Formal Performance Evaluation of AMBA-based
System-on-Chip Designs

Gabor Madl', Sudeep Pasricha!, Qiang Zhu?, Luis Angel D. Bathen', Nikil Dutt!
! Center for Embedded Computer Systems
University of California, Irvine, CA 92697
2 Fujitsu Laboratiories Limited
Kawasaki 211-8588, Japan

1{gabe, sudeep, Ibathen, dutt}@ics.uci.edu, 2shu.kyou@jp.fujitsu.com

ABSTRACT

The ARM Advanced Microcontroller Bus Architecture
(AMBA) is a widely used interconnection standard for SoC
design. In order to support high-speed pipelined data trans-
fers, AMBA supports a rich set of bus signals, making the
analysis of AMBA-based embedded systems a challenging
proposition. This paper makes two main contributions to
the analysis and evaluation of AMBA-based SoC designs.
The first contribution is to provide a method for the perfor-
mance analysis and evaluation of AMBA-based SoC designs
using formal models. This method provides a way to ob-
tain the end-to-end execution bounds of AMBA-based SoC
designs, and guarantees the correctness of the results. The
second contribution is to use these formal models to prove
the functional correctness of the SoC designs. Using our
formal models, we were able to uncover an ambiguous case
in the AMBA specification that can lead to deadlocks. This
case has not been previously documented by methods fo-
cused on AMBA protocol verification. Finally, we validate
the proposed performance analysis approach by comparing
results with a SystemC implementation of a digital camera
case study.

Categories and Subject Descriptors

1.6.4 [Simulation and Modeling]: Model Validation and
Analysis; C.4 [Computer Systems Organization]: Per-
formance of Systems — Modeling techniques

General Terms

Design, Performance, Verification

Keywords
System-on-Chip, Model Checking, Performance Evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT’06, October 22-25, 2006, Seoul, Korea.

Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

311

1. INTRODUCTION

System-on-Chips (SoCs) are deeply embedded electronic
systems operating in resource-constrained environments. It
is a well-known fact that the complexity and functionality
of these systems often rivals that of high-performance pro-
cessors from a decade ago, at a fraction of price and energy
costs. Bus interconnect standards such as AMBA [3| and
CoreConnect [13]| are commonly used to integrate heteroge-
neous components into SoC designs. These bus protocols
provide reliable communication in SoC systems by specify-
ing standard methods for interaction between components
connected to the bus. Key issues that bus protocols must
address include synchronization, dealing with concurrent re-
quests, handling transmission errors, preventing deadlocks,
and providing QoS support for SoC designs.

The increasing demand to provide more and more func-
tionality in faster embedded devices requires bus protocols
to implement complex methods for component interaction,
in order to deal with high-level constraints commonly found
in most SoC systems. Modern bus interconnects have to
provide support for pipelined data transfers, out-of-order
completion, and variable size data bursts. To enforce an in-
creasing number of (often contradictory) application-specific
constraints, several restrictions have to be considered by bus
protocol designers. On the other hand, bus protocols have
to be general enough to be applied in a wide range of ap-
plications. As complexity in bus protocols increases, there
is a trend to propagate the management of an increasing
number of constraints to SoC system designers who imple-
ment embedded systems using the protocols. For example,
some protocols are known to deadlock or behave unreliably
if certain conditions are not met by the SoC system built on
a bus-based communication backbone.

Despite the fact that bus protocols have a critical role in
providing a reliable platform in SoC systems, their speci-
fications are typically written as a combination of natural
languages and timing diagrams. Although this approach is
effective in explaining basic use cases to developers, it cannot
cover every possible use case, and introduces ambiguity in
the specification. This ambiguity is especially troublesome
when heterogeneous IP blocks have to be integrated on the
bus, as different vendors might implement the ambiguous
parts of the specification differently. Thus the interoperabil-
ity of such components can be at risk.

Although most vendors provide test vectors to validate
and certify whether components work with a bus protocol,
there is no well-defined methodology to check whether the

system as a whole satisfies high-level design constraints. SoC
designers not only have to validate the behavior of compo-
nents, but they also have to carry the burden of validating
their interactions at the transaction-level.

Simulation-based approaches have been found useful in
designing large-scale embedded systems. Notable examples
include the OSCI SystemC [20] standard, that provides an
environment for the transaction-level [21}/22] simulation of
event-driven SoC systems, and the SPIRIT C’onsortiuwﬂ
which aims at creating a standard format for IP exchange
among various simulation tools. Simulation-based testing,
however, cannot cover every possible use case in SoC sys-
tems; it can show the presence of errors, not their absence.
Therefore it cannot guarantee the correctness of the results.
Moreover, transaction-level simulation is a time-consuming
process limiting designers to a few test cases.

This paper proposes a formal method for the performance
evaluation of SoC systems built on the ARM Advanced
Microcontroller Bus Architecture (AMBA) Advanced High-
speed Bus (AHB) [3]. AMBA AHB is a highly successful
bus protocol widely used in embedded SoC systems world-
wide. The final AMBA 2.0 specification is a 230 page docu-
ment freely available for download at ARM’s Websittﬂ. The
AMBA specification is a combination of natural languages
and timing diagrams. The specification also describes sev-
eral use cases that may result in bus deadlocks.

We propose a model checking approach to evaluate the
performance of SoC systems based on the AMBA AHB bus.
The method is based on the finite state machine model of
computation and provides the means for an exhaustive ver-
ification of bus interactions. We build on simulation results
to obtain parameters for the formal models that we use to ex-
plore design spaces that are infeasibly large for transaction-
level simulations. We demonstrate our proposed method
on a digital camera case study to evaluate the functional-
ity and performance of the system. We use the open-source
NuSMV [1] model checker for the formal performance anal-
ysis. We compare the results with the SystemC simulation
of the digital camera case study, at the transaction-level.
Our results show that the formal verification complements
the simulation results providing a systematic method for the
transaction-level validation of SoC designs.

The organization of the paper is the following: Section [2]
compares the proposed approach with related work, Sec-
tion [3| gives a high-level overview of the proposed analysis
framework, Section [4] describes the formal modeling of the
AMBA AHB protocol, Section [5| describes how we applied
this formalism for the functional verification of the digital
camera case study, Section [f] demonstrates the formal per-
formance evaluation of the digital camera case study and
compares the results of the formal verification with SystemC
simulations, and Section m presents concluding remarks.

2. RELATED WORK

Simulations are the preferred and widely accepted way
to evaluate SoC designs in the industry today. Register-
transfer level (RTL) languages such as VHDL [14] and Ver-
ilog |15] are classic hardware description languages widely
used in the EDA industry for embedded system design. RTL
languages target hardware specification at low-level abstrac-

http://www.spiritconsortium.com
Zhttp://www.arm. com

312

tions providing a synthesizable platform for hardware devel-
opment. RTL models are usually cycle-accurate and provide
high precision for simulations. The low-level abstraction,
however, results in slow simulation speeds unsuitable for the
analysis of complex SoC systems.

Due to the increase in System-on-Chip design complex-
ity as well as the decrease in the time to market window,
today’s designers are turning to transaction-level modeling
languages such as SystemC [20]|, SystemVerilog [16|, and
SpecC' |9] to perform early design exploration and hardware-
software co-design in order to shorten the design cycle. Trans-
action-level modeling focuses on the interactions between
systems components, such as bus transfers, interrupts or
signals, rather than on gates or registers. Transaction-level
languages employ higher-level abstractions than RTL lan-
guages and are often not synthesizable.

In this paper we describe a case study that has been
implemented using SystemC. SystemC is a library imple-
mented in the C++ language and is a set of features use-
ful for hardware modeling, such as threads, ports, channels,
modules, events, processes, etc. SystemC allows the use of
cycle accurate, cycle approximate and mixed accuracy mod-
eling abstractions. SystemC employs a logical notion of time
and computations are synchronized with respect to a global
clock.

A formal approach for evaluating multi-processor system-
on-chip (MPSoC) performance has been presented in [23].
The authors extend real-time schedulability methods to an-
alyze generic periodic and sporadic tasks in MPSoC systems
at the task-level. In contrast, this paper proposes a more
detailed formal analysis method that captures the AMBA
AHB bus commonly used in several SoC designs. The ar-
chitecture of SoCs has a high impact on the overall perfor-
mance, therefore transaction-level analysis is a necessity for
performance evaluation when accurate results are required.

A holistic method is proposed for the schedulability anal-
ysis of distributed preemptive real-time systems [27] using
a TDMA communication bus. Their work also focuses on
the task-level communication and schedulability, therefore it
cannot capture the architecture as accurately as the method
proposed in this paper.

A generic method for protocol verification using synchro-
nous protocol automata is presented in [7]. The synchronous
protocol automata is essentially based on finite state ma-
chines. The method proposed in this paper is specific to
AMBA-based SoC designs as it formally models the AMBA
protocol but could be represented using synchronous proto-
col automata as well. We have decided to use the NuSMV
representation instead as it provides a practical approach
for model checking as well.

Other authors have proposed the task-level analysis of
scheduling using the timed automata formalism [8]. A generic
form to analyze scheduling behavior based on the timed
automata model was proposed in [10] for single processor
scheduling using the Immediate Ceiling Priority protocol
and the EDF algorithm. Although the task-level analysis is
more general and could be used for worst-case performance
evaluation its results would not nearly be as accurate as the
method proposed in this paper that inherently captures the
bus communication at the transaction-level.

A method on the functional verification of the PCI pro-
tocol is described in [5| using the Cadence SMV [18| tool.
A similar approach is used to verify the IBM CoreConnect

http://www.spiritconsortium.com
http://www.arm.com

arbiter in |11]. An early work on applying model checking
methods to the AMBA protocol was presented in [24], where
the authors used finite state machine models and the SMV
tool to uncover an unspecified condition in the AMBA spec-
ification. Although the described case study deadlocks the
bus, it is due to the flawed implementation rather than the
protocol itself. A verification platform for AMBA-ARMY is
presented in [25]. The authors use the SMV tool to prove
the functional correctness of the AMBA protocol by check-
ing various properties. The authors do not describe any
bugs, rather they focus on properties that have turned out
to be valid. A verification platform for AMBA using a com-
bination of model checking and theorem proving is described
in [2]. The author extends earlier approaches by considering
both control and data properties, and describes properties
that have proven to be true.

Although previous work has addressed the functional ver-
ification of the AMBA protocol, our paper builds on the pre-
vious work to propose a systematic formal method for the
performance evaluation of AMBA-based SoC designs. More-
over, we have encountered an ambiguous case in the spec-
ification that might lead to flawed implementations. Our
results do not imply that the AMBA protocol is incorrect,
and neither does it imply that the works described in [252]
are invalid. Rather, it highlights that even a well-studied
and widely used protocol as AMBA AHB does not guaran-
tee that various AMBA-compliant implementations would
work interchangeably without any glitches in every case.
The main reason for this is the ambiguity of natural lan-
guages that should be resolved by future designers by pro-
viding a formal specification for their protocol.

3. MODEL-BASED PERFORMANCE EVAL-
UATION USING MODEL CHECKING

We propose a model-based analysis for the performance
evaluation of SoC designs. Figure|[l|shows a high-level view
of the proposed design flow. The design flow starts with
the domain-specific model (DSM) that is a high-level spec-
ification which specifies key properties of the design, such
as its structure, behavior, environment, and key constraints
that it has to satisfy. The domain-specific model can be ex-
pressed in several ways, using textual specification, timing
diagrams, meta-modeling, or other visual methods.

The DSM is then mapped into a formal analysis model.
This step is required for any formal analysis unless the DSM
is already specified using a formal language (e.g. finite state
machines or Petri-nets). The translation requires the nec-
essary details to be abstracted out from the DSM; the for-
mal models usually capture key properties of the system at
higher-level abstractions than the DSM itself. As with sim-
ulations, the abstraction influences the complexity of the
analysis as well as its precision. If the analysis model is too
abstract results may become inaccurate, if it is too complex
the analysis will likely hit the state space explosion problem.
Finding the right abstraction is the key for the successful
model-based analysis of SoC systems.

Despite the successful application of formal methods in
SoC designs for functional verification, the performance of
embedded systems is dominantly evaluated using simula-
tions. Simulations inherently model SoCs with greater ac-
curacy than formal models tailored for verification. Formal
verification is essentially an exhaustive state space search

Domain-specific
SoC Model

Semantic Mapping

Formal Analysis Simulation

Model Model

Input Test cases l

Functional Performance Simulati
Verification Evaluation e

Model Checker Parameters

Figure 1: Performance Evaluation of SoCs using
Model Checking

therefore it cannot capture the same complexity as a single
execution trace using simulations. For complex SoC systems
the task-level abstraction is often too coarse, formal models
often do not take the system architecture into consideration
therefore their applicability is limited for architecture explo-
ration. This paper describes a method that captures SoCs
at the transaction-level, thereby creating an abstraction of
SoCs that provides a practical balance between analysis ac-
curacy and scalability. The formal models can be used both
for functional verification as well as performance evaluation.

In our proposed method, simulation and formal verifica-
tion are complementary techniques for performance analysis,
as they address each others weaknesses. Figure 1] illustrates
how the combination of simulations and formal verification
can be used for the evaluation of SoCs. Designers should
perform several tests to obtain results for cases that are
representative to the use of the system, and measure ex-
ecution times of each master, slave, as well as the size of
transactions transmitted on the bus. Using this information
a formal analysis model can be created that captures key
parameters of the system.

We use the simulation and profiling information from the
simulations to express the execution times for each master
as intervals; the best case execution time (BCET) refers to
the smallest execution time, the worst case execution time
(WCET) refers to the largest execution time found during the
simulation and profiling phase. These execution parameters
are obtained for each component independently, and they do
not include the time spent waiting for the bus or time spent
during communication, rather they refer to the computation
time of each component. The size of each transaction corre-
sponds to the size of messages written to and read from the
slave. Again, we build on the simulation results to approxi-
mate the expected size of transactions.

Model checking provides a way to generalize the simula-
tion results to predict the worst case behavior of the system.
Simulations are a subset of verification: if the system un-
der analysis is completely deterministic a simple simulation
can provide guarantees that a system works. Real-life SoCs,
however, are usually highly non-deterministic therefore they
cannot be efficiently verified by simulations. Formal verifi-
cation is a technique that allows us to run huge numbers
of test cases on the system in short time and prove cer-
tain constraints in the system. Simulations cannot provide
guarantees on the worst case behavior of a given system as
they try to generalize the behavior of the system from a few
observed test cases.

We feed parameters to the formal models by creating a
model for each master and slave connected to the AMBA
bus, and specify their BCET, WCET, the size of the input data
read by the master as well as the size of the output data. We
might also need to create the necessary synchronization algo-
rithm between the components that controls interrupts and
signals in the system. The formal analysis model captures
the bus protocol at the transaction-level cycle-accurately.
This model provides high accuracy on the bus-level, while
building on simulations and profiling to obtain the cycle-
approximate behavior of components connected to the bus.
We then build on model checking to exhaustively explore all
the possible bus accesses that are predictable for the SoC
design. This method allows to obtain worst case end-to-
end deadlines with high accuracy and formal guarantees by
proving that the end-to-end computation time of the system
is below a predefined constant bound.

The rest of the paper describes a detailed digital camera
case study based on the AMBA AHB bus to demonstrate
the proposed design flow shown in Figure[I} Section [4] gives
a high-level description of how we have modeled the AMBA
protocol using the finite state machine formal model of com-
putation, giving an example of how a DSM (in this case the
SoC system based on the AMBA protocol) can be translated
into a formal language. Section [f]shows how we applied this
formalism for the functional verification of the digital cam-
era case study and describes a previously undocumented am-
biguity in the AMBA specification, demonstrating how the
formal models can be used for functional verification. Sec-
tion [6] demonstrates the formal performance evaluation of
the digital camera case study and compares the results of
the formal verification with SystemC simulations, and Sec-
tion |Z| presents concluding remarks.

4. FORMAL MODELING OF THE AMBA
AHB PROTOCOL

This section formalizes the model for the AMBA AHB
protocol. The notion of time used in the protocol specifi-
cation is discrete (bus cycle), therefore the protocol can be
represented as a discrete event system. A discrete event sys-
tem (DES) is a 5-tuple G = (Q, %, 0, qo, @m), where Q is a
finite set of states, X is a finite alphabet of symbols that
we refer to as event labels, 0 : Q X ¥ — (@ is the transi-
tion function, qo is the initial state, and @, is the set of
marker states (exiting states). A transition or event in G is
a triple (q,0,q") where 6(q,0) = ¢, q,4' € Q are the exit
and entrance states, respectively, and o € ¥ is the event la-
bel. The event set of G is the set of all such triples. Events
in the DES are untimed and transitions depend only on the
current state and the event label.

There are several models of computation that can express
discrete event systems, well-known examples include finite
state machines, Petri-nets, and data-flow networks. Timed
automata and hybrid automata are extensions to finite state
machines in order to express the continuous evaluation of
system variables, and are therefore too heavyweight to rep-
resent cycle-based bus protocols. The discrete event model
is simpler than timed automata or hybrid automata models,
and offers a more scalable approach for verification by uti-
lizing Binary Decision Diagrams [4]. We propose the use of
the finite state machine (FSM) model of computation for the
representation of the AMBA AHB bus protocol as a discrete

314

event system. We chose finite state machines mainly because
they are supported by several model checkers [1,/18]/12].

We have created a cycle-accurate model of the AMBA
AHB bus in order to model bus transactions accurately. To
ensure that a single split transfer or RETRY response does not
deadlock the bus as described in [24], we assume that the
arbiter only grants access to a new master when the HRESP
signal is OK and the HTRANS signal is IDLE. This introduces
an extra cycle arbitration delay in the model. We model
arbitration delays, pipelining, and busy slaves (HREADY is
0) in the bus as well. We have also modeled the two-cycle
response times for RETRY and SPLIT responses according to
the AMBA specification.

MODULE master._read_write (BUSREQ, HGRANT, MASTER_STATE,

MASK_MASTER, BCET, WCET, READSIZE, WRITESIZE, START, FINISH)
VAR

state : idle, busreq, haddr, read, write, busy, error;

prev_state : idle, busreq, haddr, read, write, busy, error;
io : read, write;

ET : O0..MAXET;

SIZE : 1..MAXSIZE;

HADDR : boolean;

HTRANS : IDLE, NONSEQ, SEQ, BUSY;

HWDATA : boolean;

ASSIGN
init (state) :=

(io)

(SIZE)

(prev_state) :=

idle;
:= read;

=1

init
init

init

idle;

next idle;

(prev_state)
next (state) :=
case
HRESP = ERROR : error;

MASK_MASTER & HGRANT : error;

HRESP = SPLIT & HGRANT : state;
'HREADY : state;

MASK_MASTER : state;

HRESP = RETRY & HGRANT : prev_state;

state = idle & START & READSIZE = O : busy;

state = idle & START : busreq;

state = idle : idle;

state = busreq & HGRANT : haddr;

state = busreq & 'HGRANT : state;

state = haddr & HGRANT : read;

state = read & HGRANT : write;

state = write & HGRANT & SIZE = READSIZE & io = read :
busy;

state = write & HGRANT & SIZE = WRITESIZE & io = write :
idle;

state = write & HGRANT & SIZE < READSIZE & io = read :
haddr;

state = write & HGRANT & SIZE < WRITESIZE & io = write :
haddr;

state = busy & ET < BCET : busy;

state = busy & ET = WCET : busreq;

state = busy & BCET <= ET : busy, busreq;

1: error;

esac;

Figure 2: Partial NuSMYV Finite State Machine
Model for an AMBA AHB Master

MODULE slave (HADDR, HTRANS, HWDATA, HRDATA, HREADY, HRESP,
HMASTER, HSPLIT, MASK MASTER1, MASK_MASTER2, MASK_MASTER3,
SLAVE_STATE)
VAR
state : {idle, write, read, error};
prev_state : {idle, write, read, error};
extended :
ASSIGN

init

boolean;
(state) := idle;
(prev_state)

(extended) :=

init := state;
03

1= state;

init
next (prev_state)
(state) :=
case

SLAVE_STATE

next

'= x : SLAVE_STATE;

HRESP = SPLIT : idle;
'HREADY : state;
HTRANS = BUSY : state;
HRESP = RETRY : prev_state;
state = idle & HTRANS = NONSEQ & HADDR : write;
state = idle : state;
state = write & HTRANS = NONSEQ : read;
state = read & HTRANS = NONSEQ & HWDATA : idle;
1 : error;
esac;
Figure 3: Partial NuSMV Finite State Machine

Model for an AMBA AHB Slave

We have chosen to implement a round-robin arbiter, mainly
to avoid starvations that might arise when a fixed-priority
arbiter is used. We consider RETRY responses from the slave
(HRESP = RETRY), as well as split transfers. We do not, how-
ever, model locks on the transfer (HLOCKx signals).

Figure [shows how we modeled a generic AMBA AHB
master as a finite state machine. We have used the NuSMV
syntax for its compactness. We identify six states (idle,
busreq, haddr, read, write, error) as shown in Figure
Transitions are specified within the case ...esac; block.
Transitions are ordered deterministically; the next value of
state will be specified by the first guard that evaluates to
true. The figure is only partial; the HADDR, HTRANS, HRDATA,
HWDATA, and BUSREQ signals depend on the state of the mas-
ter. The MASTER_STATE variable is used for the SoC evalu-
ation described in Section [f] to provide a fast and simple
method to track the master’s current state from the arbiter.
The BCET and WCET parameters are given as inputs to the
AMBA AHB master. The READSIZE and WRITESIZE param-
eters specify the size of the data read from and written to the
bus. The BCET, WCET, READSIZE, and WRITESIZE parameters
are provided by the simulations.

Figure [3] shows how we modeled a generic AMBA AHB
slave using NuSMV. We have identified four states (idle,
write, read, error) as shown in Figure Transitions are
specified within the case block. The transitions of the slave
have to be synchronized with the master — e.g. the slave has
to be in the read state when the master is in the write state
— otherwise the slave (and the master) will enter the error
state. Figure[3]is only partial; the HREADY and HRESP signals
are assigned values non-deterministically for the functional
verification. The slave records split transactions by storing
the master’s address in the MASK_MASTER1, MASK_MASTER2,

315

and MASK MASTER3 flags. These flags are managed by the
slave (the arbiter also maintains its own flags for which
master is masked) and are cleared when the slave issues an
HSPLITx signal. The extended variable is used to extend the
duration of RETRY and SPLIT responses for two clock cycles
according to the AMBA specification.

We have modeled a round-robin arbiter to evaluate the
case studies described in Section [5l and Section [fl We have
not included a detailed description of the arbiter design,
mainly because (1) it is not generic, rather a specific imple-
mentation that corresponds to the AMBA specification, (2)
the design is too complex to fit within this paper. For the
NuSMV models used in the formal analysis please visit
http://alderis.uci.edu/amba2.

S. FUNCTIONAL VERIFICATION OF
AMBA-BASED SOC DESIGNS

Although our major goal is to evaluate the performance
of SoC designs using the formal FSM models these models
also allow for the functional verification of AMBA AHB-
based SoCs. Despite the fact that the functional verification
of the AMBA AHB protocol has been addressed before by
various researchers [24,25}2], we were able to uncover an am-
biguity in the protocol that has not yet been documented.
This section describes how we used the NuSMV tool to ver-
ify deadlock-freedom and liveness properties in a single bus
system with three masters and one slave, using round-robin
arbitration. In the discrete event model a deadlock can be
observed as a state with no transitions enabled. A livelock,
on the other hand, refers to a state from which only a sub-
set of all the states is reachable, that cannot provide the
necessary functionality for the system.

The AMBA protocol allows three types of responses by the
slave: OK signals that the transaction in the previous clock
cycle has been successfully completed, RETRY signals that
the slave wants the master to repeat the transaction from
the previous clock cycle, and SPLIT is a signal to the arbiter
to mask the master. A slave issues the SPLIT response when
it predicts that it will be unable to receive data — a rather
ambiguous definition in the AMBA specification. Later, a
slave can signal the arbiter using the HSPLITx signal that it
is now ready to process data and requests that the arbiter
unmasks a previously masked master.

Figure[4]shows the design of the case study. We have used
the open-source NuSMV model checker to verify CTL [6]
properties on the finite state machines. During this process
we have discovered several trivial deadlock cases that are
covered by the AMBA specification. For example, we were
able to show that a SPLIT response followed immediately
by a RETRY response deadlocks the system, as the master
receiving the RETRY response has not started transmitting on
the bus yet. The AMBA specification, however, requires the
slave to issue an OK response following the SPLIT response.
Similarly, we found that the combination of a RETRY response
and a low HREADY signal may deadlock the bus because the
master is required to keep its state when the HREADY signal
is low, but is also required to repeat the last transmission
since the response is RETRY. These ambiguities, however, do
not have a high practical value as the combination of these
signals does not seem to be logical in a real-life SoCs.

We were able, however, to uncover a non-trivial ambigu-
ity that might lead to flawed implementations. Consider an

http://alderis.uci.edu/amba2

JPEG2000
CPU
Encoder Sameze,
(master3) (master2) (masterl)
T T T
Lo - - - - -l
Signals

AMBA AHB bus

Memory
(slave)

Round-robin
Arbiter

Figure 4: Digital Camera Case Study based on the
AMBA AHB Bus

SoC system based on the AMBA AHB protocol, using two
masters (master_1, master_2) and a slave. The arbiter has
to keep track of the masters’ state in order manage the split
transfers. This could be implemented by providing dedi-
cated wires between the masters and the arbiter, however
this is impractical in most cases as it requires extra compu-
tation and hardware. An alternative method is to monitor
the bus traffic to obtain the master and slave states. The
arbiter may use the HTRANS signal to check whether the mas-
ter is idle or transmitting (NONSEQ, SEQ), the HBURST signal
to predict the remaining cycles from the transfer, and the
HRESP signal to monitor whether the active master and slave
has to step back to repeat a transaction.

Let’s assume that the slave have previously split master_1
(master_1 is masked by the arbiter), and is in a transaction
with master_2. The slave can unmask a master by issu-
ing an HSPLITx signal using the masked master’s address to
the arbiter. Consider that the slave tries to unmask mas-
ter_1 by setting HSPLITx when it issues a RETRY response.
The AMBA specification is ambiguous on what the arbiter
should do in this case. The specification says that a mas-
ter has to repeat the last transaction when it receives the
RETRY response. If the arbiter monitors the bus signals to
keep track of the masters’ states it will try to go back to
its previous state to keep synchronized with the master and
the slave. However, if the arbiter implements this behavior
it will not unmask master_1 as the client requests. Since
there is no acknowledgement for HSPLITx signals the client
thinks that master_1 is already unmasked, and won’t re-
quest that the arbiter unmasks it again. This may result
in deadlock as master_1 never gets access to the bus again.
The AMBA specification states, that “A slave which issues
RETRY responses must only be accessed by one master at
a time.” The authors of this paper could not reach an agree-
ment whether the “access” refers to access through the bus
or access by being split by the slave - which would cover this
deadlock, but would also imply that a slave cannot issue a
RETRY response if it may split a master.

Figure [d] shows the architecture of the digital camera case
study used throughout the paper. The digital camera con-
sists of three masters (CPU, JPEG2000 Encoder, Camera),
and one slave (Memory). We have used a round-robin arbiter
for this case study. A default master gets access to the bus
when none of the three regular masters request the bus. Sec-
tion [6] describes the behavior of the system in more detail.
For the functional verification we have considered the case
when all the masters are allowed to concurrently request ac-

316

cess to the bus and carry out read/write transactions in an
arbitrary unsynchronized manner. The proposed functional
verification does not take the internal computation of com-
ponents into consideration, rather it treats them as “black
boxes” that use the bus according to the specification. The
results described in this section are therefore applicable to
any SoC that uses the architecture show in Figure [d] with a
round-robin scheduler.

Using the NuSMV model checker we were able to prove
several properties in the digital camera case study shown
in Figure EI First we showed that the error state is un-
reachable in all the masters and the slave by using the CTL
formulas (z refers to the index used for all masters):

AG (masterx.state != error),
AG (slave.state != error).

The AMBA protocol permits a simple way for livelock by
allowing the slave to arbitrarily split masters. If the slave
splits two masters and does not unsplit them, we end up in a
livelock condition as the split masters never get a chance to
serve requests. Moreover, if the slave splits all the masters
and does not unsplit them the system deadlocks. We showed
these conditions by checking the following CTL formulas:

EF (MASK_MASTERx & MASK_MASTERy),
EF (MASK MASTER1 & MASK_MASTER2 & MASK MASTER3).

We had to specify rules within the slave that enforce that
whenever two masters are split one of them will eventually
be unsplit. We have verified this property using the follow-
ing CTL formulas:

AG ((MASK MASTERx & MASK MASTERy) ->
AF (!'MASK MASTERx | !MASK_MASTERy)),
AG ((MASK MASTER1 & MASK MASTER2 & MASK MASTER3) ->
AF ('MASK MASTER1 | !MASK MASTER2 | !'MASK MASTER3)).

We have decided to use the round-robin arbiter to ensure
that no starvations occur within the system. We were able
to show that all bus requests by the masters eventually get
served by the arbiter by checking the following CTL formu-
las:

SPEC AG (masterx.state = busreq —->
AF HGRANTx),

SPEC AG (masterx.state = busreq ->
AF masterx.state = write).

These formulas ensure that the system does not deadlock
or livelock and works properly. In order to prove these for-
mulas we have assumed that the following formulas evalu-
ate to true infinitely often (using the JUSTICE NuSMV key-
Word): HREADY, HRESP = 0K, HSPLIT = masterl, HSPLIT =
master2, HSPLIT = master3. This was necessary to avoid
trivial erroneous cases such, as when the slave is never ready
to receive data, or when it continuously sends RETRY re-
sponses. By disallowing the simultaneous use of the HRESP
= RETRY and the HSPLITx signal — that have caused a dead-
lock as described above — we were able to show that the
system works correctly.

6. PERFORMANCE EVALUATION OF
AMBA-BASED SOC DESIGNS

This section explains the digital camera case study shown
in Figure [I] and Figure [f] in detail, and describes the pro-
posed method for performance evaluation that combines the
transaction-level simulation approach with model checking.
The digital camera used for the case study implements the
new JPEG2000 |17] still image compression standard devel-
oped by the JPEG committee. The advantages of JPEG2000
over its predecessor JPEG include lossy to lossless compres-
sion, region of interest (ROI), multiple resolution representa-
tion, error resiliency, etc. The JPEG2000 encoder is divided
into three main parts: image transformation, quantization
and entropy coding. Unlike JPEG, which relies on the more
commonly used discrete cosine transform (DCT), JPEG2000
uses the Discrete Wavelet Transform (DWT). JPEG2000’s
choice of entropy coding is based on the Embedded Block
Coding with Optimal Truncation (EBCOT) [26).

The SystemC model used for this project is part of an
ongoing effort to develop a suite of SystemC models. Our
JPEG2000 encoder is a transaction-level implementation of
the proposed architecture described in [28]. The imple-
mented simulation model is semi-cycle accurate, in the sense
that it is cycle accurate at the transaction-level, but the
functional part is cycle approximate.

6.1 JPEG2000 Encoder Description

Figure [5] shows the block diagram for the JPEG2000 en-
coder. Designers have the option of implementing a dis-
tributed compression method, where the image is broken up
into tiles, and the compression is carried out for each tile
separately. Although this is feature is not required by the
JPEG2000 specification we have decided to implement it to
improve the concurrent processing in the system and thus
the overall performance of the SoC. Tile size varies, from
smaller sizes — 64x64 pixels for memory restrained designs
— to 512x512 for better compression quality. These param-
eters vary and designers need to consider the requirements
for their specific designs.

After the image is tiled, each tile is passed though the
DC' Level Shifting step which converts the tile pixels from
unsigned integers to two’s complements. In the next step
the tile as passed through the Multi-Component Transform
(MCT), which is in charge of transforming the input tile
from RGB color format to either YUV by using the re-
versible color transform (RCT), or to YCbCr by using the
irreversible color transform (ICT). RCT can be used in both
lossless and lossy compression whereas ICT can only be used
for lossy compression. After the tile has been transformed, it
is processed by the discrete wavelet transform (DWT), which
further decomposes the tile into different levels of decom-
position. For every pass DWT makes on a tile, depending on
the number of decomposition levels needed, DWT generates
four sub-bands, denoted as LL, HL, LH, and HH, where LL
represents the downsampled tile (half the width/height of
the previous tile), and the other three sub-bands represent
a residual version of the tile which are used for the image
reconstruction process. Once DWT has processed the tile it is
passed through the quantization step only when lossy com-
pression is used. The user has the option to declare Regions
Of Interest (ROI), that are encoded independently from the
rest of the image based on user specifications. This allows to
use lossless compression for some (interesting) parts of the

317

—— -
DC-Level C:Z:;l;:'en =
Shifti |
meet/ Transform
Discrete
Wavelet —» Quantization
Transform
‘l’ Output
Image
ROI — EBCOT —

Figure 5: JPEG2000 Encoder Block Diagram

== il
o cr} MO} "
DWT / IDMA 2 ! 1 0
05 CE} MOF g tl‘
T m cr} Mo} v O
JPEG2000 S —) e
B [cr} {20} 3
Encoder 2 E a [t =) Q
[ork Mok
(master2) CFE MQ' ¥
——
CPU Camera
(master3) Control Unit (masterl)
T T T

L _

Signals
AMBA AHB bus
Memory
Round-robin (slave)
Arbiter

Figure 6: The JPEG2000 Encoder Integrated in the
Digital Camera Case Study

image, while using lossy compression for the rest of the im-
age. Finally, the image (or tile) is processed with EBCOT,
which produces the final bitstream for the image.

EBCOT can be further subdivided into two parts, com-
monly known as Tier-1 and Tier-2. Tier-1 is the most com-
putation intensive part of JPEG2000. Because of the com-
plexity of both DWT and Tier-1, most designers choose to
implement these functionalities in hardware. Tier-2, how-
ever, is very control intensive, therefore it is often imple-
mented in software on the main CPU. The case study shown
in Figure [f]is influenced by these observations.

In the proposed architecture shown in Figure @ the DWT
module has an internal DMA engine (iDMA) that fetches
the tiles from main memory to either DWT’s local memory
or bank A of the tile memory, depending on whether DWT is
currently processing a tile or not. The DWT module is capable
of lossless and lossy compression and implements DC Level
Shifting and MCT. After DWT is done processing the tile, it
writes its transformed image to bank B in tile memory if and
only if Data Dispatcher has finished fetching all codeblocks
for the previous tile from bank B. Therefore, the DWT module
may be blocked by the slower Data Dispatcher.

The Data Dispatcher module reads the codeblocks from
bank B in the tile memory and performs the quantization
step on them. Its main job is to feed bitplanes onto each
Bit Plane Coder (BPC) so that at any given time, there
could be up to N different bitplanes being processed by the
BPC modules. A BPC is actually the module in charge

of performing Tier-1 on incoming DWT coefficients, and it
is subdivided into two parts, the Context Formatter (CF)
and the Arithmetic Coder (MQ-Coder). These blocks are
denoted as CF and MQ in Figure @ Finally, the processed
data is collected by the Data Collector, from which it is
written to the main memory through the AMBA AHB bus.

6.2 Simulation-based Evaluation

Our simulation abstraction is cycle accurate at the trans-
action-level, and the functional behavior of each module is
“cycle-count-accurate”. Each one of the blocks in Figure [f]
is implemented as SC_MODULE which is a special class in Sys-
temC used to declare modules. Communication between
modules is implemented through SC_PORTS using SC_SIGNALS.

Within each SC_MODULE there may be several concurrently
executing threads, declared as SC_THREAD in SystemC. For
instance, DWT has a tiling engine thread that emulates iDMA
and fetches the tiles from main memory, a compute thread
that emulates the DWT lifting kernel and wakes up when the
controller signals that there is a tile ready to be processed, a
read thread that fetches tiles from tile memory, and a write
thread that writes DWT coefficients to tile memory. The Data
Dispatcher has two threads, one that reads DWT coefficients
from tile memory and the main data dispatcher thread that
distributes the bitplanes among all of the bit plane coders
in round robin fashion.

The Context Formatter and the MQ-Coder both have three
separate threads, a read (from input FIFO) thread, a write
(to output FIFO) thread and a compute thread. The data
collector module also has two threads, one for reading from
the bit plane coder output FIFOs in round robin fashion,
and one for writing the encoded data back to main mem-
ory. The application consists of 42 threads overall - a rather
large number for a simple SoC design. The exhaustive ver-
ification of the SystemC model is practically infeasible due
to the large degree of non-determinism present in the sim-
ulation models. A recent paper summarizes the problems
arising from the complexity caused by the inherent non-
determinism of multi-threaded embedded systems [19).

The SystemC model is configured using a configuration
script that sets up its parameters based on the input im-
age that the model will process. The parameters include
tile width, tile height, image width, image height, DWT de-
composition levels, etc. The script configures and runs the
model for a given amount of test images. From each simu-
lation run we obtain the execution intervals for processing
tiles, and the size of compressed tiles sent over the AMBA
AHB bus.

Table [I] and Table 2] show the parameters that we have
obtained by the SystemC simulations. We have run simula-
tions on five different pictures using 128 x 128 pixel images
as input for the compression. The Tier-1 columns describe
the measured execution time of the Tier-1 JPEG2000 com-
pression in bus cycles, Tier-2 columns correspond to the soft-
ware implementation of Tier-2 on the main CPU. The Input
column shows the size of the tile as input to the DWT and
Tier-1, Output specifies the worst case size of the tile after
the compression in Tier-1. These parameters are used for the
formal evaluation of worst case end-to-end execution times
as described in Section that is larger than any of the
end-to-end times measured using the simulations shown in
Figure [[] and Table

318

6.3 Model Checking-based Performance
Evaluation

This section describes how we utilized model checking to
evaluate the worst case behavior of the digital camera case
study shown in Figure |§| based on the simulation results de-
scribed in Subsection [6.2] above. The simulations give us
very accurate results for the end-to-end processing of image
tiles, however they can only cover a few execution traces
of the system. The formal model checking approach pro-
vides the means to evaluate larger design spaces to obtain
the worst case end-to-end execution time of the overall SoC
design. As discussed in Section [4] the formal models used
for the evaluation are cycle-accurate on the bus transaction-
level.

We have shown in Section [f] how we proved the overall
functionality of the system. The FSM models used for the
performance evaluation are more lightweight that the mod-
els described in Section [} we do not consider split trans-
actions, RETRY responses, or blocking slaves (HREADY is as-
sumed to be high), as these functionalities are not used in the
digital camera case study shown in Figure[§] Although these
assumptions are not required for the performance analysis
they increase the scalability of the model checking.

We have used simple Boolean variables to model the inter-
rupts and signals in the digital camera, thus enforcing the
dependencies between components. Although finite state
machine is inherently an untimed model of computation
it can capture time on a discrete time scale as transitions
can be ordered. In our analysis we have declared a global
time variable that is increased at every cycle. The per-
formance analysis can then be expressed as a reachability
problem: when Master_3 has written its data to the mem-
ory is the execution time always smaller than some value x?
Formally using CTL formula: AG (finish3 -> TIME < x),
where finish3 is the signal generated by Master_3 when it
is in the write state and it has written all the required data
to the memory. The NuSMV model checker exhaustively
explores all the execution traces that are valid in the FSM
model in order to show whether the formula is correct or
not.

As seen in Table [l and Table [the execution intervals
are in the order of millions of cycles. The execution inter-
vals for system components introduce a large degree of non-
determinism in the system; there are around 10° x 10° =
102 valid execution traces (but several more states) in the
system based on the simulation data obtained during the
simulation phase. The practical limit on the state space size
of analyzable systems using state-of-the-art methods today
is in the order of 10%° states. These numbers suggest that
the exhaustive cycle-accurate model checking of the digital
camera SoC design is infeasible as we are likely to face the
state space explosion problem. To overcome this problem
we have increased the timescale of the simulation (from cy-
cles to 1000 cycles), thereby creating an abstraction of the
system that is cycle-approximate with the highest precision
available without hitting the state explosion problem. We
have assumed that the Camera (Master_1) requests access to
the bus without delay as it does not do any data processing.

We have considered around 100 different execution traces
for Master_2 and around 1000 execution traces for Master_3
in the SoC design shown in Figure[f] therefore we have eval-
uated 10° execution traces of the digital camera case study.

The proposed method is computationally intensive, and

Table 1: Simulation Results for JPEG2000 Encoding using 64x64 pixel Tiles (for a single tile). Scale: cycles

| Image [DWT ET [Tier-1 BCET [Tier-1 WCET | Tier-2 ET [Input [Output | End-to-end WC |
baboon 194 188 517 005 741 519 9 122 240 | 12 288 | 11 099 10 335 043
boat 194 188 165 141 737 046 8 750 875 | 12 288 | 10 046 10 044 857
goddesses | 194 188 513 846 772 461 8 663 630 | 12 288 | 11 456 9 996 487
goldhill 194 188 242 055 747 954 8 672 436 | 12 288 | 10 376 9 978 464
lena 194 188 461 601 769 239 8 689 815 | 12 288 | 11 979 10 024 198

Table 2: Simulation Results for JPEG2000 Encoding using 128 x128 pixel Tiles. Scale: cycles

| Image [DWT ET [Tier-1 BCET [Tier-1 WCET [Tier-2 ET [Input [Output [End-to-end WC ‘
baboon 751 393 | 2 315 254 3151948 | 9 010 373 | 49 152 | 36 537 14 290 609
boat 751 393 | 1 764 568 3086 892 | 8 758 372 | 49 152 | 41 719 13 990 027
goddesses | 751 393 | 1 843 190 3219664 | 9451990 | 49 152 | 42 391 14 823 509
goldhill 751 393 | 2 325 098 3173076 | 8 768 459 | 49 152 | 41 645 14 090 307
lena 751 393 | 2 364 360 3241 400 | 8 793 070 | 49 152 | 37 578 14 172 351

Table 3: Parameters used for Performance Evaluation by

Model Checking. Scale: 10* cycles

tile size Master_1 ET | Master_2 BCET | Master_2 WCET | Master_3 BCET | Master_3 WCET
64 x 64 1 35 97 866 913
128 x 128 1 251 400 875 946

Table 4: Worst Case Bounds on the End-to-end
Computation Time of the Digital Camera Case
Study obtained using Model Checking. Scale: cy-
cles

Tile size WCET
64 x 64 pixel tiles 11 000 000
128 x 128 pixel tiles || 17 000 000

its performance degrades exponentially with respect to the
state space size of the analyzed system. Evaluating the worst
case performance of the digital camera case study shown
in Figure B] using 64x64 tiles and 10* bus cycles resolution
takes around 6 hours on a dual AMD Opteron 240 (1.4GHz)
computer using 1GB main memory using Linux OS, and 4
days using 128x128 tile sizes. Table[d]summarizes the results
of formal model checking on the worst case execution bounds
of the digital camera case study. To evaluate the accuracy
of the formal evaluation we have tried to find a tight lower
bound on the worst case execution time. We found that
the worst case end-to-end computation of the digital camera
SoC using 64x64 tiles is greater than 10 440 000 cycles. This
shows that our results are rather tight. Finding the tightest
bound using the proposed method is theoretically possible,
but in practice it is rather time consuming therefore we have
not considered finding the tightest bound an objective for
this case study.

Our experiments confirm that the method is computa-
tionally intensive. This might present scalability issues when
trying to apply the method for large-scale SoCs. In this case,
the combination of several techniques may be used. First,
we might increase the scalability by increasing the timescale
of the analysis, at the loss of some precision. Second, the
method can be hierarchically composed. End-to-end exe-
cution times for SoCs can also be represented as intervals
thus providing a way to encapsulate larger SoC designs as
a single component. Third, we can limit how many execu-
tion traces we want to capture in the models e.g. by using

319

constant execution times. As with any method, there is a
tradeoff between analysis accuracy and performance.

Comparing the results of the formal analysis shown in Ta-
ble [4] with the results of the SystemC simulations shown in
Table [I| and Table [2| shows that the results are rather close,
but the simulation-based analysis did not find the actual
worst case execution bound, so using simulations to esti-
mate the worst case performance of the system could be
overly optimistic. Our results show that the formal perfor-
mance analysis is able to provide tight worst case execution
numbers for the end-to-end processing of the digital camera
SoC, given the right parameters.

The performance evaluation results shown in Table [4] as-
sume that the digital camera is initially in the idle mode,
meaning that all components are ready to serve requests as
soon as they receive them. In order to show that the per-
formance of the system does not degrade during the com-
pression we have modeled the processing of four subsequent
64x64 pixel tiles in the system. We were able to show that
the overall computation time is within the 4 X WCET = 44 000
000 cycle bound. In the actual implementation the compu-
tation of the DWT, and the CF, MQ components may overlap,
and Tier-1 is essentially a pipeline architecture therefore we
would rather expect performance increase than degradation
for the end-to-end processing of multiple tiles as the com-
pression of tiles overlaps. Evaluating the worst case perfor-
mance of the digital camera case study for four subsequent
tiles using 64x64 pixel tiles took us around 36 hours on the
AMD Opteron machine mentioned above. We have omit-
ted the analysis of 128x128 tiles for subsequent tiles as the
results depend on the system architecture, rather than the
tile size.

The proposed formal performance evaluation method is
unique compared to simulation-based evaluations as it cov-
ers orders of magnitude larger design spaces. The applica-
tion of the method allows designers to avoid the common
mistake of underestimating the worst case performance of
SoCs as a result of inadequate coverage by simulations.

7. CONCLUDING REMARKS

We have presented a formal method to evaluate the func-
tionality and performance of SoC designs based on the AMBA
AHB bus. We have described a previously undocumented
ambiguity in the AMBA specification that might lead to
flawed designs. The proposed formal method for perfor-
mance evaluation combines simulations with model checking
to provide a way for high accuracy design space exploration.
The formal models inherently capture bus communication at
the transaction-level, thereby creating an abstraction with
a practical balance between analysis accuracy and scalabil-
ity. The proposed formal performance analysis can be used
to obtain the worst-case bounds on the end-to-end execu-
tion time of SoCs and — unlike simulations — guarantees the
correctness of the results. Our experiments with a digital
camera SoC demonstrate the applicability and high accu-
racy of the method. The formal evaluation described in
this paper could be fully automated using existing model
checkers. Comparisons with state-of-the art simulation tech-
niques show that the proposed method can be efficiently
used for the systematic transaction-level validation of SoC
designs.

8. ACKNOWLEDGEMENTS

We would like to thank Professor Fadi J. Kurdahi for pro-
viding the JPEG 2000 architecture design and his help in
developing the SystemC simulation models. This research
was partially supported by a CPCC Fellowship.

9.
1]

REFERENCES

A. Cimatti and E. Clarke and E. Giunchiglia and F.
Giunchiglia and M. Pistore and M. Roveri and R.
Sebastiani and A. Tacchella. NuSMV 2: An
OpenSource Tool for Symbolic Model Checking. In
Proceedings of the 14th International Conference on
Computer-Aided Verification (CAV’2002), 2002.

H. Amjad. Verification of AMBA Using a
Combination of Model Checking and Theorem
Proving. Electronic Notes in Theoretical Computer
Science, 145:45 — 61, 2006.

ARM. AMBA Specification rev 2.0, IHI-0011A, 1999.
R. E. Bryant. Symbolic Boolean Manipulation with
Ordered Binary-Decision Diagrams. ACM Computing
Surveys, 24(3):293-318, 1992.

P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang.
Verifying IP-Core based System-On-Chip Designs. In
IEEE ASIC SOC Conference, pages 27 — 31, 1999.

E. Clarke and E. Emerson. Design and synthesis of
synchronisation skeletons using branching time
temporal logic. Logic of Programs, Lecture Notes in
Computer Science, 131:52—71, 1981.

V. D’silva, S. Ramesh, and A. Sowmya. Synchronous
protocol automata: a framework for modelling and
verification of SoC communication architectures. In
IEEFE Proceedings of Computers and Digital
Techniques, volume 152, pages 20 — 27, January 2005.
C. Ericsson, A. Wall, and W. Yi. Timed Automata as
Task Models for Event-Driven Systems. In Proceedings
of RTSCA ’99, 1999.

320

[9] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and

S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, 2000.

T. Gerdsmeier and R. Cardell-Oliver. Analysis of
Scheduling Behaviour using Generic Timed Automata.
Electronic Notes in Theoretical Computer Science, 42,
2001.

A. Goel and W. R. Lee. Formal Verification of an IBM
CoreConnect Processor Local Bus Arbiter Core. In
DAC ’00: Proceedings of the 37th conference on
Design automation, pages 196-200. ACM Press, 2000.
G. J. Holzmann. The SPIN model checker: Primer
and reference manual. Addison Wesley, 2004.

IBM. 32-bit Processor Local Bus Architecture
Specifications ver 2.9, SA-14-2531-01, 2001.

IEEE. VHDL (IEEE 1076 Standard), 2000.

IEEE. Verilog (IEEE 1364 Standard), 2001.

IEEE. SystemVerilog (IEEE 1800 Standard), 2005.
JPEG committee. ISO/IEC JTC1/SC29/WG1 N1855,
JPEG 2000 Part I: Final Draft International Standard
(ISO/IEC FDIS15444-1). 8.2000.

K.L. McMillan. The SMV system. Technical Report
CMU-CS-92-131, 1992.

E. A. Lee. The Problem with Threads. IEEE
Computer, 39(5), May 2006.

OSCI. SystemC ver 2.1 (IEEE 1666 Standard), 2005.
S. Pasricha. Transaction Level Modeling of SoC with
SystemC 2.0. In Synopsys User Group Conference
(SNUG), May 2002.

S. Pasricha, N. Dutt, and M. Ben-Romdhane.
Extending the Transaction Level Modeling Approach
for Fast Communication Architecture Exploration. In
Design and Automation Conference (DAC), 2004.

K. Richter, M. Jersak, and R. Ernst. A Formal
Approach to MpSoC Performance Verification. IEEE
Computer, 36:60-67, April 2003.

A. Roychoudhury, T. Mitra, and S. R. Karri. Using
formal techniques to debug the amba system-on-chip
bus protocol. In Design, Automation and Test in
Europe (DATE), page 10828, 2003.

K. W. Susanto and T. F. Melham. An AMBA-ARM7
Formal Verification Platform. In ICFEM, pages 48-67,
2003.

D. Taubman. High performance scalable image
compression with EBCOT. IEEE Transactions on
Image Processing, 9:1158 — 1170, July 2000.

K. Tindell and J. Clark. Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems.
Microprocessing and Microprogramming - FEuromicro
Journal (Special Issue on Parallel Embedded
Real-Time Systems), 40:117-134, 1994.

C. Zhang, Y. Long, and F. J. Kurdahi. A Scalable
Embedded JPEG2000 Architecture. In Proceedings of
the Workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS),
pages 334-343, 2005.

(10]

(1]

(12]

(13]

18]
(19]
[20]
(21]

22]

(23]

24]

(25]

[26]

27]

(28]

	Introduction
	Related Work
	Model-based Performance Evaluation using Model Checking
	Formal Modeling of the AMBA AHB protocol
	Functional Verification ofAMBA-based SoC Designs
	Performance Evaluation ofAMBA-based SoC Designs
	JPEG2000 Encoder Description
	Simulation-based Evaluation
	Model Checking-based PerformanceEvaluation

	Concluding Remarks
	Acknowledgements
	References

