 0.31 5.36 0.92 

Time exhausted 
(×109cycles) 0.006 0.16 0.04 

Compaction times 99 256 52 

Stall times caused 
by compaction 0 256 52 

Max. stall duration 
(×106cycles) 0.00048 0.58 0.55 

R
andom

 A
llocation 

Total memory 
traffic (MB) 1.26 9.04 1.41 

 
The memory utilization comparison of these two benchmarks is 
shown in fig. 6 and fig. 7. It can be seen that the bidirectional 
compaction collector (BDCC) obtains higher memory utilization 
ratio than copy collector. This is because only half of heap space 
is available for copy collector. And also this explains why copy 
collector results in more garbage collections.  Although BDCC 
splits the whole space into two semi-spaces as done by copy 
collector, the whole space is utilized to allocate objects. BDCC is 
a concurrent collector, thus memory compaction is going on in 
one semi-space while new object is allocated in another semi-
space. And hardware-assisted memory compaction of first semi-
space always completes before the second semi-space is 
exhausted. As a result of compaction termination, occupancy 
factor decreases suddenly. This is why proposed scheme has 
lower memory utilization than compaction collector, but not 
comparable in theory. 
Fig. 8 and fig. 9 show the accumulated memory traffic for these 
three collectors. The program execution based on hardware 

bidirectional compaction collector terminates much earlier than 
copy collector and compaction collector. The bidirectional 
compaction introduces higher memory traffic in the initial state, 
since it is a concurrent hardware collector, both processor core 
and DMMU can do their job simultaneously. In addition, all 
memory compaction are done before program completion. For the 
convenient of comparison, we think that the memory traffic dose 
not change after program termination.  As can be seen from the 
figures, there has been a steady increase in memory traffic for 
based copy collector. However, it is observed that BDCC and 
compaction collector have similar memory traffic caused by 
memory compaction. 
 

 
Figure 6. Memory utilization ratio comparison for BS 

 

 
Figure 7. Memory utilization ratio comparison for RA 

 

8. Conclusion 
In this paper, we propose hardware assisted memory module, 
which supports explicit dynamic memory management.  The 
given architecture facilitates support for object addressing, object 
allocation and heap compaction. A new bidirectional compaction 
collector is presented which is a concurrent memory compactor 

195



working with the help of object cache. Mutator process can access 
object field while memory compaction under process which 
ultimately optimizes the total operation time. Experiments results 
show that this new collector will greatly speed up the execution of 
object-oriented programs. 

 
Figure 8. Accumulated memory traffic comparison for BS 

 

 
Figure 9. Accumulated memory traffic comparison for RA 
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