Software Controlled Memory Layout Reorganization for
Irregular Array Access Patterns

Doosan Cho
School of EECS
Seoul National University

Jonghee W. Yoon
School of EECS
Seoul National University

llya Issenin
Center for Embedded
Computer Systems
dscho@optimizer_snu_ac_kr University of California, Irvine,
. CA 92697
isse@ics.uci.edu

jhyoon @ optimizer.snu.ac.kr

ABSTRACT

Many embedded array-intensive applications have irregular access
patterns that are not amenable to static analysis for extraction of ac-
cess patterns, and thus prevent efficient use of a Scratch Pad Mem-
ory (SPM) hierarchy for performance and power improvement. We
present a profiling based strategy that generates a memory access
trace which can be used to identify data elements with fine granu-
larity that can profitably be placed in the SPMs to maximize per-
formance and energy gains. We developed an entire toolchain that
allows incorporation of the code required to profitably move data
to SPMs; visualization of the extracted access pattern after profil-
ing; and evaluation/exploration of the generated application code to
steer mapping of data to the SPM to yield performance and energy
benefits.

We present a heuristic approach that efficiently exploits the SPM
using the profiler-driven access pattern behaviors. Experimental
results on EEMBC and other industrial codes obtained with our
framework show that we are able to achieve 36% energy reduction
and reduce execution time by up to 22% compared to a cache based
system.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—dynamic storage management; D.3.4 [Programming Lan-
guages]|: Processors—optimization

General Terms

Languages, Management

Keywords

scratch pad memory, data layout, energy consumption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASES’07, September 30—October 3, 2007, Salzburg, Austria.

Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

179

Nikil Dutt
Center for Embedded
Computer Systems
University of California, Irvine,
CA 92697
dutt@ics.uci.edu

Yunheung Paek
School of EECS
Seoul National University
ypaek @snu.ac.kr

1. INTRODUCTION

Many important embedded applications (e.g., multimedia stream-
ing) are characterized by memory-intensive accesses nested within
critical loops. It is essential to utilize temporal locality in such
loop intensive applications for improving performance and achiev-
ing energy efficiency in the memory subsystem design. Traditional
approaches use hardware controlled caches to exploit temporal lo-
cality and are typically effective for general purpose architectures.
However, a hardware-only implementation has several drawbacks.
The hardware controlled approach incurs additional power and area
cost [3]. Moreover, lack of knowledge of future accesses may
lead to higher miss rates due to non-optimal data placement in the
caches. Besides, it is not possible to achieve effective data prefetch-
ing (which helps to hide the access latency) since not all of the pro-
grams expose sufficient spatial locality in the data accesses. As a
result, it is often unacceptable to use caches because of their unpre-
dictable latency for real embedded applications [16].

An alternative to hardware controlled cache is a "software con-
trolled cache" which is essentially a random access memory called
Scratch Pad Memory (SPM). The main difference between SPM
and hardware controlled cache is that SPM does not need a hard-
ware logic to dynamically map data or instructions from off-chip
memory to the cache since it is done by software. This difference
makes SPM more energy and cost efficient for embedded appli-
cations [27]. In addition, SPM often allows static timing analysis
and thus provides better time predictability required in real-time
systems. Due to these advantages, SPMs are widely used in var-
ious types of embedded systems. In some embedded processors
such as ARMI10E, Analog Devices ADSP TS201S, Motorola M-
core MMC221 and TI TMS370CX7X, SPM is used as an alterna-
tive of cache or a part of cache. Consequently, an approach for
effective utilization is essential for efficacy of SPM based memory
subsystems. Studies on SPM utilization have focused on devel-
opment of approaches for efficiently assigning frequently accessed
data and instructions to SPM so as to maximize improvement of
performance and energy consumption.

Many prior approaches for data array placement in SPMs have
focused on applications with regular data access patterns, typically
those with index expressions represented by affine functions of
outer loop iterators (we name these as "regular” applications). While
such regular applications are abundant in the embedded space, there
also exist a number of embedded applications whose array access
patterns are not analyzed well with accurate compiler static analy-

sis and optimization (we name these as "irregular applications").
Consequently, it is difficult to achieve efficient SPM hierarchy uti-
lization with such irregular applications. To overcome this diffi-
culty, we present a dynamic data reorganization method guided by
profiler. Our approach generates improvements in performance and
energy when the gain obtained from reduction in the number of off-
chip memory accesses outweighs the cost of data transfers between
the SPM and processor/main memory. To that end, our approach
solves the following two problems:

1. Identify parts of the data array that can be copied into the SPM
for improving run-time and energy consumption, and

2. Maximize utilization of the SPM space using the selected data
elements

The solution to these two problems result in code for copying the
data from main memory to SPM (using the processor or a DMA
controller).

We have developed a complete toolchain that allows for evalua-
tion and exploration of SPM usage for irregular applications. First,
the code for copying the data from main memory to SPM is added
to the original program and the modified program is compiled using
conventional compilers. Next, a profiler we developed generates
the array access footprint visually, allowing the designer to analyze
the access pattern based on the footprint, and source code generator.
Finally, the tool chain produces application code that exploits the
SPM to yield performance and energy benefits. We performed ex-
periments with the tool chain for several irregular applications. Our
results indicate that the proposed approach is successful with the
applications that have irregular data access patterns and improves
their energy consumption by about 36% over conventional caches.

The rest of the paper is organized as follows. Section 2 describes
a motivational example. Section 3 presents related work. Section 4
presents our approach for data reorganization and describes a code
generation method to use selected data and placement with low
overhead. Section 5 evaluates the benefits and overheads of the
proposed approach. Section 6 concludes the paper.

2. MOTIVATION

Main Memory
(off-chip RAM)

Scratch Pad Memory
(e.g. 1K~16K)

<
C)

Processor
Figure 1: Memory subsystem architecture

Figure 1 shows the data memory architecture with a scratch pad
memory. Scratch pad memory is placed close to the processor core
like a conventional cache. From viewpoint of applications, access-
ing array in a scratch pad memory is the same as accessing array
in the main memory, but the scratch pad memory is much faster.
For the matter of fact, good data layout decisions obtained by using
precise locality information is important because that means fewer
transfers between SPM and main memory in SPM-based memory
sub-systems. A data placement reorganization involves changing

180

the location of the elements of the data array, but not the order
in which these elements are referenced. While regular applica-
tions can benefit from static analysis to exploit the SPM, irregular
applications are not guarantee to static data reuse analysis. How-
ever, even irregular applications can benefit from SPMs that need
a different approach to exploit layout reorganization of data for the
SPM. To demonstrate the potential for layout reorganization of data
in SPM consider the following irregular application:

for(j=1; j<n-k+1; j++)

.f'c.)r(i=0; i<n; i++)
=8 ® (a[((j — 1) * (n — i — 1) + inva[tz[i]]) %b]);

Figure 2: A code fragment with irregular array references

The loop code in Figure 2 is from Reed-Solomon Error Control
Code [18], which is used in a wide variety of commercial applica-
tions in storage devices, wireless communication and digital televi-
sion.

In the figure, four arrays (S, a, inva and tz) are referenced.
These four arrays are potential candidates for copying to the SPM.
Arrays S and tx are regularly accessed (direct indexed array with
affine reference functions), therefore, existing approaches can be
used for them. Array inwva is indirectly accessed by regularly in-
dexed array tz. It can be also optimized by an existing approach [1].

Therefore, our interest focuses on the copying of the array a to
the SPM. Since array a is irregularly accessed with a non-affine
reference function, current techniques would try to copy the whole
array to the scratch pad memory. But that may not be always pos-
sible since the array size can be larger than the SPM size.

The access pattern of array a is precisely known only at run-
time. Therefore, we collect runtime information such as the arrays’
access footprint and loop bounds. A part of array access footprint
generated by profiling of the application is shown in Figure 3. The
X-axis shows inner-most loop iteration numbers. An iteration is
usually iterated by outer loops. Therefore, an iteration has sev-
eral accesses. Based on the access footprint, we can get infor-
mation about data reusability and lifetimes of array elements. In
this example, several array elements are highly reused. The whole
access footprint shows that some parts of array elements are fre-
quently reused, while others are not. Those reused array elements
are sparsely spread in the time and space domain. That is why it is
difficult to determine frequently reused data block or tile on which
to apply existing methods [1, 6].

3. RELATED WORK

Many papers have addressed the problem of improving data reuse
in caches, primarily by means of loop transformations (e.g. [5, 19]).
However, we do not address this problem since we assume that all
possible loop transformations for improving locality of accesses
are already performed before applying the technique presented this
paper.

There are several prior studies on using SPMs for regular data
accesses. The studies can be divided two parts, static and dynamic.
Static methods [22, 25, 23, 2, 3, 28] determine which memory
objects (data or instructions) may be located in SPM at compile
time, and the decision is fixed during the execution of the program.
This leads to the non-optimal use of the scratch pad memory since
during the execution of the program different parts of memory ob-
jects may be used. Static approaches use greedy strategies to deter-
mine which variables to place in scratch pad memory, or formulate
the problem as an integer-linear programming problem (ILP) or a
knapsack problem to find an optimal allocation.

4
o1 @ i i 0
11 00 il ooo o 0
2 i
3 i i i i
4 g 0 g0
51 i i i i i
6 o 0 gog o i e
7| O 0 0 0O i
88 i i A
g9 0 i i
510 i i 0
211] O 0 0 G
512 0 00 0 0
<13| [[0 [0
14 i i 0
15| O 0 M 0 0
16 0 [0
17| O fi
18 [00 G
19| O O @ i 0 il 0 O
20 Bl u ERT|
21 i i i
2| O 0 i _
23 t L Li ‘
1234567891234567891234567891234567891234567891234567879

Loop Iteration space
Figure 3: Array access footprint from the example loop kernel

Dynamic SPM allocation approaches include [8, 16, 26, 27, 15,
9]. Cooper et al. [8] proposed to use scratch pad memory for storing
spilled values. Udayakumaran et al. [26] proposed an approach that
treats each array as one memory object and placement of parts of
array to the scratch pad memory is not possible, but it can treat all
global and stack variables. Kandemir at al. [16] addresses the prob-
lem of dynamic placement of array elements in scratch pad mem-
ory. The solution relies on performing loop transformations first to
simplify the reuse pattern or to improve data locality. Dynamic
approaches also use integer-linear programming formulations or
similar methods to register allocation to find an optimal dynamic
allocation.

While research described above focused explicitly on regular ac-
cess patterns, Verma et al. [28] and Li et al. [17] proposed ap-
proaches that work with irregular array access pattern. Verma et
al. proposed a static approach to put half of the array to SPM.
They also profile an application, find out which half of the array
is more often used, and place it in the SPM. However, they do not
care if the accesses are regular or not. Unlike in [28], we perform
the task of finding a set of array elements to be placed to SPM
with finer granularity. In addition to that, the replacement of data
in SPM happens at run-time in our approach as compared to sta-
tic placement in [28]. Li et al. [17] introduced a general purpose
compiler approach, called memory coloring, which adapts the ar-
ray allocation problem to graph coloring for register allocation. The
approach operates in three steps: SPM partitioning to pseudo reg-
isters, live-range splitting to insert copy statements in an applica-
tion code, and memory coloring to assign split array slices into the
pseudo registers in SPM. Their approach is prone to internal mem-
ory fragmentation when the size of assigned array slices are less
than pseudo register size (where the partitioned SPM space). They
try to solve this problem by making several sizes of pseudo regis-
ters. But, it cannot completely solve the problem because the par-
titioning method uses a constant variable to divide the SPM space,
where leads to unavoidable fragmentation. We solve this problem

181

by formulating it as a two-dimensional (time and space) knapsack
problem, that can assign array slices to SPM without any internal
fragmentation.

Absar et al. [1] and Chen et al. [6] also present approaches for
irregular array accesses. The meaning of irregularity of their works
is limited to a case of indirect indexed array. In addition to that, the
indexing array must be referenced by affine function. In these work,
they identify the reused block or tile which accessed through indi-
rectly indexed arrays in video/image processing applications. Our
approach differs from theirs in that we can solve indirect indexed
arrays with non-affine reference functions, and ours also includes
all other types of irregular accesses found in various applications
such as encryption and communication.

4. STRATEGY FOR DATA LAYOUT REOR-
GANIZATION

In order to efficiently solve the data reorganization problem, we
break it into two smaller problems. The first problem is to select
array elements copied onto SPM, which have high data reusabil-
ity with similar lifetimes that are beneficial to copy to SPM. The
second problem is to find an optimal layout of data elements in the
SPM address space to minimize address fragmentation. Although
the second problem is known to be NP-complete [27], we employ
heuristics and are able to find near-optimal solutions for both the
first and the second problems in polynomial time.

The workflow of our approach is shown in Figure 4. The first
task is to gather array access footprint through profiling. In profil-
ing task, we have several times run our benchmark code with vari-
ous types of input set to gather access frequency of each array ele-
ment for each input, and an average is obtained. It represents how
frequently an element is reused in the application. After profiling
done, data selection task is applied. In the first step of the second
task, arrays from the application code are identified, and then local-
ity analysis is performed using array access footprint generated by

Data selection

- Profile data
Profiling

1. Array Identification Step

j\/(Layout Decision }

2. Locality Analysis Step

&

3. Lifetime Analysis Step

Code Generation

4. Cluster Selection Step

Code with optimized data

layout

Figure 4: Workflow of the proposed approach

profiling. After that, in the third step, lifetime analysis is performed
to determine the live ranges of each array element. Using a formal
metric that considers data reusability and lifetime information, can-
didates of array elements to be copied to SPM are determined for
a loop. A cluster of the candidates, (which is determined by life-
time similarity), is a basic unit for assigning to SPM. By doing so,
a set of clusters are determined in the final step of second task. The
third task is to decide the location of clusters in order to maximally
use small SPM space. Finally, optimized code with the array slices
(clusters) are generated. The following subsections describe this
workflow in detail.

4.1 Data Selection with Data Reusability and
Lifetime

The usefulness of memory hierarchy depends on the amount of
reuse in data arrays accesses. To measure the amount of reuse, we
now present a data reusability model used to determine candidates
of data elements to be copied to SPM.

We use data reusability factor as a metric which measures how
many references access the same location during different loop it-
erations. Let T7,, be data reusability factor for ¢, elements of ar-
ray n, which depends on the estimated element size of /N words,
as well as on the access frequency I’ corresponding to each array
element, which is obtained by profiling. The reusability factor is
defined as:

DEFINITION 1. Reusability factor : 7,,, = F'/N.

Our technique selects candidates of data to be located in SPM
when array elements have data reusability factor more than two,
because those array elements can reduce at least one main mem-
ory access. As shown in Figure 5, each candidate of element can
be divided by their lifetime in a loop. There are seven candi-
date clusters of array elements. We developed this data classifi-
cation method based on lifetime of selected data extracted from the
profile-generated array access footprint. This procedure is the fol-
lowing:

e Collect information of the last use for each selected element

e Calculate the Euclidean distance between the last uses of se-
lected elements

e Divide selected array elements into groups with similar life-
times based on their distance

Based on the Euclidean distance, the lifetimes can be divided
into groups with similar lifetimes. We chose the distance as 2 in
Figure 5, which is selected to minimize external fragmentation of

182

memory. Alternatively, the selection can be driven by a more so-
phisticated technique by minimizing the maximum diameter of a
cluster (k-clustering) [11]. Finally, we can get data clusters to be
transferred into SPM according to this classification. The lifetime
groups form several clusters of array elements are shown in Fig-
ure 5. These clusters are a basic unit for assigning onto SPM.
However, all clusters cannot be assigned to SPM since the SPM
size is usually small (e.g., 1K-16K bytes). It is a capacity con-
straint in the layout reorganization problem. In addition, some of
selected clusters may be not assigned to the scratch pad memory
because the memory address fragments can be scattered in SPM
address space (i.e., memory fragmentation). To solve this cluster
allocation problem with the goal of minimizing the fragmentation
and with a capacity constraint, the formal definition of the problem
is presented in the next subsection.

4.2 Data Layout Decision Problem (DLDP)

A good data layout can place most of the data clusters in the
scratch pad memory, as a consequence, which yields the least pos-
sible main memory accesses. In general, data layout reorganization
problem is to obtain such a good data layout. To make better prob-
ability of finding a good layout, minimized fragmentation , which
is generated when array clusters are transferred in and out, should
be found by a layout decision algorithm in order to increase the
chances of finding a large enough free space.

DEFINITION 2. o Definition of the DLDP

o Given:
- a data cluster set C for each arrays in an application code

- Loop execution times T represented as loop iteration num-
ber

- Capacity, SPM capacity

- Benefit(c), a product of Size(c) by a sum of data reusability
factor

For each cluster c € C
- Size(c), a total size of elements belonging to cluster ¢

- Lifetime(c) = [start(c),..., end(c)], a non-empty interval in
time T

- Tr(c), data transfer cost represented as the number of data
transferring of ¢

e Find: an assigned set of clusters Cq, C C

e Maximize: Y, (Benefit(c) — Tr(c))

ceClq

e Subject to: Size(clusters(t)) < Capacity, for eacht € T

A
0 |O]] O O]
11 00 O | s M
g2 | [TT]
3| 0O 5]] B Ol
5[4 = [
B) T
g6 L] [Bl O [[] O O
7| O [=] @
8 [] 1]
9| O O
10 | = i

-
1234567891234567891234567891234567891234

Inner most loop Iteration space

[[] Clusters of Candidate array elements to be located on SPM

Figure 5: Cluster selection

e where clusters(t) represents a cluster set Cy C C, at a time
t.

In this work, data layout decision problem is to find a partic-
ular ordering for each selected cluster in SPM address space on
execution time stamp of an application; the clusters should fit tem-
porally and spatially into the SPM and deliver the highest overall
energy saving by the method. To solve this problem, we formulate
the problem as two dimensional (time and space) knapsack prob-
lem. The problem forms the knapsack with a fixed SPM size k with
loop iteration time ¢. A formal statement of the data layout deci-
sion problem mapping to the two dimensional knapsack is given in
Definition 2. The objective function of this problem is to maximize
the benefit with minimizing data transfer cost. Data transfer cost
can be two types in this work. The first is memory access latency
executed by DMA since the transferring can be performed by DMA
circuits. The second is memory access latency executed by proces-
sor using load/store instructions. These costs depend on a memory
configuration of the target architecture.

The one dimensional (space) knapsack problem for memory ob-
ject movement into scratch pad memory is formulated in [3]. It is
a special case of DLDP in which there is only a static time. Since
the problem is NP-Complete and is a special case of DLDP, DLDP
is also NP-Complete. We can search a near-optimal solution by a
best-first search with a heuristic. In the next section we describe
our approach to solve the DLDP.

4.3 The DLDP Solver

Our approach exploits a divide and conquer principle to effec-
tively seek a near-optimal solution to maximize the objective func-
tion in Definition 2 because the search space of clusters consists
exponentially many sets. Our algorithm for solving the DLDP has
two steps. Section 4.3.1 gives the algorithm of the divide step.
Section 4.3.2 presents a best first search method for each problem
instance, as a conquer step.

4.3.1 Divide Step with Simplification

This procedure employs two basic operations: reduce, which
simplifies a problem instance; and split, which decomposes a prob-
lem instance into smaller, independent problem instances. An ex-
ample of the two operations is as following with Figure 6.

Figure 6 shows an instance of DLDP that has seven array clus-
ters, cl,...,c7, and time 7" ={1,2,3,...,10} (loop iteration number),

183

which are displayed on each rectangles and the Y-axis. This exam-
ple has a capacity constraint 10 in 7'.

The reduce operator performs two kinds of simplification. The
first kind removes from the problem instance any cluster ¢ whose
size exceeds the capacity available in its lifetime(c). For exam-
ple, in the instance of Figure 6.(a), cluster c2 has size 11 at time
T = 1,2, 3, yet the capacity is only 10. So, the reduce operator
removes c2 from the instance, which results in the instance shown
in Figure6.(b).

The second kind of simplification removes unnecessary times
from the instance. In the instance of Figure 6.(b), at times 1, 5,
6, 7 and 10 the total size does not exceed the capacity. Since the
constraint at these five times are satisfied in all assignments of the
clusters, these times can be removed from the instance, thereby,
the reduce operator can also remove c5, resulting in the instance
displayed in Figure 6.(c).

There is a second method by which the reduce operator removes
times from an instance. It is often the case that two adjacent times
have the same cluster. If the two times have the same capacity, then
either time can be removed. In the instance of Figure 6.(c), time 2
and 3 impose the same size constraint as do time 8 and 9. Thus,
time 3 and 9 can be removed from the instance, resulting in the
instance of Figure 6.(d).

The split operator decomposes a problem instance into subprob-
lems that can be solved independently. A split can be performed
between any two adjacent times, t and t’, such that clusters(t) N
clusters(t’) == ¢. In the instance of Figure 6.(d), a split can be
made in between time 4 and 8 resulting in two subproblems: one
comprising times 2 and 4 and clusters c1, c3 and c4; and a second
comprising time 8 and clusters c6 and c7.

In Figure 7, let Size(clusters(t)) be the total required size at time
t - that is Zceqlustemm size((.:). Also let next(t) be the next tim.e
t + 1. The main procedure (Simplify) uses the Reduce and Split
operations for DLDP instance P as shown in Figure 7.

4.3.2 The Conquer Step with the k-way Best First
Search

In the previous subsection the Split procedure divides an problem
instance (P) of DLDP to smaller problem instance (p1,p2....,p1)-
Each p € P is objective of the k-way best first search [10] in con-
quer step. The k-way best-first search is used to search for the
near-optimal cluster ordering in scratch pad memory space. In-

time , time ,

a) 10 b) 10
— c7 c7
9 Benefit=56 9 Benefit=56
— c6 — c6
8 Benefit=62 8 Benefit=62
7 7
— c5 c5
6 Benefit=73 6 Benefit=73
— cd — c4
5 Benefit=64 5 Benefit=64
4 4
c3 c3
3 Benefit=55 3 Benefit=55
— c2 c1 — cl
2 Benefit=103 Benefit=80 2 Benefit=80
1 1
11213]als]6]7]8]otoftl1Z1314l15h6[1718/190[2922 ~ 112]3l4]5]e|7]8]ofol11l12 ~
size size
time
° 9 c6é c7
— Benefit=62 Benefit=56 .
time
8 .
c4 d) c6 7
4 Benefit=64 8 Benefit=62 Bencefi!=56
c3 c4
3 c1 Benefit=55 4 Bencfit=64 c3
— Benefit=80 1
2 _ 2 Ben(e:fit=80 _
112]3l4lslel7]s]oholt1l12 = 1]1213l4lsle|7[8]ohol11l12
size size

Figure 6: An instance of DLDP to which the reduce and split operators are applied

Simplify(didp* P){ //P: an instance of DLDP
if(C == empty) then return;

else {
if T>=2 then {
ta= min(T);

while ta != max(T) do {
tb = next(ta);
// time reduction operation
if clusters(ta) == clusters(ip) then {
remove t from T;
for ¢ clusters(t) do
remove t from Lifetime(c);

} else
ta = to;
} //end of while

}

init(ta); //initialize ta to perform split operation
while ta = max(T) do {
to = next(ta);
// problem split operation
if (next(ta) == tv) && (intersect(clusters(ta), clusters(ib)) == empty){
p1 = times{t | t <= ta} and clusters{c | end(c) <= ta}
p2 = times{t | t >= ib} and clusters{c | start(c) >= to}
}
} //end of while
}
}

Figure 7: A procedure of the divide step with simplification

184

stead of searching the whole set of cluster orderings (which con-
tains C'! orderings), the algorithm selects the k best clusters in a
sorted manner. This k-way best first search may incur the overhead
of expanding k-1 unnecessary search space, and selection of the &
should be determined with considering time complexity and solu-
tion optimality. Each cluster selection by the search builds a search
tree as shown in Figure 8.

Given split cluster sets

p1 p2
C1 C2 C3 C4 C5 C6 C7 C8
p1 p2
c2 C3 c6 C8
N I
C3 C4 C2 cC4 cC7 C8 C6 C7
e [
C4 C5 c8 C7 C7 C6
N
c5 C1 C4 cC1
I N
C1 C5 C1 C4

Figure 8: A search tree example with k=2

The search algorithm stores at each node the maximum benefit
and the minimum benefit on the objective function for the DLDP
instance.

DEFINITION 3. Metric for searching

Benefitpax = maZeechitaren(e) (currentyax (c')

+child(c, c'))

Bene fitmin = mMine cchidren(e)(currentarrn (c')

+child(c, c'))

where child(c, c’) is the sum of the benefits of the cluster assigned
in moving from node c to node c’,and children(c) is the set of nodes
that are children of c.

The search scheme repeatedly (1) selects an unobserved clus-
ter, (2) observes the cluster and then creates its £ number of chil-
dren, and (3) propagates new max and min benefits by Definition 3
through the tree and uses these benefits to select the k clusters. It
performs this sequence of three stages until the tree contains no
nodes to observe. Notice that whenever a cluster is observed its k
children are immediately created, producing a search tree. Thus,
the search tree’s new leaves are always the children clusters which
have the k-highest benefit. Let us now consider the three major
steps in more detail.

The first step is that find the node to process next. The k-way best
first search selects leaves clusters by descending the search tree,
starting at the root and taking the children with the k-highest bene-
fits at unobserved clusters. Our implementation orders the children
from left to right so that their benefits are non-decreasing with a
priority queue.

The second step is that processes and expands the node. For each
of these unobserved nodes, max and min benefits on its objective

185

function is obtained. In the case of the node to observe a child node,
an unobserved cluster is chosen to branch on, and its & children
nodes are created, the highest one in which the cluster is recorded
as a solution. Created k nodes are then processed and expanded in
the same way.

The third step is that propagates the new benefits and prunes the
tree. Starting at the nodes just created and working up the tree
to the root, the value of the max benefit and the min benefit are
updated for each node. As this stage assigns and reassigns benefits,
it checks to see if any node has one child whose the max benefit
does not exceed the min benefit of the other child. In such a case
the cluster of max can be no better than that of the cluster of min,
so the cluster of max and all its descendants are removed from the
tree.

Finally, this search procedure produces a placement of cluster
ordering as a near-optimal solution. The ordering is sequentially
mapped to address of the SPM.

4.4 Code Generation

After our method determines the layout of the array elements in
SPM, our tool transforms a given code into a code to implement
the desired memory allocation and transfers. Code generation in
our approach involves changing the original code in three steps.
First, for each original array in the application (e.g., array) which
is moved to the scratch-pad during lifetime(c), where ¢ € clusters
C, the compiler declares a new array buffer (e.g., spm_array) in
the application corresponding to the copy of array in the scratch-
pad. The original array array is allocated to main memory. By
the same way, the compiler can allocate array and spm_array to
different address regions in memory. These regions later should be
mapped to different physical memories (main memory and SPM).
Second, the compiler replaces array references by the statements
that address SPM buffer if the buffer holds a copy of the data re-
quested. Third, data-transfers between main memory and SPM are
inserted at certain program points, to evict some data elements and
copy others, as decided by the placement selection procedure.

Since the SPM buffers of data elements (declared above) have
limited lifetimes, our approach is developed to a dynamic method.
As a consequence, different clusters with non-overlapping lifetimes
may have overlapping offsets in the scratch-pad address space. Fur-
thermore, a single cluster may be allocated to the scratch-pad at dif-
ferent addresses at different times. Clearly, there is a need for addi-
tional code that maps the iteration number into SPM address space
offset. This can be easily accomplished by using a table of address
map, as shown in Figure 9. The map table is used for mapping from
an iteration number to corresponding an element in SPM buffers.
To build this table, two intermediate tables are necessary. We refer
to these intermediate tables as address lookup tables. These lookup
tables are temporarily created by our code generator based on array
access footprint, and linker uses these tables in order to build the
address map table. The lookup tables in Figure 9 are implemented
by a sorted associative container that associates an iteration number
of type key with an array index of type data and an array index of
type key with SPM buffer address of type data. Using these tables,
linker builds an address map table onto SPM in order to translate
each iteration number to scratch pad memory address for correct ar-
ray accessing. Next section explains a table construction procedure
in detail.

4.4.1 Construction of an address map table

Memory access footprint generated by profiling is essential in-
formation in constructing an address map table, since it affects
correctness and efficiency of the table. In the table construction

for(i=0; i<100; i++)
for(j=0; j<100; j++)
for(k=0; k<4; k++)
altx[i][k]]..

Moving iterator : # of iteration

Profiling

Fixed iterator : *(don’t care)

Intermediate lookup table

o
o Memory Loop
g 0 access iterators | 0,%,1 | 0,%,2 | 0,%,3 Address map table
% 1 BY B footprint (i.j.k) 'tLoct)D oetlorz]ons
) iterators *, * %,
22]] Array index 1 2 3 > (1K)
>
2 3]] Szzﬂd?e“sﬁ:' 1252 | 1256 | 1260
<
DLDP
01230123 Solver

Loop lteration space

Intermediate lookup table

Find corresponding

loop iteration with
Array index 1 2 3 SPM buffer address
SPM buffer | 4o55 | 1256 | 1260
address

Figure 9: The table construction procedure

process, the most important concern is size efficiency. To mini-
mize table size, it needs to eliminate unnecessary information in
the table. Initial lookup table records all iteration numbers on a
given loop, but some loop iterations do not participate in array ac-
cessing. To classify these iterations, it needs a method to classify
iterators to participation group and non-participation group in array
accessing represented in a given array reference function. We call
the non-participation iterators to fixed iterators, since they iterate
array access trace generated by participation iterators. Hence, we
can eliminate those iterations generated by fixed iterators in the ad-
dress map table records. To achieve this, we use similar concept
described in [15] that loop iterators are classified into two groups;
moving iterator and fixed iterator. We extract array access trace
of moving iterators, and build lookup tables based on the memory
trace. Then, the map table can record necessary information only.
The table building procedure is as following.

e Obtain array access footprint through profiling

o Classify loop iterators into two groups and extract array ac-

cess footprint of moving iterators from the profiling results

Build a first lookup table which has two entries :
iteration numbers and corresponding array indexes

moving

Build a second lookup table which has two entries : array
indexes and corresponding SPM bufter addresses

Build a map table which has two entries : moving iteration
numbers and corresponding SPM buffer address

Figure 9 shows the building procedures. There are five steps.
The first step is to identify array reference function. The function
includes a part of iterators or the whole of iterators on a given loop.
All the iterators used in a loop hierarchy are split into two groups:
moving iterators (M) and fixed iterators (F). To determine this clas-
sification, iterators should be added one by one to a set M of moving
iterators as long as the following property remains true:

186

All iterators [in a given loop
All iterators I’ used in an array of reference function R

Fixed iterators F = [— I’

Moving iterators M = I N T’

where a reference function is consisted with iterators M, a
given loop nests is consisted with loop iterators M + F'

if(900<i<5000){

[...= S[i1"(spm_a[mapli]]);// third cluster of array a

} .(;Ise {

--= S[IM@l((-1)*(n-i-1) + inva[tx[i]]) %b]);
1
SPM
| b |
s I ma] e
‘ Spm_a ‘ Iteration number | SPM address
0x1008
‘ spm_a ‘ Map_a ﬁﬁ> 6 X o
<‘ Linker)
Lookup table

Figure 10: An address mapping operation

This classification for loop iterators is necessary in our approach.
It allows easy determination of the repeating addresses in the ad-
dress footprint of the accessed array elements between iterations of

moving iterators when the fixed iterators do not change their val-
ues and the moving iterators are iterating over their complete loop
bounds. This allows keeping the reused array element index effi-
ciently during iteration over fixed iterators since it does not affect
to addresses of accessed array elements. Therefore, the table entry
is consisted with moving iterations only, not fixed iterations.

The third step is construction of first lookup table. The first
lookup table has two entries that are loop iterations of moving it-
erators and the corresponding index of array elements. Each en-
try is extracted from memory access footprint shown in Figure 9.
The fourth step is construction of second lookup table. The second
lookup table has two entries that are array index of corresponding
array element and its address of SPM. The SPM address is decided
by DLDP solver. The output of DLDP solver has two entries: array
index and its SPM address. By the solution of DLDP, the second
table can be built. Finally, an address map table is consisted with
moving iterators and addresses of SPM buffer without the array
index entry, since array index information does not necessary in
address mapping process in run time.

Figure 10 shows address mapping operation with the final ad-
dress map table. The final table bridges an iteration number to
a corresponding SPM element’s address. By the table, iteration
number can be easily replace into correct SPM address. The size
of the initial address map table is the same as the lifetime duration
of the clusters selected by DLDP solver. The use of the mapping
tables may incur large memory space overhead. Fortunately, the
size can be compressed by hashing for redundant elements of SPM
addresses. To compress the table by hashing, hash key should com-
pletely distinguish different SPM index into corresponding loop it-
erations. For our benchmarks, the average size of the table was
relatively small (only about 5% of the SPM data) as shown in Ta-
ble 2.

S. EXPERIMENTAL RESULTS

One of the goals of our experiments is to compare our approach
for the scratch pad memory based subsystem management against
a traditional cache based memory subsystem for their ability to ex-
ploit data reusability of the data accesses in a number of multime-
dia, communication, and encryption applications. We also study
the overheads incurred in using our approach.

We have created a tool that implements the described technique.
We have used a Pentium 4 workstation for profiling purposes. The
SimpleScalar simulator [4] has been used for obtaining the num-
ber of misses for cache and measuring runtime. We have used the
CACTI model [24] for energy estimation of both the cache and
scratch pad memories at 130nm technology.

Table 1: Benchmarks used in experiments

‘Programs‘ VITERBI RS PANAMA ‘ AIFFTR ‘ IDCTRN

Error-correction
for storage and
communication

Error-correction
for
communication

Inverse Discrete
Cosine Transform

Fast Fourier
Transform

Encryption for

Description stream data

The experimental input is a set of full codes obtained from EEM-

BC [29], and other industrial applications with (4K-93K) data stream.

Table 1 lists benchmarks used for our experiments. The tool has
provided us with the code versions that implement necessary data
transfers between the scratch pad memory and the main memory
for the selected clusters.

We have examined the effect of using a scratch pad memory on
the reduction of traffic to main memory as well as on the energy
spent in the memory subsystem. The comparison of the scratch pad

187

based memory architecture has been made against a system having
a direct mapped data cache of the same size (1-4KB). The goal is to
evaluate the energy efficiency of our software steered data reorgani-
zation approach compared to that one implemented by a hardware
cache controller i.e., with the LRU replacement policy. The sizes of
the scratch pad memory and the cache have been selected to be the
closest values that are powers of two while being greater or equal
than the buffer size required in the scratch pad configuration. The
cache line size has been selected to be the minimal allowed by the
simulator [4] (8 bytes, which is 2 data elements in all benchmarks).
In this way, we compare solely how well is the data reusability of
the data exploited without considering spatial locality issues.

The energy savings when using scratch pad in comparison with
cache are coming from two sources. First, a scratch pad memory
consumes less energy than a cache of the same size per one access
(about two times less for direct mapped cache [24]). Second, it is
possible to make the more optimal data placement decisions for the
scratch pad memory compared to that ones made according to the
LRU policy of the cache controller, which results in less accesses to
the main memory for all studied cases. In our experiments we have
used a relatively small off-chip memory and have not accounted for
the energy dissipation in the off-chip buses due to limitations of the
used energy model [24]. As we can see from Table 2, the scratch
pad based memory subsystem consumes 21% to 48% less energy
than the system with a cache of the same size. We also estimate
the amount of address mapping table size needed to perform the
described in Section 4.4. On average the size of address tables is
92 bytes. It is about 5% of the total data in the SPM.

6. CONCLUSION

We developed a profiling based strategy to efficiently use soft-
ware controlled on-chip memory in memory hierarchies of embed-
ded systems. Our technique is geared towards array-intensive ap-
plications that expose irregular accesses patterns. The new strategy
identifies data elements to be mapped to SPM with fine granularity
and derives an energy and performance-efficient layout of data in
on-chip memory. Experimental results obtained with our tool show
that we are able to achieve 36% energy reduction compared to a
cache based system.

7. ACKNOWLEDGMENTS

This work was partially supported by NSF grant CNS-0615438,
the IT R&D program of Ministry of Information and Communica-
tion (MIC)/Institute of Information Technology Assessment (IITA)
[2007-S001-01, Components/Module technology for Ubiquitous Ter-
minals], the ITRC (Inofrmation Technology Research Center) sup-
port program supervised by the IITA (IITA-2005-C1090-0502-0031),
Nano IP/SoC promotion group of Seoul R&BD Program in 2007,
MIC(A1100-0501-0004), and Korea Ministry of Science and Tech-
nology (M103 BY010004-05B2501-00411).

8. REFERENCES

[1] J. Absar and F. Catthoor. Compiler-Based Approach for
Exploiting Scratch-Pad in Presence of Irregular Array
Access. In Proceedings of DATE, 2005.
O. Avissar, R. Barua, and D. Stewart. An Optimal Memory
Allocation Scheme for Scratch Pad Based Embedded
Systems. ACM Trans. on Embedded Systems, 1(1),
September 2002.
R. Banakar, S. Steinke, B-S. Lee, M. Balakrishnan, and P.
Marwedel. Scratchpad Memory: A Design Alternative for
Cache On-chip Memory in Embedded Systems. In

(2]

(3]

Table 2: Energy, main memory accesses, and runtime reduction compared to the cache based memory subsystem

Benchmark Energy Ma:cr::sns'nory Runtime ::dzife
Codes reduction (%) reduction (%) reduction (%) sizep(bytes)
REED
SOLOMON 35.9 46.1 8.8 87
VITERBI 38 32.6 11.5 112
PANAMA 21.8 20 22.7 56
IDCTRN 40.2 21 6.3 55
AIFFTR 48.3 411 9.8 153
average 36.8 321 11.8 -

International Symposium on Hardware/Software Codesign,
May 2002.

[4] D. Burger and T.M. Austin. The SimpleScalar tool set,
version 2.0. InTechnical Report 1342, University of
Wisconsin-Madison, CS Department, June 1997.

[5] D.F. Bacon, S.L. Graham et al. Compiler Transformations

for High Performance Computing. In ACM Computing

Survey, 26(4). 1994.

G. Chen, O. Ozturk, M. Kandemir and M. Karakoy. Dynamic

Scratch-Pad Memory Management for Irregular Array

Access Patterns. In DATE, March 2006.

M. Co, Dee A.B. Weikle, and K. Skadron A Break-Even

Formulation for Evaluating Branch Predictor Energy

Efficiency. In Proceedings of Complexity-Effective Design,

2005.

K. Cooper, T. Harvey. Compiler-Controlled Memory. In

Proceedings of the Conference on Architectural Support for

Programming Languages and Operating Systems, 2-11,

1998.

A. Dominguez, S. Udayakumaran, and R. Barua. Heap Data

Allocation to Scratch-Pad Memory in Embedded Systems. In

Journal of Embedded Computing, 2005.

A. Felner, S. Kraus, and R.E. Korf. KBFS:

K-Best-First-Search. In Annuals of Mathematics and

Artificial Intelligence, 19-39, 2003.

[11] D.S. Hochbaum and D.B. Shmoys. A unified approach to
approximation algorithms for bottleneck problems. In
Journal of the ACM, 33, 1986.

[12] I. Issenin, and N. Dutt. Data Reuse Driven Memory and

Network-on-Chip Co-Synthesis. In Proceedings of IESS,

2007.

L. Issenin, and N. Dutt. Data Reuse Driven Energy-Aware

MPSoC Co-Synthesis of Memory and Communication

Architecture for Streaming Applications. In Proceedings of

CODES-ISSS, 2006.

I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt.

Multiprocessor System-on-Chip Data Reuse Analysis for

Exploring Customized Memory Hierarchies. In Proceedings

of DAC, 2006.

L. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data

Reuse Analysis Technique for Software-Controlled Memory

Hierarchies. In Proceedings of DATE, 2004.

M. Kandemir, J. Ramanujam, M.J.Irwin, N. Vijaykrishnan, I.

Kadayif, and, A. Parikh. Dynamic Management of

Scratch-Pad Memory Space. In Proceedings of the Design

(6]

(7]

(8]

(9]

(10]

[13]

(14]

[15]

[16]

188

Automation Conference, 690-695, June 2001.

[17] Lian Li, Lin Gao and Jingling Xue. Memory Coloring: A
Compiler Approach for Scratchpad Memory Management.
In PACT, October 2005.

[18] S. Lin, D. Costello. Error Control Coding: Fundamentals and
Applications. Book, Practice Hall, October 1982.

[19] K. McKinley, S. Carr, and C.-W. Tseng. Improving Data

Locality with Loop Transformations. In ACM Trans. on

Programming Languages and Systems, 18(4), July 1996.

M. Palkovic, M. Miranda, K. Denolf, P. Vos, and F. Catthoor.

Systematic Address and Control Code Transformations for

Performance Optimisation of a MPEG-4 Video Decoder. In

Proceedings of ASP-DAC, 2002.

Y. Paek, J. Hoeflinger, and D. Padua. Simplification of array

access patterns for compiler optimizations. In Proceedings of

PLDI, 1998.

P. Panda, N. Dutt, and A. Nicolau. Efficient Utilization of

Scratch-Pad Memory in Embedded Processor Applications.

In Proceedings of DATE, 1997.

[23] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel.
Assigning Program and Data Objects to Scratchpad for
Energy Reduction. In Proceedings of DATE, 2002.

[24] P. Shivakumar, N. Jouppi. CACTI 3.0: An Integrated Cache

Timing, Power, and Area Model. WRL Technical Report,

August 2001.

J. Sjodin and C. Platen. Storage Allocation for Embedded

Processors. In Proceedings of the Conference on Compilers,

and Architecture, and Synthesis for Embedded Systems,

15-23, 2001.

S. Udayakumaran and R. Barua. Compiler-decided Dynamic

Memory Allocation for Scratch-Pad based Embedded

Systems. In Proceedings of the Conference on Compilers,

Architectures and Synthesis for Embedded Systems, 276-286,

2003.

M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic

Overlay of Scratchpad Memory for Energy Minimization. In

Proceedings of CODES, 2004.

[28] M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for
Maximal Scratchpad Usage. In Proceedings of ASPDAC,
2003.

[29] EDN Embedded Microprocessor Benchmark Consortium,
www.eembc.org.

[20]

(21]

(22]

[25]

(26]

[27]

[30] Intel Corporation,
http://developer.intel.com/design/intelxscale/index.htm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

