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ABSTRACT
Distributed real-time systems require a predictable and ver-
ifiable mechanism to control the communication medium.
Current real-time communication protocols are typically in-
dependent of the application and have intrinsic limitations
that impede customizing or optimizing them for the appli-
cation. Therefore, either the developer must adapt her ap-
plication and work around these subtleties or she must limit
the capabilities of the application being developed.

Network Code, in contrast, is a more expressive and flex-
ible model that specifies real-time communication schedules
as programs. By providing a programmable media access
layer on the basis of TDMA, Network Code permits cre-
ating application-specific protocols that suit the particular
needs of the application. However, this gain in flexibility
also incurs additional costs such as increased communica-
tion and run-time overhead. Therefore, engineering an ap-
plication with network code necessitates that these costs are
analyzed, quantified, and weighted against the benefits.

In this work, we propose a framework to analyze network-
code programs for commonly used metrics such as over-
head, schedulability, and average waiting time. We intro-
duce Timed Tree Communication Schedules, based on timed
automata to model such programs and define metrics in the
context of deterministic and probabilistic communication
schedules. To demonstrate the utility of our framework, we
study an inverted pendulum system and show that we can
decrease the cumulative numeric error in the model’s imple-
mentation through analyzing and improving the schedule
based on the presented metrics.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Measurement techniques

General Terms: Measurement, Theory.

Keywords: real-time networking, scheduling, TDMA, net-
work code.
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1. INTRODUCTION
Distributed real-time systems consisting of several nodes

connected via a shared communication medium require a
predictable and verifiable mechanism to control the com-
munication medium. By a predictable mechanism, we mean
that communication between two parties happens in bounded
time. By a verifiable mechanism, we mean that we can
statically analyze, whether the specified requirements of the
application will be met under the communication protocol
being used. The goal of real-time communication proto-
cols is to provide such mechanisms to applications. Exam-
ples of systems that need real-time communication proto-
cols are industrial process control, integrated medical de-
vice networks, airplanes, and cars. Example communica-
tion protocols are diverse fieldbus systems, the Communi-
cation Area Network (CAN) [6], the Time-Triggered Proto-
col (TTP) [12], FlexRay [10], PowerLink Ethernet [5], and
FTT-CAN [8].

Current real-time communication protocols are typically
independent of the application. All the protocols mentioned
above provide means for predictable communication. Some
of them such as TTP or the static parts of FlexRay and
FTT-CAN also permit static verification. However, although
it is possible to realize a distributed real-time system with
any of these protocols, not all of them always meet the needs
of a particular application satisfactorily. These protocols
have intrinsic limitations that impede customizing or opti-
mizing for the application. Therefore, either the application
developer has to adapt her application to work around these
subtleties or she has to limit the capabilities of the applica-
tion being developed.

To overcome these limitations, we have proposed network
code [9], which permits creating application-specific proto-
cols by providing a programmable media access layer. Net-
work code is an executable communication abstraction to
specify predictable and verifiable communication for dis-
tributed real-time applications. At the programming level,
it provides control of timing, values, communication resources,
and dynamic behavior.

Network code advocates creating application-specific me-
dia access control and stateful schedules based on applica-
tion requirements. For example, if it is known that one ma-
chine on an assembly line is always turned off during lunch
hours, then during this time its TDMA slot in the cycle can
be assigned to another node. Or in a system with primary
and multiple backups, if the primary has transmitted the
data, then the secondaries do not need to send their data.

However, this gain in flexibility comes at a cost. Interpre-
tation of network-code programs takes time depending on
the size of the program [9]. Network-code programs also re-
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quires space in the ROM and RAM. This is especially crucial
when programing micro-controllers with only a few bytes of
program memory or RAM.

Such analysis has been done for traditional TDMA sys-
tems. For a particular protocol, such as FTT-CAN, the
work [1] presents schedulability conditions for synchronous
and asynchronous traffic. For more general TDMA commu-
nication, a necessary condition for round-robin TDMA and
a sufficient condition for specific resource reclamation poli-
cies is specified in [11]. Also overhead has been considered in
relation with schedulability [16]. Other metrics as overhead,
average wait time, and average cycle length are also stan-
dard. However, network-code programs are more expressive
than TDMA, so these metrics and analysis results are inap-
plicable and need to be defined in the context of network
code.

Problem Definition. The network-code program repre-
sents a trade-off between different factors such as commu-
nication overhead or average cycle length. To make design
decisions, such programs need to be analyzed and the ben-
efits weighed against the incurred costs.

We provide a framework to analyze network-code pro-
grams for commonly used metrics such as schedulability,
mean waiting time, thoughput, overhead, etc. We intro-
duce Timed Tree Communication Schedules, based on timed
automata to model network-code programs and present the
metrics in the context of deterministic and probabilistic com-
munication schedules. This includes for example, (1) a nec-
essary condition for checking schedulability of a demand set
given a network-code program based on CTL, (2) a sufficient
condition for checking schedulability of a demand set given
a network-code program in linear time w.r.t. the schedule
length, and (3) the analysis of average waiting times based
on queueing models.

We show the utility of the framework to model the network-
code program by performing a case study with an inverted
pendulum system. The inverted pendulum system has served
as a benchmark problem in control systems and represents
a large class of control problems. We model the inverted
pendulum as a hybrid system and evaluate the effectiveness
of different schedules using the proposed framework.

2. NETWORK CODE
Network code is an executable communication abstrac-

tion and allows application-specific protocols by providing
a programmable media access layer on the basis of TDMA.
Network code is basically a small program, specifying, when
and what is going to be transmitted and received. For more
details about the model and its assumptions see [9].

The instruction set consists of nine instructions, which
fall into the categories of flow control, data control, and er-
ror handling. Especially interesting is the if instruction,
which permits programming on-the-fly choices in the com-
munication schedule. The condition in the if instruction is
referred to as guard. Using guards, multiple communication
instances may be scheduled for the same slot and the guard
eventually grants the slot to at most one, on-the-fly.

In the current implementation, an interpreter called the
network-code machine (NCM) executes the program. An
NCM exists for RTLinuxPro 2.1 on top of the FSMLab’s
LNet driver for Ethernet and recently also for the PIC18F2X80
micro-controller on top of CAN.

Figure 1 shows a simplified overview of the system high-
lighting the important parts for this paper. A more elab-
orate description can be found in [9]. The application sits
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Figure 2: A schedule with one choice g0.

on top. Each application has an application-specific mes-
sage output queue. The application enqueues messages in
this queue. The network-code program specifies, at what
time messages are taken from the output queue and trans-
mitted on the medium. The NCM interprets the program,
and whenever the node has access to the medium, it will
transmit as many messages as possible.

On the receiving side, the reverse is happening. The NCM
receives data. The program specifies, into which applica-
tion’s input queue the NCM should enqueue the received
data. Finally, the application can access the data from its
input queue.

Example 1. We want to realize a schedule in which three
nodes vote based on three values x1, x2, and x3. The high-
est value wins the voting, in a tie the value with the lower
identifier i in xi wins the voting. The node, which sends
the winning value, is allowed to use the slot that follows the
voting. If a node wants to pass one round, then it will send
the value 0. If all nodes pass that round, then a new round
will start immediately. Figure 2 implements this and guard
g0 implements the voting.

For this example, we assume a global synchronized clock
and that node n1 sends value x1. Listing 1 implements Fig-
ure 2’s schedule. The parameters, which are unimportant for
this paper, are replaced with . First, n1 transmits the value
x1. Second, it receives x2 and x3. Then, it evaluates g0, and
if g0 returns true, then it will jump to label L0 and trans-
mit further data. Otherwise, it will receive another node’s
transmission. For details about the instructions see [9].

1 L0 : xsend ( _ , _ , X1 , _ )
wait ( 20 )
receive ( _ , X2 )
wait ( 10 )
receive ( _ , X3 )

6 i f ( g0 , L1 )
wait ( 50 )
receive ( _ , OTHERS )
goto ( L0 )

L1 : xsend ( _ , _ , DATA , _ )
11 wait ( 50 )

goto ( L0 )

Listing 1: Program for n1.
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3. ANALYSIS FRAMEWORK
In the following section, we present the analysis frame-

work. Under this framework, we model network-code pro-
grams as a timed tree communication schedule, which is
based on timed automata with a set of constraints and at-
tributes. We then use this formalism to describe the various
metrics for network-code programs.

3.1 Timed Tree Communication Schedules
Tree schedules have been introduced in [9]. However,

that definition considers only isochronous cycles (i.e., cy-
cles of equal length in time) and treats slots dedicated to
guard data and application data equally. Here, we extend
this definition and permit anisochronous cycles (i.e., cycles
with different length) and distinguish between application-
specific and guard-specific slots. The anisochronous exten-
sion makes our model more general and allows us to analyze
a larger group of schedules and distinction between guard
and application data is needed for calculating different met-
rics as explained in the following sections. Our definition
here models the tree schedule based on timed automata [2].

Before we define the tree schedules formally, we introduce
broadcast communication. A broadcast communication b is
a set of tuples 〈nx, ni〉 where nx is the sender and ni is the
receiver. In a broadcast communication b, each tuple has
the same sender.

Definition 1. A timed tree communication schedule
(TTCS) Ω is a tuple 〈V, v0, VF , l, sl, K, E, M〉 where

• V is a set of locations,
• v0 ∈ V denotes the initial location,
• VF ⊆ V denotes the set of final locations,
• l is a mapping l : V → {app, guard,⊥} with L(v)

that maps location to labels, The set of labels repre-
sents whether a location is application-specific (app),
guard-specific (guard), or unspecified (⊥).

• sl is a mapping S : V → B that maps a location to a
broadcast communication associated with that location,

• K is a set of clocks(clk) with |K| ≥ 1,
• E is a set of tuples 〈s, gx, λ, s′〉 representing transitions

from location s to location s′. The guard gx is an en-
abling condition and λ is a set of updates on clock val-

ues. Also, the set of transitions E is such that s 6= s
′

for every tuple and there are no back edges other than
from vf ∈ VF to v0.

• M is an extensible set of abstract metric-specific map-
pings that can be defined to help evaluate the metric.
For instance, one such mapping could map guards with
probabilities, and another mapping could map locations
with the computation overhead.

Note that an important property in a tree schedule (TTCS)
is that there are no self loops or back-edges other than the
transition from the leaf of every branch to the initial node
v0. Figure 3 shows a tree schedule as a directed acyclic graph
(DAG). The dashed edge marks the reset to the start of the
next round. For applying our analysis framework, such a
DAG has to converted into a tree by duplicating nodes as
necessary.

Example 2. Consider the schedule in Example 1. To
represent the schedule as a timed tree communication, we
define the tuple 〈V, v0, VF , l, s, K, E, M〉 as in Definition 1:

• V = {v1, v2, v3, v4, v5, v6, v7, v8}
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Figure 3: The schedule of Example 2 as a DAG. The
dashed edge marks the reset to the start of the next
round.

• v0 = v1,
• VF = {v1},
• l is l(α) = guard with α ∈ {v1, v2, v3}, l(α) = app

with α ∈ {v5, v6, v7}, l(α) = ⊥ otherwise,
• sl: sl(v1) = sl(v5) = {〈n1, n2〉, 〈n1, n3〉}, sl(v2) =

sl(v6) = {〈n2, n1〉, 〈n2, n3〉}, sl(v3) = sl(v7) = {〈n3, n1〉,
〈n3, n2〉}, sl(v4) = sl(v8) = ∅ and a mapping of v1 to
x1, v2 to x2, v3 to x3, v5 to n1, v6 to n2, and v7 to
n3,

• K = {clk},
• E is as shown in Figure 3, and
• M = ∅

The guard g0 is a function described as:

g0(x1, x2, x3) =

8>>><>>>:
n1 x1 ≥ x2 ∧ x1 ≥ x3

n2 x2 > x1 ∧ x2 ≥ x3

n3 x3 > x1 ∧ x3 > x2

⊥ x1 = x2 = x3 = 0

In the example, first, n1 communicates the value x1, then
n2 communicates x2, and n3 communicates x3. Second, each
node evaluates guard g0(x1, x2, x3). Depending on the result,
one of the nodes will get the slot [3, 8].

3.2 Conversion of Programs to TTCS
A network-code program is a sequence of network-code

instructions, and to analyse it in our framework, we have
to convert it to a TTCS. Network code by itself is a more
abstract representation of the communication than what we
have in the TTCS. Therefore, we need to annotate the pro-
gram before we can convert it. The annotation is then put
into the set of attributes for a node.

For the basic TTCS the metrics presented in this paper
we need to annotate (1) the semantic meaning of commu-
nication instances, (2) model guards as switch conditions,
and (3) evaluate the guard function’s execution times. The
unannotated program describes only when, what will be
communicated. It is ignorant of the data’s type and seman-
tics in the application. We need to provide the value for
the mapping l(v) as annotation. Network code represents
guards in C functions. We need to annotate the if state-
ments with expressions, which model the guard and can be
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put into the automaton. If it is impossible to do so, we can
use a probabilistic model as shown later. Finally, we need
to annotate the execution time of the guard function.

The conversion of the annotated program is straightfor-
ward and similar to the conversion to VERSA presented
in [9]. We interpret the program without performing actions
on the shared medium. Each send instruction is encoded as
a location. Each if statement is encoded with two successor
locations. The annotation specifies the switch condition.
Future instructions define how long the automaton delays
in the current location. Afterwards, we can create a cross
product of all the created automata and add invariants to
each location, so the location must be left as soon as one
leaving transition is enabled. For example, one node has
one location for slot one and one for slot four. Another has
a location for slot two and three. The automaton enters the
location for slot one but leaves it as soon as possible for slot
two. Otherwise, it would miss these slots.

3.3 Probabilistic Communication Schedules
In some applications, it may be expensive or even impos-

sible to analyze the guards a priori. If transitions cannot be
anticipated, we will be unable to compute reachable sets and
therefore, provide only limited analysis. However, even with
this restriction, it may be possible to attribute a transition
probability to a switch. Once the transition probabilities are
known, we analyze the network and support a different set
of metrics such as average cycle length or average waiting
time.

The transition probabilities on transitions can be obtained
by calculating (see Equation (9) in the case study in Sec-
tion 8) or by profiling the application at hand. Although
with profiling, we only get absolute probabilities, we can
normalize them (from a particular state) to generate the
required probabilities.

To reap the benefits of measuring probabilities, we can
replace the guards with functions, which decide on paths
depending on the transition probabilities. This causes a
switch to be taken purely on the result of a random exper-
iment (such as tossing a fair coin). Consequently, we can
provide analysis metrics, which require probabilistic anal-
ysis of the guards. Example analysis metrics are average
cycle length and average waiting time.

We formally capture this idea as probabilistic timed tree
communication schedule (pTTCS).

Definition 2. A probabilistic timed tree communication
schedule (pTTCS) Ωp is defined as a tuple 〈V, v0, VF , l, sl,

K, E
′
, M〉 where V, v0, VF , l, sl, K are as defined in Defini-

tion 1 and, E
′

= 〈s, a, πx, λ, s′〉 where πx = π(E
′
) is the

probability of transition E
′
, and M = {π} where π : E

′
→

[0, 1] represents the probability of a transition.

In the following sections, we define a set of analysis met-
rics, which can be used to analyze network-code programs.

4. OVERHEAD
Network code introduces two types of overhead: slot over-

head and guard overhead. Slot overhead is the number
of slots required to maintain consistent on-the-fly decisions
throughout the network. Guard overhead is the amount of
execution time required to perform on-the-fly decisions.

Overhead is an analysis metric because guard overhead
adds to the system run-time overhead and slot overhead in-
creases the cycle length. If there is very high guard overhead,

or if the system overshoots its computation-time budget,
overhead can give clues what need to be changed. Similarly,
if any of the deadlines are not met, or there is a perceivable
service latency, slot overhead should be reduced. To com-
pute both the types of overhead, we first define a run of the
TTCS.

Definition 3. A run r is a sequence of progression of
states of a TTCS 〈v〉n of locations with v0 → v1 → . . . → vn,
where → represents a valid transition of the TTCS.

The slot and guard overheads can now be defined for a
particular run. The slot overhead of a run r is the total
sojourn time of guard-specific locations in relation to the
sojourn time in application-specific locations. Formally,

Definition 4. If Gx = {vi|vi ∈ r, l(vi) = x} is the set
of locations with a label x, and sojourn(v) is the amount
of time TTCS spends in location v, then, the slot overhead
os(r) is defined as,

os(r) =

P
vi∈Gguard

sojourn(vi)P
vi∈Gapp

sojourn(vi)
(1)

The maximal/minimal guard overhead for a TTCS Ω is given
by maxr os(r)/minr os(r). The average guard overhead for
Ω is given by

P
r p(r) · os(r), where p(r) is the probability of

a run r.

The guard overhead of a run r is the amount of computa-
tion time required along executing a path in relation to its
duration.

Definition 5. If sojourn(v) is the amount of time TTCS
spends in location v, and WCET (g) represents the worst-
case computation time of guard g, the guard overhead og(r)
is defined as,

og(r) =

P
g∈E WCET (g)P

vi∈r sojourn(vi)
(2)

where E is the set of all transitions in the TTCS Ω. The
maximal/minimal guard overhead for Ω is given by maxr os(r)
/minr os(r). The average guard overhead for Ω is given byP

r p(r) · og(r), where p(r) is the probability of a run r.

5. SCHEDULABILITY
Given a specified node’s communication demand and a

tree schedule Ω, the schedulability condition checks whether
this demand can be met, i.e., whether this particular node
has enough slots to communicate in the specified time frame.

The schedulability condition allows the developer to check
a schedule against high-level requirements. For example, if
a specific node hosts a critical application such as a plant
controller that must react within x time units, then the
schedulability condition can be used to determine whether
this demand can be met.

Before we describe the schedulability conditions for network-
code programs, we introduce some notation. The demand
of one node ni is specified by the tuple df(ni) = 〈o, c, d, p〉i
with the offset oi, the communication time ci, the deadline
di, and the period pi. We assume that for each demand
df(ni), oi + ci ≤ di ≤ pi. We only consider demands, which
are released at the beginning of each period. The set of
demands for all nodes is represented by DF .

We are now ready to analyze schedulability for network-
code programs. First, we describe an algorithm that checks
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for schedulability for a given node n given a TTCS Ω and a
set of demands DF . It essentially implements a depth first
traversal of the underlying graph of the TTCS Ω, and checks
if the node n’s demands are met.

Algorithm 1 dfs(v,κ,s,n,df,Ω) :Algorithm to check suffi-
ciency of Ω given df .

Require: Ω = 〈V, v0, VF , l, sl, K, E, M〉
Require: df(n) = 〈o, c, d, p〉
Require: v ∈ V

if v supplies demand df(n) then
t← 1
while t ∗ sl < sojourn(v) and κ + t ∗ sl < d do

// Multiple transmissions per slot
5: if κ + (t− 1) ∗ sl ≥ o then

s← s + 1
end if
t← t + 1

end while
10: end if

// Update passed time.
κ← κ + sojourn(v)
if κ ≥ d and s < c then

// Deadline passed, insufficient supply.
15: return false

end if
if s ≥ c then

// Deadline passed, sufficient supply.
return true

20: end if
for all locations vx ∈ V adjacent to v do

// DFS recursion.
if dfs(vx, κ, s, n, df, Ω) = false then

return false
25: end if

end for
return true

The exact condition for Line 1 is l(v) = a and 〈ci, cj〉 ∈
sl(v) : ci = n: the slot has to be dedicated to application-
specific data and it has to supply the node n. κ is an integer
clock value measuring the amount of time passed since the
start until the demand’s deadline. t is also an integer clock
value measuring the time inside a slot. All other symbols
have the meaning as defined before.

The above algorithm gives a sufficient condition for schedu-
lability because it ignores guards and hence looses informa-
tion within a cycle and across cycles. See Example 3 for
an example. Nevertheless, since the algorithm runs in lin-
ear time, it may still be attractive in many applications to
quickly check for schedulability.

Theorem 1. A demand set DF is schedulable given a
tree schedule Ω, if ∀ni : dfs(v0, 0, 0, ni, df, Ω) = true, where
dfs is implemented as in Algorithm 1 and df(ni) ∈ DF .

To provide a necessary condition for schedulability, we
have to consider guards in the TTCS and evaluate whether
the demands are met over all runs of the automata. We
therefore encode the schedulability condition as a CTL ex-
pression and model-check the TTCS. A set of demands DF
is schedulable given a TTCS Ω, iff the model-checker re-
turns true for schedulability queries for all nodes. This idea
is captured formally in the theorem below.

Theorem 2. A demand set DF scheduled using a tree
schedule Ω is schedulable, iff ∀〈o, c, d, p〉i = df(ni) ∈ DF :

AG
“
si ≥ b κ

pi
cci + δi

“
κ− b κ

pi
cpi − oi

””
where,

δi =


1 if ci ≥ κ− b κ

pi
cpi − oi > 0

0 otherwise

�� ��

Skip forward.

0 1 2 t

1

0

Jg4K decides. g4(cycle) =

{

0 cycle mod 2 = 0

1 otherwise

n2 n3n1

n3

Figure 4: A tree schedule with one on-the-fly choice.

si is the number of application-specific slots for ni in the
interval [0, κ], and other variables are as defined before.

We assume that the scheduler executes the TTCS as spec-
ified. By that it is assured that if the demand is less than
the supply, then the three schedule is feasible.

Example 3. Figure 4 shows a schedule with one on-the-
fly choice at time t = 1. Consider the demand df(n1) =
〈1, 3, 8, 8〉. Applying Theorem 1, it will report that df(n1)
will miss the deadline according to slot assignment n1 →
n2 → n3 → n1 → n2 → n3 → n1. However, applying
Theorem 2 will result that it is schedulable. The reason is
that guard g4 will decide that n1 gets two slots every other
cycle. Thus, the path is n1 → n3 → n1 → n2 → n3 → n1 →
n3 → n1 and the demand is satisfied.

6. AVERAGE CYCLE LENGTH
Traditionally, in real-time communication protocols like

TDMA, the cycle length is fixed. However, network code
permits variable cycle lengths. In this section, we will define
the metric for computing the average cycle length given a
TTCS. The average cycle length measures how much time
passes between repetitive behavior on the schedule, i.e., the
average time it takes for the schedule to return to location
v0.

This metric is important in applications where certain ac-
tions happen once every cycle. For example, to estimate
how often a clock update occurs that is always updated at
the beginning of the cycle or to estimate regular actuator
updates in control applications (see Section 8 for an elabo-
rate example). We can also use this metric to estimate how
often certain guard-enabled actions are performed.

Definition 6. Given a TTCS Ω with the mapping π :
E → [0, 1], π ∈ M representing probabilities of transitions,
the average cycle length can be estimated as,X

vi∈VF

pvi · dt(vi, v0) (3)

where v0 represents the initial node, dt(u, v) is the time it
takes for the schedule to reach u from v, and pvi = π(v0, v1) . . .
π(vk, vi) where v0, v1, . . . , vk, vi forms a path in the automa-
ton from the initial node v0 to the node vi.

Example 4. Consider the schedule in Figure 4 of the Ex-
ample 3 with the probability of guard transition to τ3 with
probability 3

4
and τ2 with probability 1

4
. Also consider that

the n3 in the upper path is only single slot in length. Then,
the average cycle length would be 3

4
(1 + 1) + 1

4
(2 + 1) = 9

4
.

This is obtained by summing up the metric over nodes v3

and v4 as these are the nodes that have a transition back to
the start node v1.
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The average cycle length can be computed by performing
a depth-first search of the schedule and checking whether
there is edge leading back to the initial node (v0) and incre-
menting the probabilities.

7. AVERAGE WAIT TIME
The average wait time describes how long a specified node

has to wait from the time it arrives to the time it actually
is serviced (i.e., when it gets a communication slot in the
network). This is an important metric both from the per-
spective of quality of service, and also to compute the buffer
size on each node, so that messages are not dropped at the
buffers in the system. The average wait time is especially im-
portant for probabilistic network-code programs where there
is only a probability of a path being taken in the TTCS.

We expect that we are given an application that generates
different events. These events in turn generate messages,
which need to be sent on the network. We assume that
there are two types of events: independent and dependent
ones. Independent events arrive given a distribution. De-
pendent events occur given the conditional probability and
the probability the event on that they depend on. We as-
sume that arrival and conditional probabilities are known.
For instance, such a model can be presented in the form of a
dependency graph. Such a dependency graph can be gener-
ated from the knowledge of dependencies and probabilities
of different events. In addition to the message arrival at
nodes in the network, we assume a probabilistic TTCS Ωp,
which specifies the application’s schedule. We also assume
that there is a known mapping from messages to slots in the
communication schedule.

Terminology. When messages arrive, we assume that they
will be enqueued in a queue. The message at the head of
the queue will be serviced in the slot assigned to the node
holding the message. We refer the time spent in the queue
until the message reaches the head of the queue as the wait-
ing time (TW ). The effective service time (TES) is the total
time spent at the head of the queue waiting for the slot and
the time in the slot (TS). The effective waiting time (TEW )
can be defined as TW + TES − TS .

In our analysis, we consider two types of systems: (a)
event-triggered systems, in which messages are generated as
a result of events, and (b) time-triggered system, in which
the message arrival occurs at fixed points in time. For the
analysis, the system is assumed to consist of a network of
queues and we consider the service and waiting times once
the system has reached a steady state. I.e., the waiting time
may be different for the first few messages, but not so in a
stabilized system. For event-triggered systems, independent
events are considered to arrive as a Poisson process, i.e., the
number of arrivals N(t) of an event E in a finite interval t is

given by P{N(E, t) = m} = (λt)m

m!
e−λt. Further, to simplify

the analysis, we consider infinite buffers. Although analysis
with finite buffers would lead to a more precise result, it has
been argued (for example, in [14]) that this error in analysis
is marginal.

Waiting time analysis under event-triggered systems. Let
us first consider the distribution of effective service times.
Suppose an event E gets serviced in slots at locations L =
{e1, . . . , em} in the TTCS Ωp. Consider one such location,
say ei. The effective service times experienced starting from
this location depends on the next slot available for E start-
ing from ei. Now, it is possible that one of the descendants
of ei in Ωp, say ek will be one servicing Ei. If this is the
case, then the effective service time will be dt(ei, ek) where

dt is as defined in Definition 6. The probability of reaching
the slot ej from ei is pr(ei, ek) = π(ei, v1) . . . π(vr, ek). We
denote the set of all such slots to be Li ⊂ L. If there is
no such slot, then the schedule Ωp will consist of a return
to the initial location from one descendant locations and
then, the service slot would be reached in the next cycle
at any of the positions in L \ Li. To calculate the effec-
tive service times for event E starting from the initial slot
v0, consider a location ek ∈ L. The probability of reaching
such a slot is pr(v0, ek) = π(v0, v1) . . . π(vr, ek). The ser-
vice time here is then dt(v0, ek). The probability that no
service slot would be reached is (1 −

P
ei∈L pr(v0, ei)). If

the average cycle length for schedules without any slot for
E be l, then the average effective service time starting from
v0, µE =

P
n≥0

P
ek∈L (1− qr)

n pr(v0, ek) · (nl + dt(v0, ek))

where qr =
P

ej∈L pr(v0, ej). Therefore, the expected delay

along this path would be dt(ei, ej) + µE . If we denote the
set of all descendant slots of ei that are final locations be-
fore making a transition back to v0 as Fi, then the average
effective service time experienced at ei is

P
ej∈Li

pr(ei, ej) ·
dt(ei, ej) +

P
ej∈Fi

pr(ei, ej) · (µE + dt(ei, ej)). We summa-

rize the above discussion in the result below.

Theorem 3. Given a probabilistic TTCS Ωp, if an event
Ei is serviced at schedule locations Li = {ei

1, . . . , e
i
m} as

specified in Ωp, then the nth moment sn of the effective ser-
vice times is given by,

T1 =
X

ei
k
∈Li

k

pr(e
i
j , e

i
k) · dt(ei

j , e
i
k)n (4)

T2 =
X

ei
j∈F i

j

pr(e
i
j , e

i
k) ·

“
µEi + dt(ei

j , e
i
k)
”n

(5)

sn(Ei) =
X
Ei

X
ej∈Li

p(ej) · (T1 + T2) (6)

µEi =
P

h≥0

P
ei

k
∈Li

`
1− qi

r

´h · pr(v0, e
i
k) · (hl + dt(v0, e

i
k)),

qi
r =

P
ei

j∈Li pr(v0, e
i
j),

pr(ei, ej) =


π(ei, v1) . . . π(vr, ej) Des(ei, ej)

π(ej
i , v1) . . . π(vf , v0) . . . π(vr, ej) Otherwise

p(ej) =
pr(v0,ej)P
ei

pr(v0,ei)
,

where Des(v1, v2) will be true, if v2 is a direct descen-

dant of v1 in Ωp and false otherwise, and l is the schedule’s
average cycle length on other paths. Therefore, the mean
(µX(Ei)) and variance σ2(Ei) of effective service times (TES)
are given by s1(Ei) and s2(Ei)− (s1(Ei))

2, respectively.

Returning to the analysis of waiting times, the arrival of
independent events is Poisson (and hence Markovian), the
service times are general distribution function, we can model
them as the queueing model M/G/1 for the independent
events. Therefore, the variance in arrival times is σ2

T (Ei) =
1

λ2
i
. Now consider dependent events. Let us say that the

dependent event Ej depends on an independent event Ei.
Since the arrival process of Ei is Poisson, its inter-arrival
times are exponentially distributed. The inter-arrival times
(TI) of dependent event Ej is given by the function, P (TI =
t) = pij ·λie

−λit. We can consider this as a G/D/1 queueing
scheme. For a G/G/1, we have the following inequality on

the waiting time, Wq ≤ λ
σ2

X+σ2
T

2(1−λµX )
[7], where λ is the average
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rate of arrival, µX , σX are the mean and variance of the
service times, and σT is the variance of the arrival time. The
variance in arrival times is σ2

T (Ej) =
pij

λ2
i

for a dependent

event, and the rate of arrival is λi
pij

.

Definition 7. Given an event-triggered system compris-
ing of events E such that the independent events arrive as
a Poisson process, and these events are serviced by a proba-
bilistic TTCS Ωp, the average waiting time (TW ) of an event
Ei satisfies,

TW (Ei) ≤
λ2

i s2(Ei)
2 + 1

2λi(1− λis1(Ei))
(7)

where Ei is an independent event with arrival rate of λi, and

TW (Ej) ≤
pjλ

2
i s2(Ei)

2 + 1

2pjλi(1− pjλis1(Ei))
(8)

where Ej is a dependent event with interarrival times dis-
tributed as pj ·λke−λkt for some k. s1(E) and s2(E) are the
average and variance of the effective service times as given
in Theorem 3. The average waiting time for the whole sys-

tem can be defined as, TW (E) = 1
|E|
P

Ei∈E T
′
W (Ei) where

TW
′ represents the upper bounds of effective waiting times.

Example 5. Consider the schedule in Figure 4 of the Ex-
ample 3 with the probability of guard transition to τ3 with
probability 3

4
and τ2 with probability 1

4
. Again, assume that

the slot for n3 in the upper path is single slot in duration.
Let us assume that the arrivals at n1 is Poisson with rate λ1.
Then, the variance in arrival time for n1 is 1

λ2
1
. The mean

service time for n1 is 9
4
, and the variance is ( 3

4
)22 +( 1

4
)32−

( 9
4
)2 = 3

16
. Let us analyze the waiting time for a dependent

event n3. Its mean arrival rate is 1
λ
, the mean service time

would have to be calculated for positions of n3 (on the path
above and the path below). In both these cases, this is given
by ( 3

4
)1+( 1

4
)2. Therefore the mean time is 5

4
. Its variance is

then ( 3
4
)1+( 1

4
)4− ( 5

4
)2 = 3

16
. For n2, the mean arrival time

is 1
4λi

the mean service time is
P

n≥0(
3
4
)n 1

4
(2 + 2 · n) = 8.

The average waiting time for the entire schedule can now be
calculated.

Network Code under time-triggered systems. In a time-
triggered system, the messages arrive at fixed points in time.
Therefore, in this case, each node on the network will get
a slot depending on the probabilities and the frequency of
occurrence in the schedule. We can still consider the gener-
ation of a time-triggered message as an arrival which has a
general distribution and service times also having a general
distribution. Therefore, given the schedule Ωp in the time-
triggered case, we have a G/G/1 queueing system and the
waiting time for the system can be bounded by TW (E) ≤
λ

σ2
X+σ2

T
2(1−λµX )

where the symbols have the usual meaning.

8. CASE STUDY
In our case study, we implement a control system for an

inverted pendulum, which tolerates two independent value
failures using a voting system. An inverted pendulum is es-
sentially a pole mounted on a cart. The pole is free to rotate
round on an axis, and the cart can move horizontally. The
objective is to maintain the inverted pendulum in the up-
right position. The control strategy is modeled as a hybrid
automaton that is described in Figure 5. The control model

z(θ, ω) > vmax

|z(θ, ω)| < vmax

v = z(θ, ω)
ω̇ = g sin θ − v cos θ

θ̇ = ω

q2

θ̇ = ω
ω̇ = g sin θ − v cos θ

v = −vmax

z(θ, ω) < −vmax

q0

z(θ, ω)
θ

... pendulum feedback function

... pendulum’s angle w.r.t. the cart
ω

v

... angular velocity

... linear accel. of the cart

z(θ, ω) < −vmax

|z(θ, ω)| < vmax

z(θ, ω) > vmax

|z(θ, ω)| < vmax

z(θ, ω) < −vmax

θ̇ = ω

q1

ω̇ = g sin θ − v cos θ
v = vmax

z(θ, ω) > vmax

Figure 5: Controller model of the inverted pendu-
lum.

bases on previous works [15, 4]. The control parameter is
the linear acceleration of the pivot v. This parameter bases
on the pendulum’s angle θ to the car and its angular speed
ω. Initially, the automaton is in state q0, which signifies ac-
celeration to the extreme left. The state q1 is the opposite
of q0 and q2 describes the control in the stabilized position.

We want the system to tolerate two value failures of the
variables θ and ω. We use standard five-way redundancy to
tolerate such failures. In our particular case, we use five in-
dependent units reading θ and ω values to vote over possibly
two value failures. Each unit broadcasts their result using
a communication schedule. The control unit receives these
results and performs a voting. To tolerate two failures in
five results, a majority of at least three votes for one value
will decide the voting and the control unit will adjust the
acceleration v accordingly. We assume a failure rate of ten
percent, i.e., in ten readings, one will be incorrect. We also
assume failures to be transient.

8.1 The Setup
We implemented the hybrid systems control using Charon.

Charon permits modular specification of interacting hybrid
systems and supports automatic code generation [3]. Once
the model is specified in Charon, the code generator for
an agent takes a sampling step size as an input and pro-
duces code that approximates the continuous behavior of
the model. We then simulate the code and monitor the run-
time behavior.

We model communication between the controller and the
replicated units via the sampling step size in our model. For
example, in the standard TDMA system, each unit must
report its value. The control unit always waits a full cycle,
so the length of the TDMA cycle is the sampling step size.
In the implementation, we ignore overhead introduced by
clock synchroniation or computation time for reading values,
adjusting values, and the voting. This can be incorporated
as additional overhead to the cycle duration.

The expected behavior is that, since any step size intro-
duces an error in the model, depending on the step size, the
pendulum will collapse earlier or later due to the cumula-
tive error. So, the step size is our control variable in the
simulation, which is adjusted depending on the scenario we
are running. Note, that the slot length and consequently
the step size are chosen arbitrarily to show the point of the
different schedules and shorten the time for the calculations.

For the case study, we consider a slot length of 0.0056 time
units. Furthermore, we want unit u1 to report a new value
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Figure 6: TDMA tolerating two value failures

every 0.020 time units and have the average cycle length be-
low that number as well. We could have chosen other values,
however, these show the point more clearly than others.

8.2 Step I - Traditional TDMA
The communication schedule using TDMA is that each

unit transmits its read value. After each reported the value,
the controller votes and updates the control input. Thus,
the TDMA cycle is 0.028, i.e., five times the slot length of
0.0056.

Using a standard TDMA schedule, the pendulum col-
lapses after 23.379 time units. Figure 6 shows the simulation
results for standard TDMA. The top part of the diagram
shows the angular values, and the bottom part shows the
control input. In the top part, the dashed line shows the
angular value θ. The solid line shows the angular velocity
ω. In the bottom part, the dotted lines show the control
input v.

The standard TDMA schedule can be modeled as a TTCS
without an on-the-fly decision. So, we can apply our frame-
work. Furthermore, we can check for scheduling by asking
whether unit u1 will be able to communicate one slot at
least every 0.020 time units. Algorithm 1 shows it is not
schedulable. This is confirmed by the average cycle length
(see Equation (3)), which results to 0.028. Note, we chose
u1, but similar results go for u2 and u3. However, not for u4

and u5, because they have no guaranteed execution within
one cycle.

8.3 Step II - Reducing Average Cycle Length
To meet the required 0.020 time constraint for unit u1, we

now will try to shrink the average cycle length. For this, we
will increase the number of u1 transmissions without com-
promising the application. First, we distinguish between
necessary and unnecessary information. The first three slots
(including u1) are necessary for the application. The fourth
slot only contains useful information, if the first three slots
disagree on the value. The fifth slot only contains informa-
tion, if from the previous four slots less than three agree on
a value.

Using this insight, we now create a network-code program
to minimize the number of unnecessary slots and thereby
will (1) increase the number of slots for u1 and (2) decrease
the average cycle length. So, we implement a schedule, in
which if after three or four reported measurements, the vot-
ing is already decisive (i.e., the number of votes of one par-
ticular value is greater than two), then the control unit will
immediately apply the new value and all units will imme-

If voting decisive, then skip.

u1 u2 u3 u4 u5

t

Figure 7: Tree schedule tolerating two value failures.

diately start with a new cycle. Figure 7 shows the com-
munication schedule for this case. We implement this in
CHARON by simulating the network-code program, which
implement this schedule, and by adapting the sampling step
size accordingly to the current cycle length.

Listings 2 and 3 show the network-code programs with-
out clock synchronization for these communication sched-
ules. Listing 2 shows the controller unit’s program. First, it
waits until three units have sent their measurements. Sec-
ond, in Line 5, a guard determines, whether the voting is
already decisive. If it is decisive, then a new cycle will im-
mediately start. If the voting is not decisive, then more
data will be collected. Listing 3 shows the program for unit
u5. Its behavior is similar to the control unit’s behavior,
however, in Line 9, u5 sends the data.

L0 : wait ( 3t )
receive ( _ , U1_DATA )

3 receive ( _ , U2_DATA )
receive ( _ , U3_DATA )
i f ( votingDecisive , L0 )
wait ( 1 )
receive ( _ , U4_DATA )

8 i f ( votingDecisive , L0 )
wait ( 1 )
receive ( _ , U5_DATA )
goto ( L0 )

Listing 2: Program for the controller unit.

L0 : wait ( 3t )
receive ( _ , U1_DATA )
receive ( _ , U2_DATA )

4 receive ( _ , U3_DATA )
i f ( votingDecisive , L0 )
wait ( 1 )
receive ( _ , U4_DATA )
i f ( votingDecisive , L0 )

9 xsend ( _ , _ , MY_DATA , _ )
future ( 1 , L0 )
halt ( )

Listing 3: Program for the unit u5.

Using this network-code program, we can stabilize the
pendulum for a much longer period than with the previous
schedule (45 time units compared to 23). Figure 8 shows the
simulation results. The top part shows the angular values:
angular velocity ω (solid) and the angle θ (dashed). After
about 2 time units, the pendulum becomes stable, as the an-
gular velocity becomes zero and the angle is π. The middle
part shows the control input v. Once the pendulum becomes
stable, it rapidly switches between acceleration modes (i.e.,
the black box in the figure) to keep it upright. The bottom
part shows the number of slots per cycle. That means, if one
error occurred in three slots, then the cycle will have four
slots. If two errors occurred in four slots, then the cycle will
have five slots. So for example at time 10, the cycle uses five
slots, because two units reported a different value.
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Figure 8: Program with deterministic guards.

This new schedule resulted in a lower average cycle length
and meets the demand for u1. In the TDMA schedule, the
average cycle length is 0.028. Using this schedule, the av-
erage cycle length is the average number of slots is 3.346
and the average cycle time is 0.0187376. Furthermore, Al-
gorithm 1 returns that the demand of one slot per 0.020
time units is met (e.g., checking this for u4 or u5 results in
a not schedulable).

However, evaluating the guard values introduces run-time
overhead. In the next step, we try to reduce this overhead.

8.4 Step III - Reducing Guard Overhead
We want to reduce the run-time overhead by using prob-

abilistic guards instead of the deterministic guards used be-
fore. To use the probabilistic model, we need to assign prob-
abilities to transitions. When a system tolerates n failures,
then the probability P (x) of requiring γ +x slots the sched-
ule is:

P (x) =

 
γ

x

!
px(1− p)(γ−x) (9)

with γ = d 2n+1
2

e, p defining the probability of any node

failing and 1 ≤ x ≤ b 2n+1
2

c.
If x = 1, then we compute, when we need one additional

slot. We need one additional slot, when one of γ slots con-
tains a different value than the others. It contains a dif-
ferent value, when a failure occurred. For γ = 3 this is:
(1−p)(1−p)p+(1−p)p(1−p)+p(1−p)(1−p) = 3p(1−p)2.
For an arbitrary γ, this is: γ ∗ p ∗ (1− p)γ . Now for an arbi-

trary x, the probability is the sum of px(1 − p)(γ−x) for all
possible subsets of length x. Equation (9) follows.

We replace the deterministic guards with probabilistic
guards as depicted in Figure 9 where γ is three. Equation (9)
provides the values for the guards (i.e., P (1) = 0.7323 and
P (2) = 0.9726). After three units have sent their value,
a guard will decide based on the probability, whether the
fourth unit’s value will also be considered. Similarly, we
treat unit u5. If, at the end of the cycle, the voting is not
decisive, then the control unit will omit the actuator up-
dates for this cycle. We implemented this in CHARON by
simulating the network-code program, which simulates this
schedule and set step size to be the sum of all indecisive
cycles plus the last decisive one.

The network-code program with probabilistic guards is
similar to the one for the deterministic implementation. The
only changes are that we replace the guard function vot-

p = 0.9726

u1 u2 u3 u4 u5

t

p = 0.7323

Figure 9: Tree schedule with probabilistic guards.
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Figure 10: Program with probabilistic guards (a bad
run).

ingDecisive in Line 5 with the guard function pBelow7323.
This guard function returns true, if a selected random value
is below 0.7323. We also replace the guard function in Line 8
with pBelow9726. This guard function returns true, if the
selected random value is below 0.9726. We assume that
all units draw the same random numbers (e.g., they have
the same pseudo number generator and start with the same
seed value). Otherwise, different nodes may choose different
paths in the TTCS.

Statistically, this schedule does not have information over-
head, because in the long run, the number of used packets
matches the number of required packets. This schedule also
reduces the run-time overhead, because the computation is
now linear with complexity of the guard as drawing the ran-
dom numbers is constant in time.

However, the simulation results are differential. There
are very good runs and very bad runs. Figure 11 shows a
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Figure 11: Program with probabilistic guards (a
good run).

130



TDMA
 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1000  2000  3000  4000  5000

T
im

e 
to

 c
ol

la
ps

e

Failure rate

Failure Rate vs. Time to Collapse (1,000 runs)

Stability time (pNCM)

 0

Figure 12: Pendulum stability with probabilistic
guards with varying failure rate.

good run, in which the pendulum remains stable for 34 time
units. Figure 10 shows a bad run; the pendulum is stable for
only about 23 time units. The top part shows the angular
values. The solid line shows the angular velocity ω and the
dashed line shows the angle θ. The middle part shows the
control input v. The bottom part shows the time between
two decisive cycles.

Given the large variation, we now determine, how the per-
formance of the network-code program with probabilistic
guards is affected by the failure rate. Therefore, we simu-
lated a thousand runs with varying failure rate. Figure 12
shows the result. As the figure shows, with an increasing
failure rate, the time to collapse using the program with
probabilistic guards logarithmically approaches the upper
limit.

Even at a failure rate of 10 percent, the program with
probabilistic guards performs slightly better than the stan-
dard TDMA schedule shown before. The higher the rate,
the better the program with probabilistic guard gets in com-
parison to TDMA, because TDMA assumes the worst case
in each cycle and therefore stays at 23 time units. Fur-
thermore, the failure rate of 10 percent is extremely high.
Considering CAN messages with 20ms per message, we have
a mean time to failure of 200ms. This is about 72 billion
times higher than the traditional numbers of 1,000 hours for
transient node failures [13]. We chose such a low mean time
to failure to show the point more effectively. The results are
the same for high numbers.

9. CONCLUSIONS
Network code provide a flexible and expressive model of

specifying and executing real-time communication sched-
ules. In this paper, we have formalized network-code sched-
ules as timed tree communication schedules (TTCS) based
on timed automata, and have developed a framework with
several common metrics for analyzing deterministic and prob-
abilistic network-code programs. We have shown the frame-
work’s utility with an inverted pendulum case study. From
the results of the study, we have found that the frame-
work is applicable to model network-code programs and
that the analysis helps improving schedules based on high-
level requirements (e.g., minimizing the delay for actuator
updates). Specifically in the case study, the network-code
program with probabilistic guards has offered significantly
shorter cycle lengths with a probabilistic guarantee of ac-
curate values than the standard TDMA schedule. Conse-

quently, the finally developed schedule has stabilized the
pendulum much longer than the TDMA model even at very
high failure rates.

While our framework is indispensable in weighing the costs
versus the benefits under different metrics for an application
developer, the framework also serves as an important step
towards automatic generation of application-specific media
access control based on higher-level requirements. In the fu-
ture, we will explore the problem of optimizing TTCS con-
sidering sets of metrics.
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