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ABSTRACT
In this paper, we describe the organization and microar-
chitecture of MT-MB, a configurable implementation of the
Xilinx MicroBlaze soft processor that supports multithread-
ing. Using a suite of synthetic benchmarks, we evaluate
five variations of MT-MB and show that multithreading is
very effective in hiding the variable latencies associated with
custom instructions and custom computational units. Our
experimental results show that interleaved and hybrid mul-
tithreading achieve speedup factors of 1.10× to 5.13× com-
pared to our single-threaded baseline soft processor.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architectural
Styles—adaptable architectures; B.5.1 [Register-Transfer-

Level Implementation]: Design—control design, data-path
design; C.4 [Performance of Systems]: Design Studies

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION
Contemporary field programmable gate arrays (FPGAs)

are characterized by high logic densities and rich sets of em-
bedded hardware components that, together with advanced
CAD tools, are transforming FPGAs into powerful computa-
tional engines. Today, an increasing number of these com-
putational engines are designed using soft processor cores
that are specified in a hardware description language and
implemented in the logic fabric of the FPGA [1, 2, 3]. The
datapath of a soft processor core can be easily configured to
meet specific functional requirements or design constraints
of a target application. Its instruction set architecture can
also be extended to support custom machine instructions
that typically yield significant improvements in execution
performance. Since custom instructions are application de-
pendent and may have arbitrary latencies, it is often dif-
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ficult to design well-balanced datapaths and pipelines that
are suitable for both general-purpose and custom applica-
tions. That is why multithreading has recently emerged
as a promising architectural style for enhancing the perfor-
mance and area efficiency of configurable soft processors [4,
5]. For example, interleaved multithreading [6] can be used
to eliminate pipeline stalls due to various hazards among
instructions from the same thread. It can also be used to
eliminate data forwarding logic, which reduces both the area
and clock cycle time of the datapath. Finally, it can be
used to share a pipelined computational unit among differ-
ent threads.

In this paper we describe a number of microarchitectural
enhancements we developed to support multithreading in
the Xilinx MicroBlaze [1], a widely-used, single-threaded,
soft processor core. We also evaluate the impact of these
enhancements on both performance and area. The main
contributions of our paper include the introduction of a con-
figurable thread scheduler and table of operation latencies
(TOOL) that simplify thread management; the introduction
of hybrid multithreading, which combines interleaved and
block multithreading and results in efficient reuse of instruc-
tion issue slots associated with stalled threads; the introduc-
tion of an area-efficient and scalable register file that enables
multiple threads to access independent register contexts; the
integration of variable-latency custom computational units
(CCUs) into the MicroBlaze datapath; and a quantitative
evaluation of these techniques.

Our paper is organized into five sections. In Section 2 we
describe related work and compare it to our own. In Sec-
tion 3, we describe the various microarchitectural enhance-
ments we introduced to support multithreading. Then, in
Section 4, we evaluate the impact of the various enhance-
ments on performance, and we analyze our results. Finally,
in Section 5, we summarize our work and present our con-
clusions.

2. RELATED WORK
Although little work has been done on multithreaded soft

processors, early studies provide interesting results. In [4],
the authors describe the CUStomisable Threaded ARchi-
tecture (CUSTARD), a multithreaded soft processor with
a customizable instruction set architecture. Several aspects
of the CUSTARD processor are configurable including the
number of threads the processor can execute, the datapath
width, and the multithreading technique used. The proces-
sor supports two multithreading techniques: block multi-
threading (BMT) and interleaved multithreading (IMT) [6].
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Although the authors compare their own implementations
of single-threaded and four-way interleaved and block multi-
threaded processors, their results show that most of the per-
formance is due to custom instructions used to accelerate
performance-critical code blocks. However, it is not clear
what levels of performance are achieveable through multi-
threading. Moreover, since the various datapaths are spec-
ified in Handel-C, the resulting areas and clock cycle times
are considerably poorer than those of commercial or better-
optimized soft processors [1, 2].

Other researchers have studied multithreading as a more
area-efficient alternative to chip multiprocessing, particu-
larly when the processors are required to share computa-
tional or storage resources. In [5], the authors describe
UTMT-II, a four-way, interleaved-multithreading soft pro-
cessor based on the Altera NIOS-II instruction set architec-
ture [2]. The authors present techniques for reducing stalls
among instructions belonging to different threads. These
include pipelining computational units and buffering stalled
instructions to enable instructions from other threads to
continue execution. The authors also describe a technique
for synchronizing writebacks in long-latency instructions to
avoid having different instructions from the same thread in
the pipeline. This is achieved by extending the latencies
of CCUs so they become multiples of the pipeline depth.
In Section 3, we propose a more unified approach to solv-
ing similar problems, and demonstrate that our approach
results in more flexible and efficient thread scheduling.

3. MT-MB: A CONFIGURABLE MULTI-
THREADED SOFT PROCESSOR

In this section we describe the organization of MT-MB,
our multithreaded implementation of the Xilinx MicroBlaze
processor. We also describe the different microarchitectural
features we used to support different forms of multithread-
ing.

3.1 Datapath Organization and Pipeline Struc-
ture

Figure 1 shows the datapath of the MT-MB processor,
which is designed around a single-instruction-issue, five-stage
pipeline similar to that of the MicroBlaze processor [1]. How-
ever, unlike the MicroBlaze processor, its datapath and pipe-
line are configurable with a number of features that sup-
port different forms of multithreading that include single-
threaded (ST-MB), interleaved (IMT-MB), and hybrid (HMT-
MB) multithreading. ST-MB is our own implementation
of the MicroBlaze instruction set architecture, which we
also extended to support tightly integrated custom compu-
tational units (CCUs). IMT-MB is a version of the Mi-
croBlaze datapath designed to support n-way interleaved
multithreading, and HMT-MB is a new datapath designed
to implement a hybrid form of n-way interleaved and block
multithreading.

During the instruction fetch stage, the next instruction
is fetched from the appropriate thread based on the speci-
fied form of multithreading. In the ST-MB implementation,
a single program counter (PC) is used to fetch the next in-
struction from the instruction memory (IMEM) bank. In
both the IMT-MB and HMT-MB implementations, a con-
figurable thread scheduler is used to generate a thread iden-
tifier (TID) that selects an appropriate PC for fetching the
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Figure 1: Datapath of the MT-MB Soft Processor

next instruction from the corresponding thread. To sup-
port n-way multithreading, a PC block containing n PCs is
used. In Section 3.2, we explain the operation of our thread
scheduler in greater detail.

During the decode stage a fetched instruction is decoded
and its operands are read from the register file. To sup-
port n-way multithreading, our register file is designed to
support n, separate, thread contexts. The MT-MB register
file is organized into n, 32 × 32-bit banks where n is the
number of threads and where each bank is associated with
a different thread [7]. Since MicroBlaze instructions oper-
ate on as many as three source operands and may produce
a single result, each bank provides three read ports and one
write port. The register banks are implemented using dual-
ported block RAMs (BRAMs) embedded within most Xilinx
FPGA devices [9].

During the execute stage instructions are executed in cor-
responding computational units. Although most instruc-
tions are executed in the ALU and have a latency of one
clock cycle, the MT-MB processor also supports the exe-
cution of variable-latency, custom instructions on tightly-
integrated custom computational units (CCUs). This dif-
fers from the MicroBlaze processor, which only supports
CCUs as external hardware blocks accessible through ded-
icated communication channels. To maintain compatibil-
ity with the MicroBlaze instruction set architecture, each
CCU is constrained to operate on at most three register
operands and generate a single result. However, we place
no constraints on the latencies of custom instructions, or on
whether a CCU is pipelined or not.

During the memory stage, load and store instructions ac-
cess a unified data memory bank. Although all threads share
the same address space, we assume each thread operates in
its own memory region. We also assume threads do not
access each other’s memory regions.

Finally, during the write back stage, instructions write
their results back to the register file. Since multiple instruc-
tions from different threads may reach the write back stage
simultaneously, our register file is also designed to support
multiple simultaneous write backs from different threads.

In MT-MB, only the ST-MB datapath implements data
forwarding to eliminate data hazards. The IMT-MB and
HMT-MB datapaths rely on their thread schedulers to sched-
ule instructions from the same thread sufficiently far apart
to eliminate data hazards. Earlier work has shown that
in an interleaved-multithreading processor with an m-stage
pipeline, instructions from the same thread must be sched-
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uled at least m − 1 pipeline stages apart [4, 5]. However,
our pipeline allows instructions from the same thread to be
scheduled as few as m − 2 pipeline stages apart due to the
low latency of the register file, which enables results from
the write-back stage to update the register file before new
operands are read in the decode stage. This, in turn, en-
ables overlapping instructions from the same thread in the
decode and write-back stages. Reducing the intra-thread
instruction issue window increases the per-thread through-
put of the processor and helps reduce the per-thread CPI.
It also enables the processors to tolerate executing fewer
threads before having to insert empty instruction slots.

3.2 Configurable Thread Scheduler
Our MT-MB processor supports two forms of multithread-

ing: interleaved multithreading (IMT) and a hybrid form
of interleaved and block multithreading (HMT). Like inter-
leaved multithreading, the HMT-MB datapath attempts to
execute a new instruction from a different thread on every
instruction cycle. Once a thread stalls due to a hazard or
long-latency operation, the thread is temporarily suspended
while other threads continue to execute in an interleaved
fashion. However, rather than issue a NOP like IMT, the
instruction issue slot of the stalled thread is used to issue
an instruction from another active thread. Once the stalled
thread becomes active again, its instruction issue slot is re-
turned to it. Since the suspension of a long-latency thread
resembles the thread switch in a block multithreading pro-
cessor, we refer to this form of multithreading as hybrid mul-
tithreading (HMT).

To implement the required form of multithreading and
manage the execution of threads, we use a configurable thread
scheduler. To support n-way multithreading, our thread
scheduler uses a modulo-n thread counter to generate thread
identifiers (TIDs) in a round-robin manner. A thread whose
TID corresponds to the value in the thread counter is said to
be the active thread. For each thread, the thread scheduler
also uses a separate status counter to monitor the status of
the thread. When an instruction is fetched from memory,
its opcode is used to load the corresponding status counter
with the latency of the instruction, and the status counter
is decremented on every instruction cycle. As long as the
value in the status counter is not zero, the corresponding
thread is considered busy. When IMT is being used and
the status counter of the active thread is not equal to zero,
the thread scheduler prevents a new instruction from the
same thread from being fetched and inserts a NOP into the
pipeline. On the other hand, when HMT is being used and
the status counter of the active thread is not equal to zero,
the thread scheduler ensures that a new instruction from
the next available ready thread is fetched, and the thread
counter is updated accordingly.

3.3 Table of Operation Latencies (TOOL)
The latency of an instruction plays a central role in man-

aging the execution of the corresponding thread. If the
thread scheduler knows the latency of an instruction it can
determine the time it needs to stall the thread. It can also
attempt to schedule instructions from other threads in the
instruction slots corresponding to a stalled thread. Finally,
instruction latencies can be used to resolve structural haz-
ards on computational resources that are shared among dif-
ferent threads.

Table 1: Processor Implementation Results

Processor Multithreading Clock Slices Slice

Type Rate FFs

MB 1-way 106 MHz 683 553

ST-MB 1-way 84 MHz 732 550

IMT-MB-4 4-way, interleaved 99 MHz 1,648 988

HMT-MB-4 4-way, hybrid 98 MHz 1,713 988

IMT-MB-8 8-way, interleaved 90 MHz 1,937 1,561

HMT-MB-8 8-way, hybrid 89 MHz 2,016 1,121

Since the latencies of most instructions are known at de-
sign time, we developed a hardware component called the ta-
ble of operation latencies (TOOL) that returns the latency
of an instruction based on its opcode. The latencies gen-
erated by TOOL are used by the thread scheduler, which
determines when the next instruction in a thread can be
fetched. Currently, the latencies produced by TOOL are
generated by a hardwired circuit that is configured at de-
sign time. TOOL can also be used to store the latencies of
system events, such as cache misses, to dynamically update
instruction latencies in response to these events.

3.4 Datapath Implementation Results
Table 1 summarizes the clock rates and FPGA resource

utilization of the Xilinx MicroBlaze processor (v.5.0) and
five implementations of our MT-MB processor. We ob-
tained our results from the reports generated by the Xil-
inx EDK (v.8.2) and ISE (v.8.2.03i) tools targeting a Xilinx
XC2V1000-4BG575 Virtex-II FPGA. Our results show that
our ST-MB processor is about 20% slower and 7% larger
than the commercial MicroBlaze processor. Our results also
show that our multithreaded processors are faster but larger
than the ST-MB processor. The faster clock rates are mainly
due to the elimination of data forwarding, which reduces the
critical delays in the datapath, while the larger datapath ar-
eas are due to the more complex instruction fetch stages,
which include the thread schedulers, TOOL, and PC blocks.

4. RESULTS AND ANALYSIS
In this section we explain our benchmarking methodology

and present the results of the experiments we conducted
to evaluate the performance of our four-way and eight-way
multithreaded processor implementations.

4.1 Benchmarking Methodology
To evaluate the effectiveness of multithreaded soft pro-

cessors in hiding the latencies of various types of CCUs we
developed a suite of synthetic benchmarks that mimic the
behavior of a number of embedded applications taken from
the MiBench benchmark suite [8]. Our suite consists of eight
benchmarks whose execution times are aggregates of differ-
ent time components that include: single-cycle instructions;
multi-cycle custom instructions; and stall cycles due to de-
pendencies on load instructions, taken branches, structural
hazards, or external I/O events. The latencies of multi-cycle
time components vary from 7 to 300 clock cycles and repre-
sent a wide range of custom instructions and system events.
By assigning a weighting factor to each time component and
varying the weights, we can mimic different program behav-
iors.
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Figure 2: Mean Distribution of Execution Time

Components

Figure 2 shows the average distribution of execution time
components for different execution mixes used in this study.
Each mix consists of variations of our eight benchmarks, and
represents a certain class of applications with specific execu-
tion characteristics. When we evaluate the ST-MB proces-
sor, we combine the eight benchmarks in each mix to execute
as a single thread. On the other hand, when we evaluate
the four-way multithreading processors, we combine pairs
of benchmarks in each mix to form four separate threads.
Finally, when we evaluate the eight-way multithreaded pro-
cessors, we treat each benchmark as a separate thread.

4.2 Datapaths without CCUs
In our first experiment, we assessed the performance of the

multithreaded processors in the absence of CCUs. We used
benchmark mixes MIX1 through MIX4, which mimic the
behavior of application programs that use regular instruc-
tions only. Those benchmarks are also characterized by an
increasing number of stall cycles due to data and control de-
pendencies when executed on the ST-MB processor. While
MIX2 and MIX3 are modeled after the MiBench suite’s Ba-
sic Math and Dijkstra benchmarks, which exhibit moderate
amounts of stall cycles, MIX1 and MIX4 represent extreme
cases with low and high stall cycles, respectively.

Figure 3 shows the wall clock execution time of all four
mixes when executed on the different processors. As ex-
pected, ST-MB exhibits the worst performance since it can-
not hide all stall cycles. On the other hand, each of the
multithreaded processors completely hides the stall cycles
in each thread. This is due to the degree of multithread-
ing – four and eight threads – being greater than the largest
number of stall cycles in any given thread. The result is that
all multithreaded processors execute all benchmark mixes in
the same number of clock cycles. However, the differences
in execution time among the multithreaded processors are
due to the differences in their clock cycle times. Overall,
the multithreaded processors are 1.09 (HMT-MB-8) to 2.12
(IMT-MB-4) times faster than ST-MB.
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Figure 3: Execution time in the absence of CCUs
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Figure 4: Execution time with pipelined CCUs

4.3 Datapaths with pipelined CCUs
In our second experiment, we assessed the performance

of the multithreaded processors in the presence of pipelined
CCUs. We used benchmark mixes CMIX1 through CMIX4,
which use a mix of custom instructions with increasing la-
tencies. However, since all CCUs are pipelined, we assume
no thread stalls due to a busy CCU.

Figure 4 shows the execution times for the different pro-
cessors. Our results show that multithreading is very effec-
tive in hiding stall cycles due to long-latency custom instruc-
tions. For example, HMT-MB-8 is 2.09 to 5.13 times faster
than ST-MB. Our results also show that HMT achieves bet-
ter performance than IMT since it uses the instruction issue
slots of stalled threads more effectively. In fact, in CMIX-2
and CMIX-3, HMT-MB-4 achieves similar performance to
IMT-MB-8 even though it executes fewer threads.

4.4 Datapaths with non-pipelined CCUs
In our third experiment, we assessed the effectiveness of

multithreading in the presence of non-pipelined CCUs. When
a CCU is not pipelined, only one thread can use it at a time.
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Figure 5: Execution time with non-pipelined CCUs

If the CCU has a high latency and competetion among threads
to use it is high, more threads will stall and performance will
degrade. We therefore created a new mix, CMIX-6, that uses
three CCUs with 7, 27, and 60 cycle latencies, respectively.
We then evaluated the performance of our processors when
each CCU was made non-pipelined individually (CMIX-6a
through CMIX-6c) and collectively (CMIX-6d). Figure 5
shows the resulting execution times.

As expected, the behavior of ST-MB remains unchanged
since it does not exploit thread-level parallelism. Although
we did not observe a significant difference in the results of
various mixes, IMT-MB and HMT-MB still achieve speedup
factors of 2.15 to 2.72 relative to ST-MB, which corresponds
to a slight degradation in performance compared to the orig-
inal average speedup factor of 2.74 achieved when pipelined
CCUs are used. Our results again show that HMT-MB
achieves better performance than IMT-MB since it is better
at hiding stall cycles.

4.5 Effects of Increasing Single-Threaded CPI
In our last experiment, we plotted the percentage speedup

achieved by our multithreaded processors as a function of
increasing average cycles per instruction (CPI) for the base-
line ST-MB processor. Increasing CPI correlates with in-
creasing stall cycles due to various hazards and long-latency
custom instructions and system events. Figure 6 shows the
resulting graphs, which confirm that our multithreaded pro-
cessors improve performance by hiding the cycles associated
with stalled threads. The graphs also confirm that exploit-
ing higher levels of multithreading achieves higher levels of
performance, and that HMT is generally more effective than
IMT. The graphs also show that the performance of HMT
and IMT converge at high CPI values due to the correspond-
ing increase in the number of stalled threads. In fact, it can
be shown that, in the worst case, the performance of an n-
way HMT processor designed around a five-stage pipeline
degenerates to that of a 3-way IMT processor.

5. SUMMARY AND CONCLUSIONS
In this paper, we describe the organization and microar-

chitecture of MT-MB, our multithreaded implementation of
the Xilinx MicroBlaze soft processor core. To support mul-
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tithreading, MT-MB relies on a configurable, centralized,
thread scheduler that uses instruction latencies to manage
the execution of threads. The thread scheduler supports
interleaved and hybrid multithreading, which combines in-
terleaved and block multithreading. The datapath also in-
cludes a scalable and area-efficient register file for supporting
a variable number of thread contexts. Our experimental re-
sults show that multithreading is very effective in hiding the
variable latencies of custom instructions executed on custom
computational units. Using a suite of synthetic benchmarks,
we show that interleaved and hybrid multithreading achieve
speedup factors of 1.10× to 5.13× compared to a single-
threaded soft processor. Although hybrid multithreading
generally achieves better performance than interleaved mul-
tithreading, their performance levels converge as the number
of stalled threads increases.

6. REFERENCES
[1] MicroBlaze Processor Reference Guide: Embedded

Development Kit EDK 9.1i, UG081 (v7.0), Sept. 15, 2006,
http://www.xilinx.com.

[2] NIOS-II Processor Reference Handbook.
http://www.altera.com.

[3] Cortex-M1 Product Brief. http://www.actel.com.

[4] R. Dimond, O. Mencer, and W. Luk, “CUSTARD -
a Customizable Threaded FPGA Soft Processor and Tools”,
Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL 2005), pp. 1–6,
IEEE, Aug. 24-26, 2005.

[5] B. Fort et al., “A Multithreaded Soft Processor for SoPC Area
Reduction”, Proceedings of the 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’06), pp. 131–142, IEEE, Apr. 24-26, 2006.

[6] T. Ungerer, B. Robic, and J. Silc, “A Survey of Processors with
Explicit Multithreading”, ACM Computing Surveys,
pp. 29–63, ACM, Vol. 35, No. 1, March 2003.

[7] M. A. R. Saghir and R. Naous, “A Configurable Multi-Ported
Register File Architecture for Soft Processor Cores”,
Proceedings of the International Workshop on Applied
Reconfigurable Computing (ARC 2007), pp. 14–25,
Springer-Verlag LNCS 4419, Mar. 27-29, 2007.

[8] M. R. Guthaus et al., “MiBench: a free, commercially
representative embedded benchmark suite”, Proceedings of the
2001 IEEE International Workshop on Workload
Characterization (WWC-4), pp. 3–14, IEEE, Dec. 2, 2001.

[9] Xilinx Corporation, “Using Block RAM in Spartan-3
Generation FPGAs”, Xilinx Application Note XAPP463
(v2.0), March 1, 2005.

159


